Spaces:
Runtime error
Runtime error
File size: 27,764 Bytes
3f01a25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
import gradio as gr
from examples.story_examples import get_examples
import spaces
import numpy as np
import torch
import random
import os
import torch.nn.functional as F
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
import copy
from huggingface_hub import hf_hub_download
from diffusers.utils import load_image
from storyDiffusion.utils.gradio_utils import AttnProcessor2_0 as AttnProcessor, cal_attn_mask_xl
from storyDiffusion.utils import PhotoMakerStableDiffusionXLPipeline
from storyDiffusion.utils.utils import get_comic
from storyDiffusion.utils.style_template import styles
# Constants
image_encoder_path = "./data/models/ip_adapter/sdxl_models/image_encoder"
ip_ckpt = "./data/models/ip_adapter/sdxl_models/ip-adapter_sdxl_vit-h.bin"
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Japanese Anime"
MAX_SEED = np.iinfo(np.int32).max
# Global variables
global models_dict, use_va, photomaker_path, pipe2, pipe4, attn_count, total_count, id_length, total_length, cur_step, cur_model_type, write, sa32, sa64, height, width, attn_procs, unet, num_steps
models_dict = {
"RealVision": "SG161222/RealVisXL_V4.0",
"Unstable": "stablediffusionapi/sdxl-unstable-diffusers-y"
}
use_va = True
photomaker_path = hf_hub_download(
repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")
device = "cuda"
# Functions
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def set_text_unfinished():
return gr.update(visible=True, value="<h3>(Not Finished) Generating ··· The intermediate results will be shown.</h3>")
def set_text_finished():
return gr.update(visible=True, value="<h3>Generation Finished</h3>")
class SpatialAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
text_context_len (`int`, defaults to 77):
The context length of the text features.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self, hidden_size=None, cross_attention_dim=None, id_length=4, device="cuda", dtype=torch.float16):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.device = device
self.dtype = dtype
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.total_length = id_length + 1
self.id_length = id_length
self.id_bank = {}
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None):
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
# 生成一个0到1之间的随机数
global total_count, attn_count, cur_step, mask1024, mask4096
global sa32, sa64
global write
global height, width
global num_steps
if write:
# print(f"white:{cur_step}")
self.id_bank[cur_step] = [
hidden_states[:self.id_length], hidden_states[self.id_length:]]
else:
encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(
self.device), hidden_states[:1], self.id_bank[cur_step][1].to(self.device), hidden_states[1:]))
# 判断随机数是否大于0.5
if cur_step <= 1:
hidden_states = self.__call2__(
attn, hidden_states, None, attention_mask, temb)
else: # 256 1024 4096
random_number = random.random()
if cur_step < 0.4 * num_steps:
rand_num = 0.3
else:
rand_num = 0.1
# print(f"hidden state shape {hidden_states.shape[1]}")
if random_number > rand_num:
# print("mask shape",mask1024.shape,mask4096.shape)
if not write:
if hidden_states.shape[1] == (height//32) * (width//32):
attention_mask = mask1024[mask1024.shape[0] //
self.total_length * self.id_length:]
else:
attention_mask = mask4096[mask4096.shape[0] //
self.total_length * self.id_length:]
else:
# print(self.total_length,self.id_length,hidden_states.shape,(height//32) * (width//32))
if hidden_states.shape[1] == (height//32) * (width//32):
attention_mask = mask1024[:mask1024.shape[0] // self.total_length *
self.id_length, :mask1024.shape[0] // self.total_length * self.id_length]
else:
attention_mask = mask4096[:mask4096.shape[0] // self.total_length *
self.id_length, :mask4096.shape[0] // self.total_length * self.id_length]
# print(attention_mask.shape)
# print("before attention",hidden_states.shape,attention_mask.shape,encoder_hidden_states.shape if encoder_hidden_states is not None else "None")
hidden_states = self.__call1__(
attn, hidden_states, encoder_hidden_states, attention_mask, temb)
else:
hidden_states = self.__call2__(
attn, hidden_states, None, attention_mask, temb)
attn_count += 1
if attn_count == total_count:
attn_count = 0
cur_step += 1
mask1024, mask4096 = cal_attn_mask_xl(
self.total_length, self.id_length, sa32, sa64, height, width, device=self.device, dtype=self.dtype)
return hidden_states
def __call1__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
# print("hidden state shape",hidden_states.shape,self.id_length)
residual = hidden_states
# if encoder_hidden_states is not None:
# raise Exception("not implement")
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
total_batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
total_batch_size, channel, height * width).transpose(1, 2)
total_batch_size, nums_token, channel = hidden_states.shape
img_nums = total_batch_size//2
hidden_states = hidden_states.view(-1, img_nums, nums_token,
channel).reshape(-1, img_nums * nums_token, channel)
batch_size, sequence_length, _ = hidden_states.shape
if attn.group_norm is not None:
hidden_states = attn.group_norm(
hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states # B, N, C
else:
encoder_hidden_states = encoder_hidden_states.view(
-1, self.id_length+1, nums_token, channel).reshape(-1, (self.id_length+1) * nums_token, channel)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads,
head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads,
head_dim).transpose(1, 2)
# print(key.shape,value.shape,query.shape,attention_mask.shape)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
# print(query.shape,key.shape,value.shape,attention_mask.shape)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(
total_batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
# if input_ndim == 4:
# tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
# if attn.residual_connection:
# tile_hidden_states = tile_hidden_states + residual
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
total_batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
# print(hidden_states.shape)
return hidden_states
def __call2__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, channel = (
hidden_states.shape
)
# print(hidden_states.shape)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(
batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(
hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states # B, N, C
else:
encoder_hidden_states = encoder_hidden_states.view(
-1, self.id_length+1, sequence_length, channel).reshape(-1, (self.id_length+1) * sequence_length, channel)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads,
head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads,
head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(
-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def set_attention_processor(unet, id_length, is_ipadapter=False):
global total_count
total_count = 0
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith(
"attn1.processor") else unet.config.cross_attention_dim
if cross_attention_dim is None:
if name.startswith("up_blocks"):
attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length)
total_count += 1
else:
attn_procs[name] = AttnProcessor()
else:
attn_procs[name] = AttnProcessor()
unet.set_attn_processor(copy.deepcopy(attn_procs))
print("Successfully loaded paired self-attention")
print(f"Number of processors: {total_count}")
attn_count = 0
total_count = 0
cur_step = 0
id_length = 4
total_length = 5
cur_model_type = ""
device = "cuda"
attn_procs = {}
write = False
sa32 = 0.5
sa64 = 0.5
height = 768
width = 768
def swap_to_gallery(images):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def upload_example_to_gallery(images, prompt, style, negative_prompt):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def remove_back_to_files():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def remove_tips():
return gr.update(visible=False)
def apply_style_positive(style_name: str, positive: str):
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive)
def apply_style(style_name: str, positives: list, negative: str = ""):
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return [p.replace("{prompt}", positive) for positive in positives], n + ' ' + negative
def change_visiale_by_model_type(_model_type):
if _model_type == "Only Using Textual Description":
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif _model_type == "Using Ref Images":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
else:
raise ValueError("Invalid model type", _model_type)
@spaces.GPU(duration=120)
def process_generation(_sd_type, _model_type, _upload_images, _num_steps, style_name, _Ip_Adapter_Strength, _style_strength_ratio, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array, G_height, G_width, _comic_type):
global sa32, sa64, id_length, total_length, attn_procs, unet, cur_model_type, device, num_steps, write, cur_step, attn_count, height, width, pipe2, pipe4, sd_model_path, models_dict
_model_type = "Photomaker" if _model_type == "Using Ref Images" else "original"
if _model_type == "Photomaker" and "img" not in general_prompt:
raise gr.Error(
"Please add the trigger word 'img' behind the class word you want to customize, such as: man img or woman img")
if _upload_images is None and _model_type != "original":
raise gr.Error("Cannot find any input face image!")
if len(prompt_array.splitlines()) > 10:
raise gr.Error(
f"No more than 10 prompts in Hugging Face demo for speed! But found {len(prompt_array.splitlines())} prompts!")
height = G_height
width = G_width
sd_model_path = models_dict[_sd_type]
num_steps = _num_steps
if style_name == "(No style)":
sd_model_path = models_dict["RealVision"]
if _model_type == "original":
pipe = StableDiffusionXLPipeline.from_pretrained(
sd_model_path, torch_dtype=torch.float16)
pipe = pipe.to(device)
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
set_attention_processor(pipe.unet, id_length_, is_ipadapter=False)
elif _model_type == "Photomaker":
if _sd_type != "RealVision" and style_name != "(No style)":
pipe = pipe2.to(device)
pipe.id_encoder.to(device)
set_attention_processor(pipe.unet, id_length_, is_ipadapter=False)
else:
pipe = pipe4.to(device)
pipe.id_encoder.to(device)
set_attention_processor(pipe.unet, id_length_, is_ipadapter=False)
else:
raise NotImplementedError(
"You should choose between original and Photomaker!", f"But you chose {_model_type}")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
cur_model_type = _sd_type + "-" + _model_type + str(id_length_)
if _model_type != "original":
input_id_images = [load_image(img) for img in _upload_images]
prompts = prompt_array.splitlines()
start_merge_step = int(float(_style_strength_ratio) / 100 * _num_steps)
if start_merge_step > 30:
start_merge_step = 30
print(f"start_merge_step: {start_merge_step}")
generator = torch.Generator(device="cuda").manual_seed(seed_)
sa32, sa64 = sa32_, sa64_
id_length = id_length_
clipped_prompts = prompts[:]
prompts = [general_prompt + "," + prompt if "[NC]" not in prompt else prompt.replace(
"[NC]", "") for prompt in clipped_prompts]
prompts = [prompt.rpartition(
'#')[0] if "#" in prompt else prompt for prompt in prompts]
print(prompts)
id_prompts = prompts[:id_length]
real_prompts = prompts[id_length:]
torch.cuda.empty_cache()
write = True
cur_step = 0
attn_count = 0
id_prompts, negative_prompt = apply_style(
style_name, id_prompts, negative_prompt)
setup_seed(seed_)
total_results = []
if _model_type == "original":
id_images = pipe(id_prompts, num_inference_steps=_num_steps, guidance_scale=guidance_scale,
height=height, width=width, negative_prompt=negative_prompt, generator=generator).images
elif _model_type == "Photomaker":
id_images = pipe(id_prompts, input_id_images=input_id_images, num_inference_steps=_num_steps, guidance_scale=guidance_scale,
start_merge_step=start_merge_step, height=height, width=width, negative_prompt=negative_prompt, generator=generator).images
else:
raise NotImplementedError(
"You should choose between original and Photomaker!", f"But you chose {_model_type}")
total_results = id_images + total_results
yield total_results
real_images = []
write = False
for real_prompt in real_prompts:
setup_seed(seed_)
cur_step = 0
real_prompt = apply_style_positive(style_name, real_prompt)
if _model_type == "original":
real_images.append(pipe(real_prompt, num_inference_steps=_num_steps, guidance_scale=guidance_scale,
height=height, width=width, negative_prompt=negative_prompt, generator=generator).images[0])
elif _model_type == "Photomaker":
real_images.append(pipe(real_prompt, input_id_images=input_id_images, num_inference_steps=_num_steps, guidance_scale=guidance_scale,
start_merge_step=start_merge_step, height=height, width=width, negative_prompt=negative_prompt, generator=generator).images[0])
else:
raise NotImplementedError(
"You should choose between original and Photomaker!", f"But you chose {_model_type}")
total_results = [real_images[-1]] + total_results
yield total_results
if _comic_type != "No typesetting (default)":
from PIL import ImageFont
captions = prompt_array.splitlines()
captions = [caption.replace("[NC]", "") for caption in captions]
captions = [caption.split(
'#')[-1] if "#" in caption else caption for caption in captions]
total_results = get_comic(id_images + real_images, _comic_type, captions=captions,
font=ImageFont.truetype("./storyDiffusion/fonts/Inkfree.ttf", int(45))) + total_results
if _model_type == "Photomaker":
pipe = pipe2.to("cpu")
pipe.id_encoder.to("cpu")
set_attention_processor(pipe.unet, id_length_, is_ipadapter=False)
yield total_results
# Initialize pipelines
pipe2 = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
models_dict["Unstable"], torch_dtype=torch.float16, use_safetensors=False)
pipe2 = pipe2.to("cpu")
pipe2.load_photomaker_adapter(
os.path.dirname(photomaker_path),
subfolder="",
weight_name=os.path.basename(photomaker_path),
trigger_word="img"
)
pipe2 = pipe2.to("cpu")
pipe2.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
pipe2.fuse_lora()
pipe4 = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
models_dict["RealVision"], torch_dtype=torch.float16, use_safetensors=True)
pipe4 = pipe4.to("cpu")
pipe4.load_photomaker_adapter(
os.path.dirname(photomaker_path),
subfolder="",
weight_name=os.path.basename(photomaker_path),
trigger_word="img"
)
pipe4 = pipe4.to("cpu")
pipe4.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
pipe4.fuse_lora()
def story_generation_ui():
with gr.Row():
with gr.Group(elem_id="main-image"):
prompts = []
colors = []
with gr.Column(visible=True) as gen_prompt_vis:
sd_type = gr.Dropdown(choices=list(models_dict.keys(
)), value="Unstable", label="sd_type", info="Select pretrained model")
model_type = gr.Radio(["Only Using Textual Description", "Using Ref Images"], label="model_type",
value="Only Using Textual Description", info="Control type of the Character")
with gr.Group(visible=False) as control_image_input:
files = gr.Files(
label="Drag (Select) 1 or more photos of your face",
file_types=["image"],
)
uploaded_files = gr.Gallery(
label="Your images", visible=False, columns=5, rows=1, height=200)
with gr.Column(visible=False) as clear_button:
remove_and_reupload = gr.ClearButton(
value="Remove and upload new ones", components=files, size="sm")
general_prompt = gr.Textbox(
value='', label="(1) Textual Description for Character", interactive=True)
negative_prompt = gr.Textbox(
value='', label="(2) Negative_prompt", interactive=True)
style = gr.Dropdown(
label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
prompt_array = gr.Textbox(
lines=3, value='', label="(3) Comic Description (each line corresponds to a frame).", interactive=True)
with gr.Accordion("(4) Tune the hyperparameters", open=True):
sa32_ = gr.Slider(label="(The degree of Paired Attention at 32 x 32 self-attention layers)",
minimum=0, maximum=1., value=0.7, step=0.1)
sa64_ = gr.Slider(label="(The degree of Paired Attention at 64 x 64 self-attention layers)",
minimum=0, maximum=1., value=0.7, step=0.1)
id_length_ = gr.Slider(
label="Number of id images in total images", minimum=2, maximum=4, value=3, step=1)
seed_ = gr.Slider(label="Seed", minimum=-1,
maximum=MAX_SEED, value=0, step=1)
num_steps = gr.Slider(
label="Number of sample steps",
minimum=25,
maximum=50,
step=1,
value=50,
)
G_height = gr.Slider(
label="height",
minimum=256,
maximum=1024,
step=32,
value=1024,
)
G_width = gr.Slider(
label="width",
minimum=256,
maximum=1024,
step=32,
value=1024,
)
comic_type = gr.Radio(["No typesetting (default)", "Four Pannel", "Classic Comic Style"],
value="Classic Comic Style", label="Typesetting Style", info="Select the typesetting style ")
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
style_strength_ratio = gr.Slider(
label="Style strength of Ref Image (%)",
minimum=15,
maximum=50,
step=1,
value=20,
visible=False
)
Ip_Adapter_Strength = gr.Slider(
label="Ip_Adapter_Strength",
minimum=0,
maximum=1,
step=0.1,
value=0.5,
visible=False
)
final_run_btn = gr.Button("Generate ! 😺")
with gr.Column():
out_image = gr.Gallery(label="Result", columns=2, height='auto')
generated_information = gr.Markdown(
label="Generation Details", value="", visible=False)
model_type.change(fn=change_visiale_by_model_type, inputs=model_type, outputs=[
control_image_input, style_strength_ratio, Ip_Adapter_Strength])
files.upload(fn=swap_to_gallery, inputs=files, outputs=[
uploaded_files, clear_button, files])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[
uploaded_files, clear_button, files])
final_run_btn.click(fn=set_text_unfinished, outputs=generated_information
).then(process_generation, inputs=[sd_type, model_type, files, num_steps, style, Ip_Adapter_Strength, style_strength_ratio, guidance_scale, seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt, prompt_array, G_height, G_width, comic_type], outputs=out_image
).then(fn=set_text_finished, outputs=generated_information)
gr.Examples(
examples=get_examples(),
inputs=[seed_, sa32_, sa64_, id_length_, general_prompt, negative_prompt,
prompt_array, style, model_type, files, G_height, G_width],
label='😺 Examples 😺',
)
|