Spaces:
Runtime error
Runtime error
autonomous019
commited on
Commit
•
0ef83dc
1
Parent(s):
2979393
adding self_caption
Browse files
app.py
CHANGED
@@ -42,26 +42,28 @@ model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")
|
|
42 |
|
43 |
'''
|
44 |
|
45 |
-
repo_name = "ydshieh/vit-gpt2-coco-en"
|
46 |
-
#test_image = "cats.jpg"
|
47 |
-
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
48 |
-
test_image = Image.open(requests.get(url, stream=True).raw)
|
49 |
-
test_image.save("cats.png")
|
50 |
-
feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name)
|
51 |
-
tokenizer = AutoTokenizer.from_pretrained(repo_name)
|
52 |
-
model2 = VisionEncoderDecoderModel.from_pretrained(repo_name)
|
53 |
-
pixel_values = feature_extractor2(test_image, return_tensors="pt").pixel_values
|
54 |
-
print("Pixel Values")
|
55 |
-
print(pixel_values)
|
56 |
-
# autoregressively generate text (using beam search or other decoding strategy)
|
57 |
-
generated_ids = model2.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True)
|
58 |
-
# decode into text
|
59 |
-
preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)
|
60 |
-
preds = [pred.strip() for pred in preds]
|
61 |
-
print("Predictions")
|
62 |
-
print(preds)
|
63 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def classify_image(image):
|
67 |
results = image_pipe(image)
|
@@ -87,8 +89,8 @@ title = "Generate a Story from an Image"
|
|
87 |
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit' to let the model predict the 5 most probable ImageNet classes. Results will show up in a few seconds." + image_piped
|
88 |
article = "<p style='text-align: center'></p>"
|
89 |
|
90 |
-
gr.Interface(fn=classify_image, inputs=image, outputs=label, title=title, description=description, examples="", enable_queue=True).launch(debug=True)
|
91 |
-
|
92 |
|
93 |
|
94 |
|
|
|
42 |
|
43 |
'''
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
|
47 |
+
def self_caption(image):
|
48 |
+
repo_name = "ydshieh/vit-gpt2-coco-en"
|
49 |
+
#test_image = "cats.jpg"
|
50 |
+
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
51 |
+
test_image = Image.open(requests.get(url, stream=True).raw)
|
52 |
+
test_image.save("cats.png")
|
53 |
+
feature_extractor2 = ViTFeatureExtractor.from_pretrained(repo_name)
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_name)
|
55 |
+
model2 = VisionEncoderDecoderModel.from_pretrained(repo_name)
|
56 |
+
pixel_values = feature_extractor2(test_image, return_tensors="pt").pixel_values
|
57 |
+
print("Pixel Values")
|
58 |
+
print(pixel_values)
|
59 |
+
# autoregressively generate text (using beam search or other decoding strategy)
|
60 |
+
generated_ids = model2.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True)
|
61 |
+
# decode into text
|
62 |
+
preds = tokenizer.batch_decode(generated_ids[0], skip_special_tokens=True)
|
63 |
+
preds = [pred.strip() for pred in preds]
|
64 |
+
print("Predictions")
|
65 |
+
print(preds)
|
66 |
+
return preds
|
67 |
|
68 |
def classify_image(image):
|
69 |
results = image_pipe(image)
|
|
|
89 |
description = "Demo for classifying images with Perceiver IO. To use it, simply upload an image and click 'submit' to let the model predict the 5 most probable ImageNet classes. Results will show up in a few seconds." + image_piped
|
90 |
article = "<p style='text-align: center'></p>"
|
91 |
|
92 |
+
#gr.Interface(fn=classify_image, inputs=image, outputs=label, title=title, description=description, examples="", enable_queue=True).launch(debug=True)
|
93 |
+
gr.Interface([classify_image,self_caption], inputs=image, outputs=label, title=title, description=description, examples="", enable_queue=True).launch(debug=True)
|
94 |
|
95 |
|
96 |
|