Spaces:
Running
Running
File size: 5,661 Bytes
d1feb02 238735e a0d1776 ae495a3 238735e 2c0ffed 238735e ae495a3 238735e 3a7ead9 05783f8 238735e a0d1776 d1feb02 238735e a0d1776 3a7ead9 a0d1776 238735e ae495a3 3a7ead9 ae495a3 238735e 6fe5041 238735e ae495a3 238735e a0d1776 238735e 05783f8 a0d1776 238735e 1b82d4c a0d1776 1b82d4c ae495a3 a0d1776 1b82d4c ae495a3 8ef9348 3a7ead9 ae495a3 4a233ea ae495a3 4a233ea ae495a3 05783f8 2c0ffed d1feb02 2c0ffed ae495a3 3a7ead9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import os.path
from utils.references import References
from utils.file_operations import hash_name, make_archive, copy_templates
from section_generator import section_generation_bg, keywords_generation, figures_generation, section_generation
import logging
import time
TOTAL_TOKENS = 0
TOTAL_PROMPTS_TOKENS = 0
TOTAL_COMPLETION_TOKENS = 0
def log_usage(usage, generating_target, print_out=True):
global TOTAL_TOKENS
global TOTAL_PROMPTS_TOKENS
global TOTAL_COMPLETION_TOKENS
prompts_tokens = usage['prompt_tokens']
completion_tokens = usage['completion_tokens']
total_tokens = usage['total_tokens']
TOTAL_TOKENS += total_tokens
TOTAL_PROMPTS_TOKENS += prompts_tokens
TOTAL_COMPLETION_TOKENS += completion_tokens
message = f"For generating {generating_target}, {total_tokens} tokens have been used ({prompts_tokens} for prompts; {completion_tokens} for completion). " \
f"{TOTAL_TOKENS} tokens have been used in total."
if print_out:
print(message)
logging.info(message)
def _generation_setup(title, description="", template="ICLR2022", model="gpt-4",
search_engine="ss", tldr=False, max_kw_refs=10):
'''
todo: use `model` to control which model to use; may use another method to generate keywords or collect references
'''
paper = {}
paper_body = {}
# Create a copy in the outputs folder.
bibtex_path, destination_folder = copy_templates(template, title)
logging.basicConfig(level=logging.INFO, filename=os.path.join(destination_folder, "generation.log") )
# Generate keywords and references
print("Initialize the paper information ...")
input_dict = {"title": title, "description": description}
keywords, usage = keywords_generation(input_dict, model="gpt-3.5-turbo", max_kw_refs=max_kw_refs)
print(f"keywords: {keywords}")
log_usage(usage, "keywords")
ref = References(load_papers="")
ref.collect_papers(keywords, method=search_engine, tldr=tldr)
all_paper_ids = ref.to_bibtex(bibtex_path) # todo: this will used to check if all citations are in this list
print(f"The paper information has been initialized. References are saved to {bibtex_path}.")
paper["title"] = title
paper["description"] = description
paper["references"] = ref.to_prompts()
paper["body"] = paper_body
paper["bibtex"] = bibtex_path
return paper, destination_folder, all_paper_ids
def generate_backgrounds(title, description="", template="ICLR2022", model="gpt-4"):
paper, destination_folder, _ = _generation_setup(title, description, template, model)
for section in ["introduction", "related works", "backgrounds"]:
try:
usage = section_generation_bg(paper, section, destination_folder, model=model)
log_usage(usage, section)
except Exception as e:
message = f"Failed to generate {section}. {type(e).__name__} was raised: {e}"
print(message)
logging.info(message)
print(f"The paper '{title}' has been generated. Saved to {destination_folder}.")
input_dict = {"title": title, "description": description, "generator": "generate_backgrounds"}
filename = hash_name(input_dict) + ".zip"
return make_archive(destination_folder, filename)
def fake_generator(title, description="", template="ICLR2022", model="gpt-4"):
"""
This function is used to test the whole pipeline without calling OpenAI API.
"""
input_dict = {"title": title, "description": description, "generator": "generate_draft"}
filename = hash_name(input_dict) + ".zip"
return make_archive("sample-output.pdf", filename)
def generate_draft(title, description="", template="ICLR2022", model="gpt-4", search_engine="ss", tldr=True, max_kw_refs=14):
paper, destination_folder, _ = _generation_setup(title, description, template, model, search_engine, tldr, max_kw_refs)
# todo: `list_of_methods` failed to be generated; find a solution ...
# print("Generating figures ...")
# usage = figures_generation(paper, destination_folder, model="gpt-3.5-turbo")
# log_usage(usage, "figures")
# for section in ["introduction", "related works", "backgrounds", "methodology", "experiments", "conclusion", "abstract"]:
for section in ["introduction", "related works", "backgrounds", "abstract"]:
try:
usage = section_generation(paper, section, destination_folder, model=model)
log_usage(usage, section)
except Exception as e:
message = f"Failed to generate {section}. {type(e).__name__} was raised: {e}"
print(message)
logging.info(message)
max_attempts = 2
# todo: make this part more compact
# re-try `max_attempts` time
for i in range(max_attempts):
time.sleep(20)
try:
usage = section_generation(paper, section, destination_folder, model=model)
log_usage(usage, section)
e = None
except Exception as e:
pass
if e is None:
break
input_dict = {"title": title, "description": description, "generator": "generate_draft"}
filename = hash_name(input_dict) + ".zip"
return make_archive(destination_folder, filename)
if __name__ == "__main__":
title = "Using interpretable boosting algorithms for modeling environmental and agricultural data"
description = ""
output = generate_draft(title, description, search_engine="ss", tldr=True, max_kw_refs=10)
print(output) |