File size: 6,647 Bytes
b338d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59f2f34
b338d34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27cbb3d
 
 
 
 
 
 
 
 
 
 
 
1ac0a66
5760b8d
 
 
 
 
 
1ac0a66
 
 
 
 
5760b8d
1ac0a66
27cbb3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167bbc
27cbb3d
 
 
 
 
 
 
 
2167bbc
27cbb3d
 
2167bbc
 
 
 
 
 
 
27cbb3d
b338d34
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import re
import streamlit as st
import requests
import pandas as pd
from io import StringIO
import plotly.graph_objs as go

from yall import create_yall


def convert_markdown_table_to_dataframe(md_content):
    """
    Converts markdown table to Pandas DataFrame, handling special characters and links,
    extracts Hugging Face URLs, and adds them to a new column.
    """
    # Remove leading and trailing | characters
    cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)

    # Create DataFrame from cleaned content
    df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')

    # Remove the first row after the header
    df = df.drop(0, axis=0)

    # Strip whitespace from column names
    df.columns = df.columns.str.strip()

    # Extract Hugging Face URLs and add them to a new column
    model_link_pattern = r'\[(.*?)\]\((.*?)\)\s*\[.*?\]\(.*?\)'
    df['URL'] = df['Model'].apply(lambda x: re.search(model_link_pattern, x).group(2) if re.search(model_link_pattern, x) else None)

    # Clean Model column to have only the model link text
    df['Model'] = df['Model'].apply(lambda x: re.sub(model_link_pattern, r'\1', x))

    return df


def create_bar_chart(df, category):
    """Create and display a bar chart for a given category."""
    st.write(f"### {category} Scores")

    # Sort the DataFrame based on the category score
    sorted_df = df[['Model', category]].sort_values(by=category, ascending=True)

    # Create the bar chart with color gradient
    fig = go.Figure(go.Bar(
        x=sorted_df[category],
        y=sorted_df['Model'],
        orientation='h',
        marker=dict(color=sorted_df[category], colorscale='Inferno')
    ))

    # Update layout for better readability
    fig.update_layout(
        margin=dict(l=20, r=20, t=20, b=20)
    )

    st.plotly_chart(fig, use_container_width=True)

    
def main():
    st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide")

    st.title("πŸ† YALL - Yet Another LLM Leaderboard")
    st.markdown("Leaderboard made with [🧐 LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite. It's a collection of my own evaluations.")

    content = create_yall()
    tab1, tab2 = st.tabs(["πŸ† Leaderboard", "πŸ“ About"])

    # Leaderboard tab
    with tab1:
        if content:
            try:
                score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
    
                # Display dataframe
                df = convert_markdown_table_to_dataframe(content)
                for col in score_columns:
                    df[col] = pd.to_numeric(df[col].str.strip(), errors='coerce')

                # Toggles for Phi and Mistral in a single row
                col1, col2 = st.columns(2)
                with col1:
                    show_phi = st.checkbox("Phi", value=True)
                with col2:
                    show_mistral = st.checkbox("Mistral", value=True)

                # Apply filters based on toggles
                if not show_phi:
                    df = df[~df['Model'].str.lower().str.contains('phi')]
                if not show_mistral:
                    df = df[~df['Model'].str.lower().str.contains('mistral')]

                st.dataframe(df, use_container_width=True)
    
                # Full-width plot for the first category
                create_bar_chart(df, score_columns[0])
    
                # Next two plots in two columns
                col1, col2 = st.columns(2)
                with col1:
                    create_bar_chart(df, score_columns[1])
                with col2:
                    create_bar_chart(df, score_columns[2])
    
                # Last two plots in two columns
                col3, col4 = st.columns(2)
                with col3:
                    create_bar_chart(df, score_columns[3])
                with col4:
                    create_bar_chart(df, score_columns[4])
    
            except Exception as e:
                st.error("An error occurred while processing the markdown table.")
                st.error(str(e))
        else:
            st.error("Failed to download the content from the URL provided.")

     # About tab
    with tab2:
        st.markdown('''
            ### Nous benchmark suite

            Popularized by [Teknium](https://huggingface.co/teknium) and [NousResearch](https://huggingface.co/NousResearch), this benchmark suite aggregates four benchmarks:
            
            * [**AGIEval**](https://arxiv.org/abs/2304.06364) (0-shot): `agieval_aqua_rat,agieval_logiqa_en,agieval_lsat_ar,agieval_lsat_lr,agieval_lsat_rc,agieval_sat_en,agieval_sat_en_without_passage,agieval_sat_math`
            * **GPT4ALL** (0-shot): `hellaswag,openbookqa,winogrande,arc_easy,arc_challenge,boolq,piqa`
            * [**TruthfulQA**](https://arxiv.org/abs/2109.07958) (0-shot): `truthfulqa_mc`
            * [**Bigbench**](https://arxiv.org/abs/2206.04615) (0-shot): `bigbench_causal_judgement,bigbench_date_understanding,bigbench_disambiguation_qa,bigbench_geometric_shapes,bigbench_logical_deduction_five_objects,bigbench_logical_deduction_seven_objects,bigbench_logical_deduction_three_objects,bigbench_movie_recommendation,bigbench_navigate,bigbench_reasoning_about_colored_objects,bigbench_ruin_names,bigbench_salient_translation_error_detection,bigbench_snarks,bigbench_sports_understanding,bigbench_temporal_sequences,bigbench_tracking_shuffled_objects_five_objects,bigbench_tracking_shuffled_objects_seven_objects,bigbench_tracking_shuffled_objects_three_objects`

            ### Reproducibility

            You can easily reproduce these results using [🧐 LLM AutoEval](https://github.com/mlabonne/llm-autoeval/tree/master), a colab notebook that automates the evaluation process (benchmark: `nous`). This will upload the results to GitHub as gists. You can find the entire table with the links to the detailed results [here](https://gist.github.com/mlabonne/90294929a2dbcb8877f9696f28105fdf).

            ### Clone this space

            You can create your own leaderboard with your LLM AutoEval results on GitHub Gist. You just need to clone this space and specify two variables:

            * Change the `gist_id` in [yall.py](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard/blob/main/yall.py#L126).
            * Create "New Secret" in Settings > Variables and secrets (name: "github", value: [your GitHub token](https://github.com/settings/tokens))
        ''')

if __name__ == "__main__":
    main()