Spaces:
Running
Running
update icon; fix unit
Browse files
serve/ranks/homonuclear-diatomics.py
CHANGED
@@ -116,6 +116,19 @@ s = (
|
|
116 |
cmap="Blues",
|
117 |
subset=["Rank", "Rank aggr."],
|
118 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
)
|
120 |
|
121 |
|
@@ -124,7 +137,7 @@ def render():
|
|
124 |
s,
|
125 |
use_container_width=True,
|
126 |
)
|
127 |
-
with st.expander(":material/info:
|
128 |
st.caption(
|
129 |
"""
|
130 |
- **Conservation deviation**: The average deviation of force from negative energy gradient along the diatomic curves.
|
|
|
116 |
cmap="Blues",
|
117 |
subset=["Rank", "Rank aggr."],
|
118 |
)
|
119 |
+
.format(
|
120 |
+
"{:.4f}",
|
121 |
+
subset=[
|
122 |
+
"Conservation deviation [eV/Å]",
|
123 |
+
"Spearman's coeff. (Energy - repulsion)",
|
124 |
+
"Spearman's coeff. (Force - descending)",
|
125 |
+
"Tortuosity",
|
126 |
+
"Energy jump [eV]",
|
127 |
+
"Force flips",
|
128 |
+
"Spearman's coeff. (Energy - attraction)",
|
129 |
+
"Spearman's coeff. (Force - ascending)",
|
130 |
+
]
|
131 |
+
)
|
132 |
)
|
133 |
|
134 |
|
|
|
137 |
s,
|
138 |
use_container_width=True,
|
139 |
)
|
140 |
+
with st.expander("Explanation", icon=":material/info:"):
|
141 |
st.caption(
|
142 |
"""
|
143 |
- **Conservation deviation**: The average deviation of force from negative energy gradient along the diatomic curves.
|
serve/ranks/thermal-conductivity.py
CHANGED
@@ -11,33 +11,33 @@ table = pd.read_csv(DATA_DIR / "wte.csv")
|
|
11 |
table.rename(
|
12 |
columns={
|
13 |
"method": "Model",
|
14 |
-
"srme": "SRME
|
15 |
},
|
16 |
inplace=True,
|
17 |
)
|
18 |
|
19 |
table.set_index("Model", inplace=True)
|
20 |
|
21 |
-
table.sort_values(["SRME
|
22 |
|
23 |
-
table["Rank"] = table["SRME
|
24 |
|
25 |
table = table.reindex(
|
26 |
columns=[
|
27 |
"Rank",
|
28 |
-
"SRME
|
29 |
]
|
30 |
)
|
31 |
|
32 |
s = (
|
33 |
table.style.background_gradient(
|
34 |
-
cmap="Reds", subset=["SRME
|
35 |
)
|
36 |
.background_gradient(
|
37 |
cmap="Blues",
|
38 |
subset=["Rank"],
|
39 |
)
|
40 |
-
.format("{:.3f}", subset=["SRME
|
41 |
)
|
42 |
|
43 |
|
@@ -48,7 +48,7 @@ def render():
|
|
48 |
use_container_width=True
|
49 |
)
|
50 |
|
51 |
-
with st.expander(":material/info:
|
52 |
st.caption(
|
53 |
"""
|
54 |
- **SRME**: symmetric relative mean error of single-phonon conductivity:
|
|
|
11 |
table.rename(
|
12 |
columns={
|
13 |
"method": "Model",
|
14 |
+
"srme": "SRME",
|
15 |
},
|
16 |
inplace=True,
|
17 |
)
|
18 |
|
19 |
table.set_index("Model", inplace=True)
|
20 |
|
21 |
+
table.sort_values(["SRME"], ascending=True, inplace=True)
|
22 |
|
23 |
+
table["Rank"] = table["SRME"].rank(method='min').astype(int)
|
24 |
|
25 |
table = table.reindex(
|
26 |
columns=[
|
27 |
"Rank",
|
28 |
+
"SRME",
|
29 |
]
|
30 |
)
|
31 |
|
32 |
s = (
|
33 |
table.style.background_gradient(
|
34 |
+
cmap="Reds", subset=["SRME"]
|
35 |
)
|
36 |
.background_gradient(
|
37 |
cmap="Blues",
|
38 |
subset=["Rank"],
|
39 |
)
|
40 |
+
.format("{:.3f}", subset=["SRME"])
|
41 |
)
|
42 |
|
43 |
|
|
|
48 |
use_container_width=True
|
49 |
)
|
50 |
|
51 |
+
with st.expander("Explanation", icon=":material/info:"):
|
52 |
st.caption(
|
53 |
"""
|
54 |
- **SRME**: symmetric relative mean error of single-phonon conductivity:
|
serve/tasks/thermal-conductivity.py
CHANGED
@@ -26,21 +26,23 @@ table = pd.read_csv(DATA_DIR / "wte.csv")
|
|
26 |
table.rename(
|
27 |
columns={
|
28 |
"method": "Model",
|
29 |
-
"srme": "SRME
|
30 |
},
|
31 |
inplace=True,
|
32 |
)
|
33 |
|
34 |
table.set_index("Model", inplace=True)
|
35 |
|
36 |
-
table.sort_values(["SRME
|
37 |
|
38 |
-
s =
|
39 |
-
|
|
|
|
|
|
|
40 |
)
|
41 |
|
42 |
st.dataframe(
|
43 |
s,
|
44 |
use_container_width=True,
|
45 |
-
column_config={"SRME [1/Å]": {"format": "{:.3f}"}}
|
46 |
)
|
|
|
26 |
table.rename(
|
27 |
columns={
|
28 |
"method": "Model",
|
29 |
+
"srme": "SRME",
|
30 |
},
|
31 |
inplace=True,
|
32 |
)
|
33 |
|
34 |
table.set_index("Model", inplace=True)
|
35 |
|
36 |
+
table.sort_values(["SRME"], ascending=True, inplace=True)
|
37 |
|
38 |
+
s = (
|
39 |
+
table.style.background_gradient(
|
40 |
+
cmap="Reds", subset=["SRME"]
|
41 |
+
)
|
42 |
+
.format("{:.3f}", subset=["SRME"])
|
43 |
)
|
44 |
|
45 |
st.dataframe(
|
46 |
s,
|
47 |
use_container_width=True,
|
|
|
48 |
)
|