File size: 35,059 Bytes
f0fdb88
 
 
 
d937c80
f0fdb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1effaf5
 
 
 
 
 
 
 
 
 
 
f0fdb88
 
 
 
c7922c2
f0fdb88
 
 
 
 
 
 
 
 
 
 
 
 
 
c7922c2
f0fdb88
 
 
 
 
 
 
 
 
 
c7922c2
f0fdb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7922c2
f0fdb88
c7922c2
 
 
 
 
 
 
 
 
f0fdb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1effaf5
 
 
 
 
 
 
f0fdb88
 
d937c80
f0fdb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7922c2
f0fdb88
 
 
 
 
 
 
 
 
 
1effaf5
f0fdb88
1effaf5
f0fdb88
1effaf5
f0fdb88
 
 
c7922c2
f0fdb88
 
dba3031
 
 
 
 
1effaf5
 
c7922c2
 
 
 
dba3031
f0fdb88
 
 
 
 
 
 
1effaf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0fdb88
 
 
 
1effaf5
 
 
f0fdb88
1effaf5
f0fdb88
1effaf5
f0fdb88
 
 
 
 
c7922c2
f0fdb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7922c2
f0fdb88
cf512f3
f0fdb88
 
 
 
 
 
 
 
 
 
 
c7922c2
f0fdb88
 
 
 
 
 
 
c7922c2
f0fdb88
 
 
c7922c2
f0fdb88
 
 
 
 
 
 
 
c7922c2
f0fdb88
 
 
c7922c2
f0fdb88
 
 
 
 
 
 
 
c7922c2
f0fdb88
 
 
c7922c2
f0fdb88
 
 
 
 
 
 
 
c7922c2
1effaf5
c7922c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba3031
 
 
c7922c2
dba3031
c7922c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba3031
 
 
 
 
 
 
 
c7922c2
dba3031
 
 
c7922c2
dba3031
 
 
 
 
 
c7922c2
 
dba3031
 
 
c7922c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dba3031
f0fdb88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pathlib import Path\n",
    "\n",
    "from ase import units, Atoms\n",
    "from ase.build import molecule\n",
    "from ase.io import read, write\n",
    "from dask.distributed import Client\n",
    "from dask_jobqueue import SLURMCluster\n",
    "from prefect import flow\n",
    "from prefect_dask import DaskTaskRunner\n",
    "from pymatgen.core import Molecule\n",
    "from pymatgen.io.packmol import PackmolBoxGen\n",
    "\n",
    "from mlip_arena.models.utils import REGISTRY, MLIPEnum\n",
    "from mlip_arena.tasks.md import run as MD"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "jp-MarkdownHeadingCollapsed": true,
    "tags": []
   },
   "source": [
    "## Create initial configuration"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "h2 = molecule(\"H2\")\n",
    "o2 = molecule(\"O2\")\n",
    "h2o = molecule(\"H2O\")\n",
    "\n",
    "write(\"h2.xyz\", h2)\n",
    "write(\"o2.xyz\", o2)\n",
    "write(\"h2o.xyz\", h2o)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "h2 = Molecule.from_file(\"h2.xyz\")\n",
    "o2 = Molecule.from_file(\"o2.xyz\")\n",
    "h2o = Molecule.from_file(\"h2o.xyz\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "molecules = []\n",
    "\n",
    "for m, number in zip([h2, o2], [128, 64]):\n",
    "    molecules.append(\n",
    "        {\n",
    "            \"name\": m.composition.to_pretty_string(),\n",
    "            \"number\": number,\n",
    "            \"coords\": m,\n",
    "        }\n",
    "    )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Atoms(symbols='H256O128', pbc=True, cell=[30.0, 30.0, 30.0])\n"
     ]
    }
   ],
   "source": [
    "tolerance = 2.0\n",
    "input_gen = PackmolBoxGen(\n",
    "    tolerance=tolerance,\n",
    "    seed=1,\n",
    ")\n",
    "margin = 0.5 * tolerance\n",
    "\n",
    "a = 30\n",
    "\n",
    "packmol_set = input_gen.get_input_set(\n",
    "    molecules=molecules,\n",
    "    box=[margin, margin, margin, a - margin, a - margin, a - margin],\n",
    ")\n",
    "packmol_set.write_input(\".\")\n",
    "packmol_set.run(\".\")\n",
    "\n",
    "atoms = read(\"packmol_out.xyz\")\n",
    "atoms.cell = [a, a, a]\n",
    "atoms.pbc = True\n",
    "\n",
    "print(atoms)\n",
    "\n",
    "write(f'{atoms.get_chemical_formula()}.extxyz', atoms)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Run workflow"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Atoms(symbols='H256O128', pbc=True, cell=[30.0, 30.0, 30.0])\n"
     ]
    }
   ],
   "source": [
    "atoms = read(\"H256O128.extxyz\")\n",
    "print(atoms)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "#!/bin/bash\n",
      "\n",
      "#SBATCH -A matgen\n",
      "#SBATCH --mem=0\n",
      "#SBATCH -t 00:30:00\n",
      "#SBATCH -N 1\n",
      "#SBATCH -q debug\n",
      "#SBATCH -C gpu\n",
      "#SBATCH -J combustion-water\n",
      "source ~/.bashrc\n",
      "module load python\n",
      "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\n",
      "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/bin/python -m distributed.cli.dask_worker tcp://128.55.64.19:39737 --name dummy-name --nthreads 1 --memory-limit 59.60GiB --nanny --death-timeout 60\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/node.py:182: UserWarning: Port 8787 is already in use.\n",
      "Perhaps you already have a cluster running?\n",
      "Hosting the HTTP server on port 38693 instead\n",
      "  warnings.warn(\n",
      "2024-10-08 03:30:05,696 - distributed.scheduler - ERROR - Task run-b8e0881eb1e8959f855ada9515884ada marked as failed because 4 workers died while trying to run it\n",
      "2024-10-08 03:30:05,723 - distributed.scheduler - ERROR - Task run-3307095fc41590db704148cc499bad14 marked as failed because 4 workers died while trying to run it\n"
     ]
    }
   ],
   "source": [
    "nodes_per_alloc = 1\n",
    "gpus_per_alloc = 4\n",
    "ntasks = 1\n",
    "\n",
    "# cluster_kwargs = dict(\n",
    "#     cores=1,\n",
    "#     memory=\"64 GB\",\n",
    "#     shebang=\"#!/bin/bash\",\n",
    "#     account=\"matgen\",\n",
    "#     walltime=\"02:00:00\",\n",
    "#     job_mem=\"0\",\n",
    "#     job_script_prologue=[\n",
    "#         \"source ~/.bashrc\",\n",
    "#         \"module load python\",\n",
    "#         \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n",
    "#     ],\n",
    "#     job_directives_skip=[\"-n\", \"--cpus-per-task\", \"-J\"],\n",
    "#     job_extra_directives=[\n",
    "#         \"-J combustion-water\",\n",
    "#         \"-q regular\",\n",
    "#         f\"-N {nodes_per_alloc}\",\n",
    "#         \"-C gpu\",\n",
    "#         f\"-G {gpus_per_alloc}\",\n",
    "#         f\"--exclusive\",\n",
    "#         # \"--time-min=00:30:00\",\n",
    "#         # \"--comment=1-00:00:00\",\n",
    "#         # \"--signal=B:USR1@60\",\n",
    "#         # \"--requeue\",\n",
    "#         # \"--open-mode=append\"\n",
    "#     ],\n",
    "#     death_timeout=86400\n",
    "# )\n",
    "\n",
    "# cluster = SLURMCluster(**cluster_kwargs)\n",
    "\n",
    "cluster_kwargs = {\n",
    "    \"cores\": 1,\n",
    "    \"memory\": \"64 GB\",\n",
    "    \"shebang\": \"#!/bin/bash\",\n",
    "    \"account\": \"matgen\",\n",
    "    \"walltime\": \"00:30:00\",\n",
    "    \"job_mem\": \"0\",\n",
    "    \"job_script_prologue\": [\n",
    "        \"source ~/.bashrc\",\n",
    "        \"module load python\",\n",
    "        \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n",
    "    ],\n",
    "    \"job_directives_skip\": [\"-n\", \"--cpus-per-task\", \"-J\"],\n",
    "    \"job_extra_directives\": [f\"-N {nodes_per_alloc}\", \"-q debug\", \"-C gpu\", \"-J combustion-water\"],\n",
    "}\n",
    "cluster = SLURMCluster(**cluster_kwargs)\n",
    "\n",
    "print(cluster.job_script())\n",
    "cluster.adapt(minimum_jobs=2, maximum_jobs=2)\n",
    "client = Client(cluster)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "@flow(task_runner=DaskTaskRunner(address=client.scheduler.address), log_prints=True)\n",
    "def combustion(atoms: Atoms):\n",
    "    futures = []\n",
    "\n",
    "    for model in MLIPEnum:\n",
    "        future = MD.submit(\n",
    "            atoms=atoms,\n",
    "            calculator_name=model,\n",
    "            calculator_kwargs=None,\n",
    "            ensemble=\"nvt\",\n",
    "            dynamics=\"nose-hoover\",\n",
    "            time_step=None,\n",
    "            ase_md_kwargs=dict(ttime=25 * units.fs, pfactor=None),\n",
    "            total_time=1000_000,\n",
    "            temperature=[300, 3000, 3000, 300],\n",
    "            pressure=None,\n",
    "            md_velocity_seed=0,\n",
    "            traj_file=Path(REGISTRY[model.name][\"family\"])\n",
    "            / f\"{model.name}_{atoms.get_chemical_formula()}.traj\",\n",
    "            traj_interval=1000,\n",
    "            restart=True,\n",
    "        )\n",
    "\n",
    "        futures.append(future)\n",
    "    \n",
    "    return [future.result() for future in futures]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">01:25:41.097 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span>    | prefect.engine - Created flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'green-turaco'</span> for flow<span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\"> 'combustion'</span>\n",
       "</pre>\n"
      ],
      "text/plain": [
       "01:25:41.097 | \u001b[36mINFO\u001b[0m    | prefect.engine - Created flow run\u001b[35m 'green-turaco'\u001b[0m for flow\u001b[1;35m 'combustion'\u001b[0m\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">01:25:41.101 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span>    | prefect.engine - View at <span style=\"color: #0000ff; text-decoration-color: #0000ff\">https://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/runs/flow-run/784dc0e0-9f4f-4320-8bfa-4c5e8d3b35fb</span>\n",
       "</pre>\n"
      ],
      "text/plain": [
       "01:25:41.101 | \u001b[36mINFO\u001b[0m    | prefect.engine - View at \u001b[94mhttps://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/runs/flow-run/784dc0e0-9f4f-4320-8bfa-4c5e8d3b35fb\u001b[0m\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">01:25:41.409 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span>    | prefect.task_runner.dask - Connecting to existing Dask cluster SLURMCluster(91d5c261, 'tcp://128.55.64.19:39737', workers=0, threads=0, memory=0 B)\n",
       "</pre>\n"
      ],
      "text/plain": [
       "01:25:41.409 | \u001b[36mINFO\u001b[0m    | prefect.task_runner.dask - Connecting to existing Dask cluster SLURMCluster(91d5c261, 'tcp://128.55.64.19:39737', workers=0, threads=0, memory=0 B)\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">03:30:05.739 | <span style=\"color: #d70000; text-decoration-color: #d70000\">ERROR</span>   | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'green-turaco'</span> - Encountered exception during execution: KilledWorker('run-3307095fc41590db704148cc499bad14', &lt;WorkerState 'tcp://128.55.65.2:37007', name: SLURMCluster-1, status: closed, memory: 0, processing: 0&gt;, 3)\n",
       "Traceback (most recent call last):\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 652, in run_context\n",
       "    yield self\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 696, in run_flow_sync\n",
       "    engine.call_flow_fn()\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 675, in call_flow_fn\n",
       "    result = call_with_parameters(self.flow.fn, self.parameters)\n",
       "             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py\", line 206, in call_with_parameters\n",
       "    return fn(*args, **kwargs)\n",
       "           ^^^^^^^^^^^^^^^^^^^\n",
       "  File \"/tmp/ipykernel_892374/2043615938.py\", line 26, in combustion\n",
       "    return [future.result() for future in futures]\n",
       "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
       "  File \"/tmp/ipykernel_892374/2043615938.py\", line 26, in &lt;listcomp&gt;\n",
       "    return [future.result() for future in futures]\n",
       "            ^^^^^^^^^^^^^^^\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect_dask/task_runners.py\", line 132, in result\n",
       "    future_result = self._wrapped_future.result(timeout=timeout)\n",
       "                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/client.py\", line 328, in result\n",
       "    return self.client.sync(self._result, callback_timeout=timeout)\n",
       "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/client.py\", line 336, in _result\n",
       "    raise exc.with_traceback(tb)\n",
       "distributed.scheduler.KilledWorker: Attempted to run task 'run-3307095fc41590db704148cc499bad14' on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://128.55.65.2:37007. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see <span style=\"color: #0000ff; text-decoration-color: #0000ff\">https://distributed.dask.org/en/stable/killed.html.</span>\n",
       "</pre>\n"
      ],
      "text/plain": [
       "03:30:05.739 | \u001b[38;5;160mERROR\u001b[0m   | Flow run\u001b[35m 'green-turaco'\u001b[0m - Encountered exception during execution: KilledWorker('run-3307095fc41590db704148cc499bad14', <WorkerState 'tcp://128.55.65.2:37007', name: SLURMCluster-1, status: closed, memory: 0, processing: 0>, 3)\n",
       "Traceback (most recent call last):\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 652, in run_context\n",
       "    yield self\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 696, in run_flow_sync\n",
       "    engine.call_flow_fn()\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py\", line 675, in call_flow_fn\n",
       "    result = call_with_parameters(self.flow.fn, self.parameters)\n",
       "             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py\", line 206, in call_with_parameters\n",
       "    return fn(*args, **kwargs)\n",
       "           ^^^^^^^^^^^^^^^^^^^\n",
       "  File \"/tmp/ipykernel_892374/2043615938.py\", line 26, in combustion\n",
       "    return [future.result() for future in futures]\n",
       "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
       "  File \"/tmp/ipykernel_892374/2043615938.py\", line 26, in <listcomp>\n",
       "    return [future.result() for future in futures]\n",
       "            ^^^^^^^^^^^^^^^\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect_dask/task_runners.py\", line 132, in result\n",
       "    future_result = self._wrapped_future.result(timeout=timeout)\n",
       "                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/client.py\", line 328, in result\n",
       "    return self.client.sync(self._result, callback_timeout=timeout)\n",
       "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
       "  File \"/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/client.py\", line 336, in _result\n",
       "    raise exc.with_traceback(tb)\n",
       "distributed.scheduler.KilledWorker: Attempted to run task 'run-3307095fc41590db704148cc499bad14' on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://128.55.65.2:37007. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see \u001b[94mhttps://distributed.dask.org/en/stable/killed.html.\u001b[0m\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">03:30:06.504 | <span style=\"color: #d70000; text-decoration-color: #d70000\">ERROR</span>   | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'green-turaco'</span> - Finished in state <span style=\"color: #d70000; text-decoration-color: #d70000\">Failed</span>(\"Flow run encountered an exception: KilledWorker: Attempted to run task 'run-3307095fc41590db704148cc499bad14' on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://128.55.65.2:37007. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see <span style=\"color: #0000ff; text-decoration-color: #0000ff\">https://distributed.dask.org/en/stable/killed.html.</span>\")\n",
       "</pre>\n"
      ],
      "text/plain": [
       "03:30:06.504 | \u001b[38;5;160mERROR\u001b[0m   | Flow run\u001b[35m 'green-turaco'\u001b[0m - Finished in state \u001b[38;5;160mFailed\u001b[0m(\"Flow run encountered an exception: KilledWorker: Attempted to run task 'run-3307095fc41590db704148cc499bad14' on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://128.55.65.2:37007. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see \u001b[94mhttps://distributed.dask.org/en/stable/killed.html.\u001b[0m\")\n"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "ename": "KilledWorker",
     "evalue": "Attempted to run task 'run-3307095fc41590db704148cc499bad14' on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://128.55.65.2:37007. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see https://distributed.dask.org/en/stable/killed.html.",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKilledWorker\u001b[0m                              Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mcombustion\u001b[49m\u001b[43m(\u001b[49m\u001b[43matoms\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flows.py:1345\u001b[0m, in \u001b[0;36mFlow.__call__\u001b[0;34m(self, return_state, wait_for, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1341\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m track_viz_task(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39misasync, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname, parameters)\n\u001b[1;32m   1343\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mprefect\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mflow_engine\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m run_flow\n\u001b[0;32m-> 1345\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun_flow\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1346\u001b[0m \u001b[43m    \u001b[49m\u001b[43mflow\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1347\u001b[0m \u001b[43m    \u001b[49m\u001b[43mparameters\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparameters\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1348\u001b[0m \u001b[43m    \u001b[49m\u001b[43mwait_for\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwait_for\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1349\u001b[0m \u001b[43m    \u001b[49m\u001b[43mreturn_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1350\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:818\u001b[0m, in \u001b[0;36mrun_flow\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m    816\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m run_flow_async(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m    817\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 818\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mrun_flow_sync\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:698\u001b[0m, in \u001b[0;36mrun_flow_sync\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m    695\u001b[0m         \u001b[38;5;28;01mwith\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mrun_context():\n\u001b[1;32m    696\u001b[0m             engine\u001b[38;5;241m.\u001b[39mcall_flow_fn()\n\u001b[0;32m--> 698\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mstate \u001b[38;5;28;01mif\u001b[39;00m return_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstate\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m \u001b[43mengine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:255\u001b[0m, in \u001b[0;36mFlowRunEngine.result\u001b[0;34m(self, raise_on_failure)\u001b[0m\n\u001b[1;32m    253\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raised \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m NotSet:\n\u001b[1;32m    254\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m raise_on_failure:\n\u001b[0;32m--> 255\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raised\n\u001b[1;32m    256\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_raised\n\u001b[1;32m    258\u001b[0m \u001b[38;5;66;03m# This is a fall through case which leans on the existing state result mechanics to get the\u001b[39;00m\n\u001b[1;32m    259\u001b[0m \u001b[38;5;66;03m# return value. This is necessary because we currently will return a State object if the\u001b[39;00m\n\u001b[1;32m    260\u001b[0m \u001b[38;5;66;03m# the State was Prefect-created.\u001b[39;00m\n\u001b[1;32m    261\u001b[0m \u001b[38;5;66;03m# TODO: Remove the need to get the result from a State except in cases where the return value\u001b[39;00m\n\u001b[1;32m    262\u001b[0m \u001b[38;5;66;03m# is a State object.\u001b[39;00m\n",
      "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:652\u001b[0m, in \u001b[0;36mFlowRunEngine.run_context\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    645\u001b[0m     \u001b[38;5;28;01mwith\u001b[39;00m timeout_context(\n\u001b[1;32m    646\u001b[0m         seconds\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow\u001b[38;5;241m.\u001b[39mtimeout_seconds,\n\u001b[1;32m    647\u001b[0m         timeout_exc_type\u001b[38;5;241m=\u001b[39mFlowRunTimeoutError,\n\u001b[1;32m    648\u001b[0m     ):\n\u001b[1;32m    649\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlogger\u001b[38;5;241m.\u001b[39mdebug(\n\u001b[1;32m    650\u001b[0m             \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExecuting flow \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m for flow run \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mflow_run\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m...\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    651\u001b[0m         )\n\u001b[0;32m--> 652\u001b[0m         \u001b[38;5;28;01myield\u001b[39;00m \u001b[38;5;28mself\u001b[39m\n\u001b[1;32m    653\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTimeoutError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m    654\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_timeout(exc)\n",
      "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:696\u001b[0m, in \u001b[0;36mrun_flow_sync\u001b[0;34m(flow, flow_run, parameters, wait_for, return_type)\u001b[0m\n\u001b[1;32m    694\u001b[0m     \u001b[38;5;28;01mwhile\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mis_running():\n\u001b[1;32m    695\u001b[0m         \u001b[38;5;28;01mwith\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mrun_context():\n\u001b[0;32m--> 696\u001b[0m             \u001b[43mengine\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall_flow_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    698\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mstate \u001b[38;5;28;01mif\u001b[39;00m return_type \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstate\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m engine\u001b[38;5;241m.\u001b[39mresult()\n",
      "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/flow_engine.py:675\u001b[0m, in \u001b[0;36mFlowRunEngine.call_flow_fn\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    673\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m _call_flow_fn()\n\u001b[1;32m    674\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 675\u001b[0m     result \u001b[38;5;241m=\u001b[39m \u001b[43mcall_with_parameters\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflow\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparameters\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    676\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandle_success(result)\n",
      "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect/utilities/callables.py:206\u001b[0m, in \u001b[0;36mcall_with_parameters\u001b[0;34m(fn, parameters)\u001b[0m\n\u001b[1;32m    198\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    199\u001b[0m \u001b[38;5;124;03mCall a function with parameters extracted with `get_call_parameters`\u001b[39;00m\n\u001b[1;32m    200\u001b[0m \n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    203\u001b[0m \u001b[38;5;124;03mthe args/kwargs using `parameters_to_positional_and_keyword` directly\u001b[39;00m\n\u001b[1;32m    204\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    205\u001b[0m args, kwargs \u001b[38;5;241m=\u001b[39m parameters_to_args_kwargs(fn, parameters)\n\u001b[0;32m--> 206\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "Cell \u001b[0;32mIn[4], line 26\u001b[0m, in \u001b[0;36mcombustion\u001b[0;34m(atoms)\u001b[0m\n\u001b[1;32m      6\u001b[0m     future \u001b[38;5;241m=\u001b[39m MD\u001b[38;5;241m.\u001b[39msubmit(\n\u001b[1;32m      7\u001b[0m         atoms\u001b[38;5;241m=\u001b[39matoms,\n\u001b[1;32m      8\u001b[0m         calculator_name\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     21\u001b[0m         restart\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m     22\u001b[0m     )\n\u001b[1;32m     24\u001b[0m     futures\u001b[38;5;241m.\u001b[39mappend(future)\n\u001b[0;32m---> 26\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m[\u001b[49m\u001b[43mfuture\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mfuture\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mfutures\u001b[49m\u001b[43m]\u001b[49m\n",
      "Cell \u001b[0;32mIn[4], line 26\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m      6\u001b[0m     future \u001b[38;5;241m=\u001b[39m MD\u001b[38;5;241m.\u001b[39msubmit(\n\u001b[1;32m      7\u001b[0m         atoms\u001b[38;5;241m=\u001b[39matoms,\n\u001b[1;32m      8\u001b[0m         calculator_name\u001b[38;5;241m=\u001b[39mmodel,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     21\u001b[0m         restart\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m     22\u001b[0m     )\n\u001b[1;32m     24\u001b[0m     futures\u001b[38;5;241m.\u001b[39mappend(future)\n\u001b[0;32m---> 26\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [\u001b[43mfuture\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m future \u001b[38;5;129;01min\u001b[39;00m futures]\n",
      "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/prefect_dask/task_runners.py:132\u001b[0m, in \u001b[0;36mPrefectDaskFuture.result\u001b[0;34m(self, timeout, raise_on_failure)\u001b[0m\n\u001b[1;32m    130\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_final_state:\n\u001b[1;32m    131\u001b[0m     \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 132\u001b[0m         future_result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_wrapped_future\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    133\u001b[0m     \u001b[38;5;28;01mexcept\u001b[39;00m distributed\u001b[38;5;241m.\u001b[39mTimeoutError \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m    134\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTimeoutError\u001b[39;00m(\n\u001b[1;32m    135\u001b[0m             \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTask run \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtask_run_id\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m did not complete within \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtimeout\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m seconds\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    136\u001b[0m         ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mexc\u001b[39;00m\n",
      "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/client.py:328\u001b[0m, in \u001b[0;36mFuture.result\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m    326\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_verify_initialized()\n\u001b[1;32m    327\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m shorten_traceback():\n\u001b[0;32m--> 328\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msync\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_result\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallback_timeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/client.py:336\u001b[0m, in \u001b[0;36mFuture._result\u001b[0;34m(self, raiseit)\u001b[0m\n\u001b[1;32m    334\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m raiseit:\n\u001b[1;32m    335\u001b[0m     typ, exc, tb \u001b[38;5;241m=\u001b[39m exc\n\u001b[0;32m--> 336\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m exc\u001b[38;5;241m.\u001b[39mwith_traceback(tb)\n\u001b[1;32m    337\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    338\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m exc\n",
      "\u001b[0;31mKilledWorker\u001b[0m: Attempted to run task 'run-3307095fc41590db704148cc499bad14' on 4 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://128.55.65.2:37007. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see https://distributed.dask.org/en/stable/killed.html."
     ]
    }
   ],
   "source": [
    "results = combustion(atoms)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "mlip-arena",
   "language": "python",
   "name": "mlip-arena"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {},
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}