Spaces:
Running
Running
File size: 5,061 Bytes
238735e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
\begin{thebibliography}{18}
\providecommand{\natexlab}[1]{#1}
\providecommand{\url}[1]{\texttt{#1}}
\expandafter\ifx\csname urlstyle\endcsname\relax
\providecommand{\doi}[1]{doi: #1}\else
\providecommand{\doi}{doi: \begingroup \urlstyle{rm}\Url}\fi
\bibitem[Arie~Leizarowitz(2007)]{0711.2185}
Adam~Shwartz Arie~Leizarowitz.
\newblock Exact finite approximations of average-cost countable markov decision
processes.
\newblock \emph{arXiv preprint arXiv:0711.2185}, 2007.
\newblock URL \url{http://arxiv.org/abs/0711.2185v1}.
\bibitem[Barber(2023)]{2303.08631}
David Barber.
\newblock Smoothed q-learning.
\newblock \emph{arXiv preprint arXiv:2303.08631}, 2023.
\newblock URL \url{http://arxiv.org/abs/2303.08631v1}.
\bibitem[Ehsan~Imani(2018)]{1811.09013}
Martha~White Ehsan~Imani, Eric~Graves.
\newblock An off-policy policy gradient theorem using emphatic weightings.
\newblock \emph{arXiv preprint arXiv:1811.09013}, 2018.
\newblock URL \url{http://arxiv.org/abs/1811.09013v2}.
\bibitem[Ehud~Lehrer(2015)]{1511.02377}
Omri N.~Solan Ehud~Lehrer, Eilon~Solan.
\newblock The value functions of markov decision processes.
\newblock \emph{arXiv preprint arXiv:1511.02377}, 2015.
\newblock URL \url{http://arxiv.org/abs/1511.02377v1}.
\bibitem[Kai~Arulkumaran(2017)]{1708.05866}
Miles Brundage Anil Anthony~Bharath Kai~Arulkumaran, Marc Peter~Deisenroth.
\newblock A brief survey of deep reinforcement learning.
\newblock \emph{arXiv preprint arXiv:1708.05866}, 2017.
\newblock URL \url{http://arxiv.org/abs/1708.05866v2}.
\bibitem[Krishnamurthy(2015)]{1512.07669}
Vikram Krishnamurthy.
\newblock Reinforcement learning: Stochastic approximation algorithms for
markov decision processes.
\newblock \emph{arXiv preprint arXiv:1512.07669}, 2015.
\newblock URL \url{http://arxiv.org/abs/1512.07669v1}.
\bibitem[Kämmerer(2019)]{1911.04817}
Mattis~Manfred Kämmerer.
\newblock On policy gradients.
\newblock \emph{arXiv preprint arXiv:1911.04817}, 2019.
\newblock URL \url{http://arxiv.org/abs/1911.04817v1}.
\bibitem[Li~Meng(2021)]{2106.14642}
Morten Goodwin Paal~Engelstad Li~Meng, Anis~Yazidi.
\newblock Expert q-learning: Deep reinforcement learning with coarse state
values from offline expert examples.
\newblock \emph{arXiv preprint arXiv:2106.14642}, 2021.
\newblock URL \url{http://arxiv.org/abs/2106.14642v3}.
\bibitem[Mahipal~Jadeja(2017)]{1709.05067}
Agam~Shah Mahipal~Jadeja, Neelanshi~Varia.
\newblock Deep reinforcement learning for conversational ai.
\newblock \emph{arXiv preprint arXiv:1709.05067}, 2017.
\newblock URL \url{http://arxiv.org/abs/1709.05067v1}.
\bibitem[Nathalie~Bertrand(2020)]{2008.10426}
Thomas Brihaye Paulin~Fournier Nathalie~Bertrand, Patricia~Bouyer.
\newblock Taming denumerable markov decision processes with decisiveness.
\newblock \emph{arXiv preprint arXiv:2008.10426}, 2020.
\newblock URL \url{http://arxiv.org/abs/2008.10426v1}.
\bibitem[Ngan~Le(2021)]{2108.11510}
Kashu Yamazaki Khoa Luu Marios~Savvides Ngan~Le, Vidhiwar Singh~Rathour.
\newblock Deep reinforcement learning in computer vision: A comprehensive
survey.
\newblock \emph{arXiv preprint arXiv:2108.11510}, 2021.
\newblock URL \url{http://arxiv.org/abs/2108.11510v1}.
\bibitem[Philip S.~Thomas(2015)]{1512.09075}
Billy~Okal Philip S.~Thomas.
\newblock A notation for markov decision processes.
\newblock \emph{arXiv preprint arXiv:1512.09075}, 2015.
\newblock URL \url{http://arxiv.org/abs/1512.09075v2}.
\bibitem[Qiyue~Yin(2022)]{2212.00253}
Shengqi Shen Jun Yang Meijing Zhao Kaiqi Huang Bin Liang Liang~Wang Qiyue~Yin,
Tongtong~Yu.
\newblock Distributed deep reinforcement learning: A survey and a multi-player
multi-agent learning toolbox.
\newblock \emph{arXiv preprint arXiv:2212.00253}, 2022.
\newblock URL \url{http://arxiv.org/abs/2212.00253v1}.
\bibitem[Rong~Zhu(2020)]{2012.01100}
Mattia~Rigotti Rong~Zhu.
\newblock Self-correcting q-learning.
\newblock \emph{arXiv preprint arXiv:2012.01100}, 2020.
\newblock URL \url{http://arxiv.org/abs/2012.01100v2}.
\bibitem[Sergey~Ivanov(2019)]{1906.10025}
Alexander~D'yakonov Sergey~Ivanov.
\newblock Modern deep reinforcement learning algorithms.
\newblock \emph{arXiv preprint arXiv:1906.10025}, 2019.
\newblock URL \url{http://arxiv.org/abs/1906.10025v2}.
\bibitem[van Heeswijk(2022)]{2209.01820}
W.~J.~A. van Heeswijk.
\newblock Natural policy gradients in reinforcement learning explained.
\newblock \emph{arXiv preprint arXiv:2209.01820}, 2022.
\newblock URL \url{http://arxiv.org/abs/2209.01820v1}.
\bibitem[Xiu-Xiu~Zhan(2021)]{2111.01334}
Zhipeng Wang Huijuang Wang Petter Holme Zi-Ke~Zhang Xiu-Xiu~Zhan, Chuang~Liu.
\newblock Measuring and utilizing temporal network dissimilarity.
\newblock \emph{arXiv preprint arXiv:2111.01334}, 2021.
\newblock URL \url{http://arxiv.org/abs/2111.01334v1}.
\bibitem[Yemi~Okesanjo(2017)]{1703.02102}
Victor~Kofia Yemi~Okesanjo.
\newblock Revisiting stochastic off-policy action-value gradients.
\newblock \emph{arXiv preprint arXiv:1703.02102}, 2017.
\newblock URL \url{http://arxiv.org/abs/1703.02102v2}.
\end{thebibliography}
|