Spaces:
Running
Running
File size: 1,354 Bytes
c19aed5 8396dce c19aed5 8396dce c19aed5 8396dce c19aed5 8396dce c19aed5 8396dce c19aed5 8396dce c19aed5 3a1f221 c19aed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import pandas as pd
import streamlit as st
from mlip_arena import PKG_DIR
DATA_DIR = PKG_DIR / "tasks" / "thermal-conductivity"
table = pd.read_csv(DATA_DIR / "wte.csv")
table.rename(
columns={
"method": "Model",
"srme": "SRME[𝜅]",
},
inplace=True,
)
table.set_index("Model", inplace=True)
table.sort_values(["SRME[𝜅]"], ascending=True, inplace=True)
table["Rank"] = table["SRME[𝜅]"].rank(method='min').astype(int)
table = table.reindex(
columns=[
"Rank",
"SRME[𝜅]",
]
)
s = (
table.style.background_gradient(
cmap="Reds", subset=["SRME[𝜅]"]
)
.background_gradient(
cmap="Blues",
subset=["Rank"],
)
.format("{:.3f}", subset=["SRME[𝜅]"])
)
def render():
st.dataframe(
s,
use_container_width=True
)
with st.expander("Explanation", icon=":material/info:"):
st.caption(
"""
- **SRME**: symmetric relative mean error of single-phonon conductivity:
$$
\\text{SRME}[\\left\lbrace\\mathcal{K}({\\mathbf{q},s)}\\right\\rbrace] = \\frac{2}{N_qV}\\frac{\\sum_{\\mathbf{q}s}|\\mathcal{K}_{\\text{MLIP}}(\\mathbf{q},s) - \\mathcal{K}_{\\text{DFT}}(\\mathbf{q},s)|}{\\kappa_{\\text{MLIP}} + \\kappa_{\\text{DFT}}}
$$
"""
)
|