File size: 4,380 Bytes
d66d160
8090b75
 
 
4625865
8f420ad
ff7eae9
c47a41a
43604c6
41c00ad
c47a41a
8090b75
d66d160
 
 
 
 
 
c47a41a
d66d160
 
 
3ce0ef7
d66d160
d7d1270
c47a41a
 
 
 
 
41c00ad
 
43604c6
 
 
 
 
 
 
 
 
 
 
f08c73b
43604c6
f08c73b
41c00ad
0ef83dc
 
 
 
 
 
 
 
 
 
 
 
 
 
808eb6f
 
0ef83dc
 
808eb6f
 
 
 
0ef83dc
 
 
a7f36d2
f911137
 
 
 
 
 
 
 
41c00ad
c47a41a
 
41c00ad
 
98ec703
c47a41a
 
 
 
 
 
41c00ad
 
c47a41a
 
d7d1270
c47a41a
ab65f9b
c47a41a
a7f36d2
d7d1270
 
 
c47a41a
0ef83dc
73a193e
ff7eae9
 
 
 
 
73a193e
ff7eae9
 
 
808eb6f
 
 
 
ff7eae9
73a193e
ff7eae9
 
 
a7f36d2
c47a41a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from transformers import ViTConfig, ViTForImageClassification
from transformers import ViTFeatureExtractor
from PIL import Image
import requests
import matplotlib.pyplot as plt
import gradio as gr
from gradio.mix import Parallel
from transformers import ImageClassificationPipeline, PerceiverForImageClassificationConvProcessing, PerceiverFeatureExtractor
from transformers import VisionEncoderDecoderModel
from transformers import AutoTokenizer
import torch


# option 1: load with randomly initialized weights (train from scratch)

config = ViTConfig(num_hidden_layers=12, hidden_size=768)
model = ViTForImageClassification(config)

#print(config)

feature_extractor = ViTFeatureExtractor()
# or, to load one that corresponds to a checkpoint on the hub:
#feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")

#the following gets called by classify_image() 
feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-conv")
model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv")

image_pipe = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)

'''


# initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
    "google/vit-base-patch16-224-in21k", "bert-base-uncased"
)
# saving model after fine-tuning
model.save_pretrained("./vit-bert")
# load fine-tuned model
model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")


'''



def self_caption(image):
  repo_name = "ydshieh/vit-gpt2-coco-en"
  #test_image = "cats.jpg"
  url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
  test_image = Image.open(requests.get(url, stream=True).raw)
  test_image.save("cats.png")
  feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name)
  tokenizer = AutoTokenizer.from_pretrained(repo_name)
  model2 = VisionEncoderDecoderModel.from_pretrained(repo_name)
  pixel_values = feature_extractor2(test_image, return_tensors="pt").pixel_values
  print("Pixel Values")
  print(pixel_values)
  # autoregressively generate text (using beam search or other decoding strategy)
  generated_ids = model2.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True)
  
  
  # decode into text
  preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)
  #generated_sentences = tokenizer.batch_decode(encoder_outputs, skip_special_tokens=True)

  #return(generated_sentences[0].split('.')[0])

  preds = [pred.strip() for pred in preds]
  print("Predictions")
  print(preds)
  print("The preds type is : ",type(preds))
  pred_keys = ["Prediction"]
  pred_value = preds

  pred_dictionary = dict(zip(pred_keys, pred_value))
  print("Pred dictionary")
  print(pred_dictionary)
  return(pred_dictionary)
  #return(preds[0].split('.')[0])

def classify_image(image):
  results = image_pipe(image)
  
  print("RESULTS")
  print(results)
  # convert to format Gradio expects
  output = {}
  for prediction in results:
    predicted_label = prediction['label']
    score = prediction['score']
    output[predicted_label] = score
  print("OUTPUT")
  print(output)
  return output


image = gr.inputs.Image(type="pil")
image_piped = ""
label = gr.outputs.Label(num_top_classes=5)
examples = [["cats.jpg"]]
title = "Generate a Story from an Image"
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit' to let the model predict the 5 most probable ImageNet classes. Results will show up in a few seconds."  + image_piped
article = "<p style='text-align: center'></p>"

#gr.Interface(fn=classify_image, inputs=image, outputs=label, title=title, description=description, examples="", enable_queue=True).launch(debug=True)
print("img_info1")
img_info1 = gr.Interface(
    fn=classify_image,
    inputs=image,
    outputs=label,
)
print("img_info2")
img_info2 = gr.Interface(
    fn=self_caption,
    inputs=image,
    #outputs=label,
    outputs = [
    gr.outputs.Textbox(label = 'Caption')
],
)
print("running parallel call")
Parallel(
    img_info1,
    img_info2,
    inputs=image, outputs=label, title=title, description=description, examples=examples, enable_queue=True).launch(debug=True)