Spaces:
Running
Running
File size: 17,987 Bytes
8e698eb 70e35a5 8e698eb 70e35a5 8e698eb fb8c051 70e35a5 d18c569 70e35a5 d18c569 1457d21 fb8c051 8e698eb c304855 8e698eb 2dc9347 ae239a7 1457d21 fb8c051 1457d21 8ef9348 a7f1695 3a7ead9 a7f1695 1457d21 3a7ead9 8e698eb 3a7ead9 8ef9348 8e698eb d18c569 70e35a5 64fee17 70e35a5 b730fc0 70e35a5 8e698eb 70e35a5 8e698eb 2dc9347 d18c569 2dc9347 d18c569 a7f1695 3a7ead9 a7f1695 3a7ead9 8ef9348 3a7ead9 8ef9348 295e94f 3a7ead9 a7f1695 c9efba3 295e94f a7f1695 3a7ead9 8ef9348 70e35a5 3a7ead9 8e698eb 8ef9348 3a7ead9 70e35a5 8ef9348 3a7ead9 70e35a5 3a7ead9 70e35a5 3a7ead9 365213e c9efba3 3a7ead9 8e698eb 3a7ead9 70e35a5 3a7ead9 8e698eb 8ef9348 3a7ead9 70e35a5 3a7ead9 d18c569 a7f1695 8ef9348 a7f1695 8ef9348 fb8c051 1457d21 365213e d18c569 365213e 1457d21 70e35a5 fb8c051 2dc9347 fb8c051 2dc9347 7d01fc4 2dc9347 70e35a5 2dc9347 fb8c051 365213e d18c569 fb8c051 510bfff fb8c051 c9efba3 fb8c051 c9efba3 fb8c051 4e7254f 510bfff fb8c051 d18c569 70e35a5 d18c569 fb8c051 2dc9347 d18c569 2dc9347 1457d21 2dc9347 fb8c051 2dc9347 c42190b 2dc9347 a6aecff d18c569 70e35a5 a6aecff c9efba3 2dc9347 c9efba3 70e35a5 c9efba3 2dc9347 d18c569 2dc9347 70e35a5 2dc9347 8e698eb 2dc9347 d18c569 2dc9347 c9efba3 2dc9347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
# Each `paper` is a dictionary containing:
# (1) paper_id (2) title (3) authors (4) year (5) link (6) abstract (7) journal (8) embeddings
#
# Generate references:
# `Reference` class:
# 1. Read a given .bib file to collect papers; use `search_paper_abstract` method to fill missing abstract.
# 2. Given some keywords; use Semantic Scholar API to find papers.
# 3. Generate bibtex from the selected papers. --> to_bibtex()
# 4. Generate prompts from the selected papers: --> to_prompts()
# A sample prompt: {"paper_id": "paper summary"}
# todo: (1) citations & citedby of provided papers:
# load the pre-defined papers; use S2 to find all related works
# add all citations to `bib_papers`
# add all citedby to `bib_papers`
# use Semantic Scholar to find their embeddings
# (2) separate references:
# divide references into different groups to reduce the tokens count
# for generating different paragraph of related works, use different set of references
from typing import Dict, List
import requests
import re
import bibtexparser
import random
from scholarly import scholarly
from scholarly import ProxyGenerator
import tiktoken
import itertools, uuid, json
from gradio_client import Client
import time
import numpy as np
from numpy.linalg import norm
URL = "https://model-apis.semanticscholar.org/specter/v1/invoke"
MAX_BATCH_SIZE = 16
MAX_ATTEMPTS = 20
######################################################################################################################
# Some basic tools
######################################################################################################################
def evaluate_cosine_similarity(v1, v2):
try:
return np.dot(v1, v2)/(norm(v1)*norm(v2))
except ValueError:
return 0.0
def chunks(lst, chunk_size=MAX_BATCH_SIZE):
"""Splits a longer list to respect batch size"""
for i in range(0, len(lst), chunk_size):
yield lst[i : i + chunk_size]
def embed(papers):
embeddings_by_paper_id: Dict[str, List[float]] = {}
for chunk in chunks(papers):
# Allow Python requests to convert the data above to JSON
response = requests.post(URL, json=chunk)
if response.status_code != 200:
raise RuntimeError("Sorry, something went wrong, please try later!")
for paper in response.json()["preds"]:
embeddings_by_paper_id[paper["paper_id"]] = paper["embedding"]
return embeddings_by_paper_id
def get_embeddings(paper_title, paper_description):
output = [{"title": paper_title, "abstract": paper_description, "paper_id": "target_paper"}]
emb_vector = embed(output)["target_paper"]
target_paper = output[0]
target_paper["embeddings"] = emb_vector
return target_paper
def get_top_k(papers_dict, paper_title, paper_description, k=None):
target_paper = get_embeddings(paper_title, paper_description)
papers = papers_dict # must include embeddings
# if k < len(papers_json), return k most relevant papers
# if k >= len(papers_json) or k is None, return all papers
max_num_papers = len(papers)
if k is None:
k = max_num_papers
num_papers = min(k, max_num_papers)
# evaluate the cosine similarity for each paper
target_embedding_vector = target_paper["embeddings"]
for k in papers:
v = papers[k]
embedding_vector = v["embeddings"]
cos_sim = evaluate_cosine_similarity(embedding_vector, target_embedding_vector)
papers[k]["cos_sim"] = cos_sim
# return the best k papers
sorted_papers = {k: v for k, v in sorted(papers.items(), key=lambda x: x[1]["cos_sim"], reverse=True)[:num_papers]}
for key in sorted_papers:
sorted_papers[key].pop("embeddings", None)
return sorted_papers
def remove_newlines(serie):
# This function is applied to the abstract of each paper to reduce the length of prompts.
serie = serie.replace('\n', ' ')
serie = serie.replace('\\n', ' ')
serie = serie.replace(' ', ' ')
serie = serie.replace(' ', ' ')
return serie
def search_paper_abstract(title):
pg = ProxyGenerator()
success = pg.FreeProxies() # pg.ScraperAPI("921b16f94d701308b9d9b4456ddde155")
if success:
try:
scholarly.use_proxy(pg)
# input the title of a paper, return its abstract
search_query = scholarly.search_pubs(title)
found_paper = next(search_query)
except:
return ""
else:
return ""
# raise RuntimeError("ScraperAPI fails.")
return remove_newlines(found_paper['bib']['abstract'])
def load_papers_from_bibtex(bib_file_path):
with open(bib_file_path) as bibtex_file:
bib_database = bibtexparser.load(bibtex_file)
if len(bib_database.entries) == 0:
return []
else:
bib_papers = []
for bibitem in bib_database.entries:
# Add each paper to `bib_papers`
paper_id = bibitem.get("ID")
title = bibitem.get("title")
if title is None:
continue
journal = bibitem.get("journal")
year = bibitem.get("year")
author = bibitem.get("author")
abstract = bibitem.get("abstract")
if abstract is None:
abstract = search_paper_abstract(title)
result = {
"paper_id": paper_id,
"title": title,
"link": "",
"abstract": abstract,
"authors": author,
"year": year,
"journal": journal
}
bib_papers.append(result)
return bib_papers
# `tokenizer`: used to count how many tokens
tokenizer_name = tiktoken.encoding_for_model('gpt-4')
tokenizer = tiktoken.get_encoding(tokenizer_name.name)
def tiktoken_len(text):
# evaluate how many tokens for the given text
tokens = tokenizer.encode(text, disallowed_special=())
return len(tokens)
######################################################################################################################
# Semantic Scholar (SS) API
######################################################################################################################
def ss_search(keywords, limit=20, fields=None):
# space between the query to be removed and replaced with +
if fields is None:
fields = ["title", "abstract", "venue", "year", "authors", "tldr", "embedding", "externalIds"]
keywords = keywords.lower()
keywords = keywords.replace(" ", "+")
url = f'https://api.semanticscholar.org/graph/v1/paper/search?query={keywords}&limit={limit}&fields={",".join(fields)}'
# headers = {"Accept": "*/*", "x-api-key": constants.S2_KEY}
headers = {"Accept": "*/*"}
response = requests.get(url, headers=headers, timeout=30)
return response.json()
def _collect_papers_ss(keyword, counts=3, tldr=False):
def externalIds2link(externalIds):
# Sample externalIds:
# "{'MAG': '2932819148', 'DBLP': 'conf/icml/HaarnojaZAL18', 'ArXiv': '1801.01290', 'CorpusId': 28202810}"
if externalIds:
# Supports ArXiv, MAG, ACL, PubMed, Medline, PubMedCentral, DBLP, DOI
# priority: DBLP > arXiv > (todo: MAG > CorpusId > DOI > ACL > PubMed > Mdeline > PubMedCentral)
# DBLP
dblp_id = externalIds.get('DBLP')
if dblp_id is not None:
dblp_link = f"dblp.org/rec/{dblp_id}"
return dblp_link
# arXiv
arxiv_id = externalIds.get('ArXiv')
if arxiv_id is not None:
arxiv_link = f"arxiv.org/abs/{arxiv_id}"
return arxiv_link
return ""
else:
# if this is an empty dictionary, return an empty string
return ""
def extract_paper_id(last_name, year_str, title):
pattern = r'^\w+'
words = re.findall(pattern, title)
# return last_name + year_str + title.split(' ', 1)[0]
try:
output = last_name + year_str + words[0]
except IndexError:
output = last_name + year_str + title[:4]
return output
def extract_author_info(raw_authors):
authors = [author['name'] for author in raw_authors]
authors_str = " and ".join(authors)
try:
last_name = authors[0].split()[-1]
last_name = last_name.replace("'", "")
except IndexError:
last_name = "ma"
# pattern = r'^\w+'
# last_name = re.findall(pattern, authors[0])
return authors_str, last_name
def parse_search_results(search_results_ss):
if len(search_results_ss) == 0:
return []
# turn the search result to a list of paper dictionary.
papers_ss = []
for raw_paper in search_results_ss:
if raw_paper["abstract"] is None:
continue
authors_str, last_name = extract_author_info(raw_paper['authors'])
year_str = str(raw_paper['year'])
title = raw_paper['title']
# some journal may contain &; replace it. e.g. journal={IEEE Power & Energy Society General Meeting}
journal = raw_paper['venue'].replace("&", "\\&")
if not journal:
journal = "arXiv preprint"
paper_id = extract_paper_id(last_name, year_str, title).lower()
link = externalIds2link(raw_paper['externalIds'])
if tldr and raw_paper['tldr'] is not None:
abstract = raw_paper['tldr']['text']
else:
abstract = remove_newlines(raw_paper['abstract'])
# some papers have no embeddings; handle this case
embeddings_dict = raw_paper.get('embedding')
if embeddings_dict is None:
continue
else:
embeddings = raw_paper['embedding']['vector']
result = {
"paper_id": paper_id,
"title": title,
"abstract": abstract,
"link": link,
"authors": authors_str,
"year": year_str,
"journal": journal,
"embeddings": embeddings
}
papers_ss.append(result)
return papers_ss
raw_results = ss_search(keyword, limit=counts)
if raw_results is not None:
search_results = raw_results.get("data")
if search_results is None:
search_results = []
else:
search_results = []
results = parse_search_results(search_results)
return results
######################################################################################################################
# References Class
######################################################################################################################
class References:
def __init__(self, title, load_papers=None, keyword="customized_refs", description=""):
if load_papers is not None:
self.papers = {keyword: load_papers_from_bibtex(load_papers)}
else:
self.papers = {}
self.title = title
self.description = description
def load_papers(self, bibtex, keyword):
self.papers[keyword] = load_papers_from_bibtex(bibtex)
def generate_keywords_dict(self):
keywords_dict = {}
for k in self.papers:
keywords_dict[k] = len(self.papers[k])
return keywords_dict
def collect_papers(self, keywords_dict, tldr=False):
"""
Collect as many papers as possible
keywords_dict:
{"machine learning": 5, "language model": 2};
the first is the keyword, the second is how many references are needed.
"""
keywords = list(keywords_dict)
comb_keywords = list(itertools.combinations(keywords, 2))
for comb_keyword in comb_keywords:
keywords.append(" ".join(comb_keyword))
for key in keywords:
self.papers[key] = _collect_papers_ss(key, 10, tldr)
# print("Collected papers: ", papers)
# for key, counts in keywords_dict.items():
# self.papers[key] = _collect_papers_ss(key, counts, tldr)
def to_bibtex(self, path_to_bibtex="ref.bib"):
"""
Turn the saved paper list into bibtex file "ref.bib". Return a list of all `paper_id`.
"""
# todo:
# use embeddings to evaluate; keep top k relevant references in papers
# send (title, .bib file) to evaluate embeddings; recieve truncated papers
papers = self._get_papers(keyword="_all")
l = len(papers)
print(f"{l} papers will be added to `ref.bib`.")
# clear the bibtex file
with open(path_to_bibtex, "w", encoding="utf-8") as file:
file.write("")
bibtex_entries = []
paper_ids = []
seen = set()
for paper in papers:
if paper["paper_id"] in seen:
continue
else:
seen.add(paper["paper_id"])
bibtex_entry = f"""@article{{{paper["paper_id"]},
title = {{{paper["title"]}}},
author = {{{paper["authors"]}}},
journal={{{paper["journal"]}}},
year = {{{paper["year"]}}},
url = {{{paper["link"]}}}
}}"""
bibtex_entries.append(bibtex_entry)
paper_ids.append(paper["paper_id"])
# Save the generated BibTeX entries to a file
with open(path_to_bibtex, "a", encoding="utf-8") as file:
file.write(bibtex_entry)
file.write("\n\n")
# print(f'{paper["paper_id"]} has been added to `ref.bib`.')
return paper_ids
def _get_papers(self, keyword="_all"):
if keyword == "_all":
papers = []
for k, v in self.papers.items():
papers = papers + v
else:
papers = self.papers["keyword"]
return papers
def to_prompts(self, keyword="_all", max_tokens=2048):
# `prompts`:
# {"paper1_bibtex_id": "paper_1_abstract", "paper2_bibtex_id": "paper2_abstract"}
# this will be used to instruct GPT model to cite the correct bibtex entry.
# two steps:
# 1. Sort everything from most relevant to less relevant
# 2. Add paper to prompts until max_tokens
json_path = str(uuid.uuid1()) + ".json"
papers_json = self.to_json()
with open(json_path, "w") as f:
json.dump(papers_json, f)
try:
# Use external API to obtain the most relevant papers
title = self.title
description = self.description
result = get_top_k(papers_json, title, description)
# client = Client("https://shaocongma-evaluate-specter-embeddings.hf.space/")
# result = client.predict(
# title, # str in 'Title' Textbox component
# json_path, # str (filepath or URL to file) in 'Papers JSON (as string)' File component
# 50, # int | float (numeric value between 1 and 50) in 'Top-k Relevant Papers' Slider component
# api_name="/get_k_relevant_papers"
# )
# with open(result) as f:
# result = json.load(f)
result = [item for key, item in result.items()]
except Exception as e:
print(f"Error occurs during calling external API: {e}\n")
print("Use default method instead!")
result = self._get_papers(keyword)
prompts = {}
tokens = 0
for paper in result:
abstract = paper.get("abstract")
if abstract is not None and isinstance(abstract, str):
prompts[paper["paper_id"]] = paper["abstract"]
tokens += tiktoken_len(paper["abstract"])
else:
prompts[paper["paper_id"]] = " "
if tokens >= max_tokens:
break
return prompts
def to_json(self, keyword="_all"):
papers = self._get_papers(keyword)
papers_json = {}
for paper in papers:
papers_json[paper["paper_id"]] = paper
return papers_json
if __name__ == "__main__":
# testing search results
print("================Testing `ss_search`================")
r = ss_search("Deep Q-Networks", limit=1) # a list of raw papers
if r['total'] > 0:
paper = r['data'][0]
# print(paper)
# resting References
print("================Testing `References`================")
refs = References(title="Super Deep Q-Networks")
keywords_dict = {
"Deep Q-Networks": 5,
"Actor-Critic Algorithms": 4,
"Exploration-Exploitation Trade-off": 3
}
print("================Testing `References.collect_papers`================")
refs.collect_papers(keywords_dict, tldr=True)
for k in refs.papers:
papers = refs.papers[k] # for each keyword, there is a list of papers
print("keyword: ", k)
for paper in papers:
print(paper["paper_id"])
print("================Testing `References.to_bibtex`================")
refs.to_bibtex()
print("================Testing `References.to_json`================")
papers_json = refs.to_json() # this json can be used to find the most relevant papers
with open("papers.json", "w", encoding='utf-8') as text_file:
text_file.write(f"{papers_json}")
print("================Testing `References.to_prompts`================")
prompts = refs.to_prompts()
print(prompts)
# bib = "test.bib"
# refs.load_papers(bib, "variance-reduction rl")
# print(refs.papers)
#
# prompts = refs.to_prompts()
# for k in prompts:
# print(f"{k}: {prompts[k]}\n")
|