cyrusyc commited on
Commit
cf512f3
1 Parent(s): 975c8f2

update external calculator classes; update diatomic curves

Browse files
.gitignore CHANGED
@@ -1,10 +1,9 @@
1
- tests/
2
  *.out
3
  *.ipynb
4
  *.extxyz
5
  *.traj
6
  mlip_arena/tasks/*/*/*/
7
-
8
 
9
  # Byte-compiled / optimized / DLL files
10
  __pycache__/
 
 
1
  *.out
2
  *.ipynb
3
  *.extxyz
4
  *.traj
5
  mlip_arena/tasks/*/*/*/
6
+ lab/
7
 
8
  # Byte-compiled / optimized / DLL files
9
  __pycache__/
environment.yml CHANGED
@@ -1,3 +1,4 @@
 
1
  channels:
2
  - defaults
3
  - conda-forge
@@ -14,7 +15,6 @@ dependencies:
14
  - libuuid=1.41.5=h5eee18b_0
15
  - ncurses=6.4=h6a678d5_0
16
  - openssl=3.0.13=h7f8727e_0
17
- - pip=23.3.1=py311h06a4308_0
18
  - python=3.11.8=h955ad1f_0
19
  - readline=8.2=h5eee18b_0
20
  - setuptools=68.2.2=py311h06a4308_0
@@ -30,6 +30,7 @@ dependencies:
30
  - aioitertools==0.11.0
31
  - aiosignal==1.3.1
32
  - aiosqlite==0.20.0
 
33
  - alembic==1.13.1
34
  - alignn==2024.5.27
35
  - altair==5.3.0
@@ -37,26 +38,38 @@ dependencies:
37
  - anyio==3.7.1
38
  - appdirs==1.4.4
39
  - apprise==1.7.5
 
 
 
40
  - ase==3.23.0
41
  - asgi-lifespan==2.1.0
42
  - asttokens==2.4.1
 
43
  - async-timeout==4.0.3
44
  - asyncpg==0.29.0
45
  - atomate2==0.0.14.post30+g256b39a1
46
  - attrs==23.2.0
47
  - autograd==1.5
 
48
  - autoray==0.6.9
 
49
  - bcrypt==4.1.2
 
50
  - bidict==0.23.1
 
51
  - blinker==1.7.0
52
  - blosc2==2.7.0
 
 
53
  - boto3==1.34.74
54
  - botocore==1.34.74
 
 
55
  - cachetools==5.3.3
56
- - certifi==2024.7.4
57
  - cffi==1.16.0
58
  - charset-normalizer==3.3.2
59
- - chgnet==0.3.5
60
  - click==8.1.7
61
  - cloudpickle==3.0.0
62
  - colorama==0.4.6
@@ -71,14 +84,21 @@ dependencies:
71
  - cython==3.0.10
72
  - dask==2024.3.1
73
  - dask-jobqueue==0.8.5
 
74
  - dateparser==1.2.0
75
  - debugpy==1.8.1
76
  - decorator==5.1.1
77
- - dgl==2.3.0+cu121
 
 
 
 
78
  - distributed==2024.3.1
 
79
  - dnspython==2.6.1
80
  - docker==6.1.3
81
  - docker-pycreds==0.4.0
 
82
  - e3nn==0.5.1
83
  - email-validator==2.1.1
84
  - emmet-core==0.82.1
@@ -86,19 +106,26 @@ dependencies:
86
  - fairchem-core==1.0.0
87
  - fastapi==0.110.0
88
  - fastjsonschema==2.20.0
89
- - filelock==3.15.4
90
  - fireworks==2.0.3
91
  - flake8==7.1.0
92
  - flask==3.0.2
93
  - flask-paginate==2024.3.28
94
  - fonttools==4.50.0
 
95
  - frozenlist==1.4.1
96
- - fsspec==2024.6.1
97
  - furl==2.1.3
98
  - future==1.0.0
99
  - gitdb==4.0.11
100
  - gitpython==3.1.43
 
101
  - google-auth==2.29.0
 
 
 
 
 
102
  - gpaw==24.7.0b1
103
  - greenlet==3.0.3
104
  - griffe==0.42.1
@@ -113,13 +140,18 @@ dependencies:
113
  - httpx==0.27.0
114
  - huggingface-hub==0.22.2
115
  - hyperframe==6.0.1
116
- - idna==3.7
 
 
117
  - importlib-metadata==7.1.0
118
  - importlib-resources==6.1.3
119
  - inflect==7.3.1
120
  - ipykernel==6.29.4
 
121
  - ipython==8.22.2
122
- - ipywidgets==8.1.2
 
 
123
  - itsdangerous==2.1.2
124
  - jarvis-tools==2024.5.10
125
  - jedi==0.19.1
@@ -127,17 +159,29 @@ dependencies:
127
  - jmespath==1.0.1
128
  - jobflow==0.1.17
129
  - joblib==1.3.2
 
130
  - jsonpatch==1.33
131
  - jsonpointer==2.4
132
  - jsonschema==4.21.1
133
  - jsonschema-specifications==2023.12.1
134
  - jupyter-client==8.6.1
135
  - jupyter-core==5.7.2
136
- - jupyterlab-widgets==3.0.10
 
 
 
 
 
 
 
 
 
137
  - kiwisolver==1.4.5
138
  - kubernetes==29.0.0
139
  - latexcodec==3.0.0
 
140
  - lightning-utilities==0.11.2
 
141
  - llvmlite==0.42.0
142
  - lmdb==1.4.1
143
  - lmdbm==0.0.5
@@ -149,30 +193,37 @@ dependencies:
149
  - markdown==3.6
150
  - markdown-it-py==2.2.0
151
  - markupsafe==2.1.5
152
- - matgl==1.0.0
153
  - matplotlib==3.8.3
154
  - matplotlib-inline==0.1.6
155
  - matscipy==1.0.0
156
  - mccabe==0.7.0
157
  - mdurl==0.1.2
158
- - mlip-arena==0.0.1
 
159
  - mongogrant==0.3.3
160
  - mongomock==4.1.2
161
- - monty==2024.2.26
162
  - more-itertools==10.3.0
163
  - mp-api==0.41.2
164
  - mpire==2.10.1
165
  - mpmath==1.3.0
166
  - msgpack==1.0.8
167
  - multidict==6.0.5
 
168
  - natsort==8.4.0
 
 
169
  - nbformat==5.10.4
170
  - ndindex==1.8
171
  - nest-asyncio==1.6.0
172
  - networkx==3.3
 
 
173
  - numba==0.59.1
174
  - numexpr==2.10.1
175
  - numpy==1.26.4
 
176
  - nvidia-cublas-cu12==12.1.3.1
177
  - nvidia-cuda-cupti-cu12==12.1.105
178
  - nvidia-cuda-nvrtc-cu12==12.1.105
@@ -183,38 +234,48 @@ dependencies:
183
  - nvidia-cusolver-cu12==11.4.5.107
184
  - nvidia-cusparse-cu12==12.1.0.106
185
  - nvidia-ml-py3==7.352.0
186
- - nvidia-nccl-cu12==2.19.3
187
- - nvidia-nvjitlink-cu12==12.5.82
188
  - nvidia-nvtx-cu12==12.1.105
189
  - oauthlib==3.2.2
 
190
  - opt-einsum==3.3.0
191
  - opt-einsum-fx==0.1.4
 
192
  - orderedmultidict==1.0.1
193
  - orjson==3.10.0
 
 
194
  - packaging==24.0
195
  - palettable==3.3.3
196
  - pandas==2.2.2
 
197
  - paramiko==3.4.0
198
  - parso==0.8.3
199
  - partd==1.4.1
200
  - pathspec==0.12.1
 
201
  - pendulum==2.1.2
202
  - pennylane==0.32.0
203
  - pennylane-lightning==0.33.1
204
  - pexpect==4.9.0
205
  - pillow==10.2.0
 
206
  - platformdirs==4.2.0
207
  - plotly==5.20.0
208
  - plumed==2.9.0
209
  - prefect==2.16.8
210
  - prefect-dask==0.2.6
211
  - prettytable==3.10.0
 
212
  - prompt-toolkit==3.0.43
 
213
  - protobuf==4.25.3
214
  - psutil==6.0.0
215
  - ptyprocess==0.7.0
216
  - pure-eval==0.2.2
217
  - py-cpuinfo==9.0.0
 
218
  - pyarrow==16.1.0
219
  - pyasn1==0.6.0
220
  - pyasn1-modules==0.4.0
@@ -229,15 +290,17 @@ dependencies:
229
  - pydocstyle==6.3.0
230
  - pyflakes==3.2.0
231
  - pygments==2.17.2
232
- - pymatgen==2024.4.13
233
  - pymongo==4.6.3
234
  - pynacl==1.5.0
 
235
  - pyparsing==2.4.7
236
  - python-dateutil==2.9.0.post0
237
  - python-dotenv==1.0.1
238
  - python-engineio==4.9.0
239
  - python-graphviz==0.20.3
240
  - python-hostlist==1.23.0
 
241
  - python-multipart==0.0.9
242
  - python-slugify==8.0.4
243
  - python-socketio==5.11.2
@@ -246,12 +309,14 @@ dependencies:
246
  - pytzdata==2020.1
247
  - pyyaml==6.0.1
248
  - pyzmq==25.1.2
 
249
  - readchar==4.0.6
250
  - referencing==0.34.0
251
  - regex==2023.12.25
252
  - requests==2.32.3
253
  - requests-oauthlib==2.0.0
254
  - rfc3339-validator==0.1.4
 
255
  - rich==13.3.5
256
  - rpds-py==0.18.0
257
  - rsa==4.9
@@ -260,12 +325,14 @@ dependencies:
260
  - rustworkx==0.14.2
261
  - s3transfer==0.10.1
262
  - safetensors==0.4.2
263
- - scikit-learn==1.4.1.post1
264
- - scipy==1.14.0
265
  - semantic-version==2.10.0
 
266
  - sentinels==1.0.0
267
  - sentry-sdk==2.7.1
268
  - setproctitle==1.3.3
 
269
  - shellingham==1.5.4
270
  - simple-websocket==1.0.0
271
  - simplejson==3.19.2
@@ -275,61 +342,80 @@ dependencies:
275
  - sniffio==1.3.1
276
  - snowballstemmer==2.2.0
277
  - sortedcontainers==2.4.0
278
- - spglib==2.3.1
 
 
 
 
 
 
 
 
279
  - sqlalchemy==1.4.52
280
  - sqlalchemy-utils==0.41.2
281
  - sshtunnel==0.4.0
282
  - stack-data==0.6.3
283
  - starlette==0.36.3
 
 
284
  - streamlit==1.36.0
285
  - submitit==1.5.1
286
- - sympy==1.12.1
287
  - tables==3.9.2
288
  - tabulate==0.9.0
289
  - tblib==3.0.0
290
  - tenacity==8.2.3
291
  - tensorboard==2.17.0
292
  - tensorboard-data-server==0.7.2
 
293
  - text-unidecode==1.3
294
  - threadpoolctl==3.4.0
 
295
  - toml==0.10.2
 
296
  - toolz==0.12.1
297
- - torch==2.2.1
298
  - torch-dftd==0.4.0
299
  - torch-ema==0.3
300
  - torch-geometric==2.5.2
301
  - torch-scatter==2.1.2+pt22cu121
302
  - torch-sparse==0.6.18+pt22cu121
303
- - torchdata==0.7.1
304
  - torchmetrics==1.3.2
305
  - tornado==6.4
306
- - tqdm==4.66.4
307
  - trainstation==1.0
308
  - traitlets==5.14.2
309
- - triton==2.2.0
310
  - typeguard==4.3.0
311
  - typer==0.12.0
312
  - typer-cli==0.12.0
313
  - typer-slim==0.12.0
 
314
  - typing-extensions==4.12.2
315
  - tzdata==2024.1
316
  - tzlocal==5.2
317
  - ujson==5.9.0
318
  - uncertainties==3.1.7
319
- - urllib3==2.2.2
 
320
  - uvicorn==0.18.3
321
  - uvloop==0.19.0
322
  - wandb==0.17.4
323
  - watchdog==4.0.0
324
  - watchfiles==0.21.0
325
  - wcwidth==0.2.13
 
 
326
  - websocket-client==1.7.0
327
  - websockets==12.0
328
  - werkzeug==3.0.1
329
- - widgetsnbextension==4.0.10
330
  - wrapt==1.16.0
331
  - wsproto==1.2.0
332
  - xmltodict==0.13.0
 
 
333
  - yarl==1.9.4
334
  - zict==3.0.0
335
  - zipp==3.18.1
 
1
+ name: mlip-arena
2
  channels:
3
  - defaults
4
  - conda-forge
 
15
  - libuuid=1.41.5=h5eee18b_0
16
  - ncurses=6.4=h6a678d5_0
17
  - openssl=3.0.13=h7f8727e_0
 
18
  - python=3.11.8=h955ad1f_0
19
  - readline=8.2=h5eee18b_0
20
  - setuptools=68.2.2=py311h06a4308_0
 
30
  - aioitertools==0.11.0
31
  - aiosignal==1.3.1
32
  - aiosqlite==0.20.0
33
+ - alabaster==0.7.16
34
  - alembic==1.13.1
35
  - alignn==2024.5.27
36
  - altair==5.3.0
 
38
  - anyio==3.7.1
39
  - appdirs==1.4.4
40
  - apprise==1.7.5
41
+ - argon2-cffi==23.1.0
42
+ - argon2-cffi-bindings==21.2.0
43
+ - arrow==1.3.0
44
  - ase==3.23.0
45
  - asgi-lifespan==2.1.0
46
  - asttokens==2.4.1
47
+ - async-lru==2.0.4
48
  - async-timeout==4.0.3
49
  - asyncpg==0.29.0
50
  - atomate2==0.0.14.post30+g256b39a1
51
  - attrs==23.2.0
52
  - autograd==1.5
53
+ - autopep8==2.3.1
54
  - autoray==0.6.9
55
+ - babel==2.15.0
56
  - bcrypt==4.1.2
57
+ - beautifulsoup4==4.12.3
58
  - bidict==0.23.1
59
+ - bleach==6.1.0
60
  - blinker==1.7.0
61
  - blosc2==2.7.0
62
+ - bokeh==2.4.3
63
+ - bokeh-sampledata==2024.2
64
  - boto3==1.34.74
65
  - botocore==1.34.74
66
+ - braceexpand==0.1.7
67
+ - cached-path==1.6.3
68
  - cachetools==5.3.3
69
+ - certifi==2024.8.30
70
  - cffi==1.16.0
71
  - charset-normalizer==3.3.2
72
+ - chgnet==0.4.0
73
  - click==8.1.7
74
  - cloudpickle==3.0.0
75
  - colorama==0.4.6
 
84
  - cython==3.0.10
85
  - dask==2024.3.1
86
  - dask-jobqueue==0.8.5
87
+ - datasets==2.21.0
88
  - dateparser==1.2.0
89
  - debugpy==1.8.1
90
  - decorator==5.1.1
91
+ - defusedxml==0.7.1
92
+ - deprecation==2.1.0
93
+ - dgl==2.4.0+cu121
94
+ - dglgo==0.0.2
95
+ - dill==0.3.8
96
  - distributed==2024.3.1
97
+ - dm-tree==0.1.8
98
  - dnspython==2.6.1
99
  - docker==6.1.3
100
  - docker-pycreds==0.4.0
101
+ - docutils==0.21.2
102
  - e3nn==0.5.1
103
  - email-validator==2.1.1
104
  - emmet-core==0.82.1
 
106
  - fairchem-core==1.0.0
107
  - fastapi==0.110.0
108
  - fastjsonschema==2.20.0
109
+ - filelock==3.16.1
110
  - fireworks==2.0.3
111
  - flake8==7.1.0
112
  - flask==3.0.2
113
  - flask-paginate==2024.3.28
114
  - fonttools==4.50.0
115
+ - fqdn==1.5.1
116
  - frozenlist==1.4.1
117
+ - fsspec==2024.9.0
118
  - furl==2.1.3
119
  - future==1.0.0
120
  - gitdb==4.0.11
121
  - gitpython==3.1.43
122
+ - google-api-core==2.19.2
123
  - google-auth==2.29.0
124
+ - google-cloud-core==2.4.1
125
+ - google-cloud-storage==2.18.2
126
+ - google-crc32c==1.6.0
127
+ - google-resumable-media==2.7.2
128
+ - googleapis-common-protos==1.65.0
129
  - gpaw==24.7.0b1
130
  - greenlet==3.0.3
131
  - griffe==0.42.1
 
140
  - httpx==0.27.0
141
  - huggingface-hub==0.22.2
142
  - hyperframe==6.0.1
143
+ - icalendar==5.0.13
144
+ - idna==3.10
145
+ - imagesize==1.4.1
146
  - importlib-metadata==7.1.0
147
  - importlib-resources==6.1.3
148
  - inflect==7.3.1
149
  - ipykernel==6.29.4
150
+ - ipyspeck==0.6.1
151
  - ipython==8.22.2
152
+ - ipywidgets==8.1.3
153
+ - isoduration==20.11.0
154
+ - isort==5.13.2
155
  - itsdangerous==2.1.2
156
  - jarvis-tools==2024.5.10
157
  - jedi==0.19.1
 
159
  - jmespath==1.0.1
160
  - jobflow==0.1.17
161
  - joblib==1.3.2
162
+ - json5==0.9.25
163
  - jsonpatch==1.33
164
  - jsonpointer==2.4
165
  - jsonschema==4.21.1
166
  - jsonschema-specifications==2023.12.1
167
  - jupyter-client==8.6.1
168
  - jupyter-core==5.7.2
169
+ - jupyter-events==0.10.0
170
+ - jupyter-lsp==2.2.5
171
+ - jupyter-packaging==0.12.3
172
+ - jupyter-server==2.14.2
173
+ - jupyter-server-terminals==0.5.3
174
+ - jupyterlab==4.2.3
175
+ - jupyterlab-pygments==0.3.0
176
+ - jupyterlab-server==2.27.2
177
+ - jupyterlab-widgets==3.0.11
178
+ - kaleido==0.2.1
179
  - kiwisolver==1.4.5
180
  - kubernetes==29.0.0
181
  - latexcodec==3.0.0
182
+ - lightning==2.3.3
183
  - lightning-utilities==0.11.2
184
+ - littleutils==0.2.4
185
  - llvmlite==0.42.0
186
  - lmdb==1.4.1
187
  - lmdbm==0.0.5
 
193
  - markdown==3.6
194
  - markdown-it-py==2.2.0
195
  - markupsafe==2.1.5
196
+ - matgl==1.1.2
197
  - matplotlib==3.8.3
198
  - matplotlib-inline==0.1.6
199
  - matscipy==1.0.0
200
  - mccabe==0.7.0
201
  - mdurl==0.1.2
202
+ - mistune==3.0.2
203
+ - mlip-arena==0.0.1a0
204
  - mongogrant==0.3.3
205
  - mongomock==4.1.2
206
+ - monty==2024.7.30
207
  - more-itertools==10.3.0
208
  - mp-api==0.41.2
209
  - mpire==2.10.1
210
  - mpmath==1.3.0
211
  - msgpack==1.0.8
212
  - multidict==6.0.5
213
+ - multiprocess==0.70.16
214
  - natsort==8.4.0
215
+ - nbclient==0.10.0
216
+ - nbconvert==7.16.4
217
  - nbformat==5.10.4
218
  - ndindex==1.8
219
  - nest-asyncio==1.6.0
220
  - networkx==3.3
221
+ - notebook==7.2.1
222
+ - notebook-shim==0.2.4
223
  - numba==0.59.1
224
  - numexpr==2.10.1
225
  - numpy==1.26.4
226
+ - numpydoc==1.7.0
227
  - nvidia-cublas-cu12==12.1.3.1
228
  - nvidia-cuda-cupti-cu12==12.1.105
229
  - nvidia-cuda-nvrtc-cu12==12.1.105
 
234
  - nvidia-cusolver-cu12==11.4.5.107
235
  - nvidia-cusparse-cu12==12.1.0.106
236
  - nvidia-ml-py3==7.352.0
237
+ - nvidia-nccl-cu12==2.20.5
238
+ - nvidia-nvjitlink-cu12==12.6.68
239
  - nvidia-nvtx-cu12==12.1.105
240
  - oauthlib==3.2.2
241
+ - ogb==1.3.6
242
  - opt-einsum==3.3.0
243
  - opt-einsum-fx==0.1.4
244
+ - orb-models==0.3.1
245
  - orderedmultidict==1.0.1
246
  - orjson==3.10.0
247
+ - outdated==0.2.2
248
+ - overrides==7.7.0
249
  - packaging==24.0
250
  - palettable==3.3.3
251
  - pandas==2.2.2
252
+ - pandocfilters==1.5.1
253
  - paramiko==3.4.0
254
  - parso==0.8.3
255
  - partd==1.4.1
256
  - pathspec==0.12.1
257
+ - patsy==0.5.6
258
  - pendulum==2.1.2
259
  - pennylane==0.32.0
260
  - pennylane-lightning==0.33.1
261
  - pexpect==4.9.0
262
  - pillow==10.2.0
263
+ - pip==24.2
264
  - platformdirs==4.2.0
265
  - plotly==5.20.0
266
  - plumed==2.9.0
267
  - prefect==2.16.8
268
  - prefect-dask==0.2.6
269
  - prettytable==3.10.0
270
+ - prometheus-client==0.20.0
271
  - prompt-toolkit==3.0.43
272
+ - proto-plus==1.24.0
273
  - protobuf==4.25.3
274
  - psutil==6.0.0
275
  - ptyprocess==0.7.0
276
  - pure-eval==0.2.2
277
  - py-cpuinfo==9.0.0
278
+ - py3dmol==2.0.0.post2
279
  - pyarrow==16.1.0
280
  - pyasn1==0.6.0
281
  - pyasn1-modules==0.4.0
 
290
  - pydocstyle==6.3.0
291
  - pyflakes==3.2.0
292
  - pygments==2.17.2
293
+ - pymatgen==2024.9.17.1
294
  - pymongo==4.6.3
295
  - pynacl==1.5.0
296
+ - pynanoflann==0.0.9
297
  - pyparsing==2.4.7
298
  - python-dateutil==2.9.0.post0
299
  - python-dotenv==1.0.1
300
  - python-engineio==4.9.0
301
  - python-graphviz==0.20.3
302
  - python-hostlist==1.23.0
303
+ - python-json-logger==2.0.7
304
  - python-multipart==0.0.9
305
  - python-slugify==8.0.4
306
  - python-socketio==5.11.2
 
309
  - pytzdata==2020.1
310
  - pyyaml==6.0.1
311
  - pyzmq==25.1.2
312
+ - rdkit-pypi==2022.9.5
313
  - readchar==4.0.6
314
  - referencing==0.34.0
315
  - regex==2023.12.25
316
  - requests==2.32.3
317
  - requests-oauthlib==2.0.0
318
  - rfc3339-validator==0.1.4
319
+ - rfc3986-validator==0.1.1
320
  - rich==13.3.5
321
  - rpds-py==0.18.0
322
  - rsa==4.9
 
325
  - rustworkx==0.14.2
326
  - s3transfer==0.10.1
327
  - safetensors==0.4.2
328
+ - scikit-learn==1.5.2
329
+ - scipy==1.14.1
330
  - semantic-version==2.10.0
331
+ - send2trash==1.8.3
332
  - sentinels==1.0.0
333
  - sentry-sdk==2.7.1
334
  - setproctitle==1.3.3
335
+ - sevenn==0.9.3.post1
336
  - shellingham==1.5.4
337
  - simple-websocket==1.0.0
338
  - simplejson==3.19.2
 
342
  - sniffio==1.3.1
343
  - snowballstemmer==2.2.0
344
  - sortedcontainers==2.4.0
345
+ - soupsieve==2.5
346
+ - spglib==2.5.0
347
+ - sphinx==7.4.7
348
+ - sphinxcontrib-applehelp==1.0.8
349
+ - sphinxcontrib-devhelp==1.0.6
350
+ - sphinxcontrib-htmlhelp==2.0.6
351
+ - sphinxcontrib-jsmath==1.0.1
352
+ - sphinxcontrib-qthelp==1.0.8
353
+ - sphinxcontrib-serializinghtml==1.1.10
354
  - sqlalchemy==1.4.52
355
  - sqlalchemy-utils==0.41.2
356
  - sshtunnel==0.4.0
357
  - stack-data==0.6.3
358
  - starlette==0.36.3
359
+ - statsmodels==0.14.2
360
+ - stmol==0.0.9
361
  - streamlit==1.36.0
362
  - submitit==1.5.1
363
+ - sympy==1.13.3
364
  - tables==3.9.2
365
  - tabulate==0.9.0
366
  - tblib==3.0.0
367
  - tenacity==8.2.3
368
  - tensorboard==2.17.0
369
  - tensorboard-data-server==0.7.2
370
+ - terminado==0.18.1
371
  - text-unidecode==1.3
372
  - threadpoolctl==3.4.0
373
+ - tinycss2==1.3.0
374
  - toml==0.10.2
375
+ - tomlkit==0.13.0
376
  - toolz==0.12.1
377
+ - torch==2.3.1
378
  - torch-dftd==0.4.0
379
  - torch-ema==0.3
380
  - torch-geometric==2.5.2
381
  - torch-scatter==2.1.2+pt22cu121
382
  - torch-sparse==0.6.18+pt22cu121
383
+ - torchdata==0.8.0
384
  - torchmetrics==1.3.2
385
  - tornado==6.4
386
+ - tqdm==4.66.5
387
  - trainstation==1.0
388
  - traitlets==5.14.2
389
+ - triton==2.3.1
390
  - typeguard==4.3.0
391
  - typer==0.12.0
392
  - typer-cli==0.12.0
393
  - typer-slim==0.12.0
394
+ - types-python-dateutil==2.9.0.20240316
395
  - typing-extensions==4.12.2
396
  - tzdata==2024.1
397
  - tzlocal==5.2
398
  - ujson==5.9.0
399
  - uncertainties==3.1.7
400
+ - uri-template==1.3.0
401
+ - urllib3==2.2.3
402
  - uvicorn==0.18.3
403
  - uvloop==0.19.0
404
  - wandb==0.17.4
405
  - watchdog==4.0.0
406
  - watchfiles==0.21.0
407
  - wcwidth==0.2.13
408
+ - webcolors==24.6.0
409
+ - webencodings==0.5.1
410
  - websocket-client==1.7.0
411
  - websockets==12.0
412
  - werkzeug==3.0.1
413
+ - widgetsnbextension==4.0.11
414
  - wrapt==1.16.0
415
  - wsproto==1.2.0
416
  - xmltodict==0.13.0
417
+ - xxhash==3.5.0
418
+ - xyzservices==2024.6.0
419
  - yarl==1.9.4
420
  - zict==3.0.0
421
  - zipp==3.18.1
mlip_arena/models/externals.py CHANGED
@@ -1,8 +1,11 @@
 
 
1
  import os
2
- import urllib
3
  from typing import Literal
4
 
5
  import matgl
 
6
  import torch
7
  from alignn.ff.ff import AlignnAtomwiseCalculator, get_figshare_model_ff
8
  from ase import Atoms
@@ -52,26 +55,28 @@ def get_freer_device() -> torch.device:
52
 
53
 
54
  class MACE_MP_Medium(MACECalculator):
55
- def __init__(self, device=None, default_dtype="float32", **kwargs):
56
- checkpoint_url = "http://tinyurl.com/5yyxdm76"
57
- cache_dir = os.path.expanduser("~/.cache/mace")
 
 
 
 
 
58
  checkpoint_url_name = "".join(
59
- c for c in os.path.basename(checkpoint_url) if c.isalnum() or c in "_"
60
  )
61
  cached_model_path = f"{cache_dir}/{checkpoint_url_name}"
62
  if not os.path.isfile(cached_model_path):
 
 
63
  os.makedirs(cache_dir, exist_ok=True)
64
- # download and save to disk
65
- print(f"Downloading MACE model from {checkpoint_url!r}")
66
- _, http_msg = urllib.request.urlretrieve(checkpoint_url, cached_model_path)
67
  if "Content-Type: text/html" in http_msg:
68
  raise RuntimeError(
69
- f"Model download failed, please check the URL {checkpoint_url}"
70
  )
71
- print(f"Cached MACE model to {cached_model_path}")
72
  model = cached_model_path
73
- msg = f"Using Materials Project MACE for MACECalculator with {model}"
74
- print(msg)
75
 
76
  device = device or str(get_freer_device())
77
 
@@ -80,27 +85,30 @@ class MACE_MP_Medium(MACECalculator):
80
  )
81
 
82
 
 
83
  class MACE_OFF_Medium(MACECalculator):
84
- def __init__(self, device=None, default_dtype="float32", **kwargs):
85
- checkpoint_url = "https://github.com/ACEsuit/mace-off/raw/main/mace_off23/MACE-OFF23_medium.model?raw=true"
86
- cache_dir = os.path.expanduser("~/.cache/mace")
 
 
 
 
 
87
  checkpoint_url_name = "".join(
88
- c for c in os.path.basename(checkpoint_url) if c.isalnum() or c in "_"
89
  )
90
  cached_model_path = f"{cache_dir}/{checkpoint_url_name}"
91
  if not os.path.isfile(cached_model_path):
 
 
92
  os.makedirs(cache_dir, exist_ok=True)
93
- # download and save to disk
94
- print(f"Downloading MACE model from {checkpoint_url!r}")
95
- _, http_msg = urllib.request.urlretrieve(checkpoint_url, cached_model_path)
96
  if "Content-Type: text/html" in http_msg:
97
  raise RuntimeError(
98
- f"Model download failed, please check the URL {checkpoint_url}"
99
  )
100
- print(f"Cached MACE model to {cached_model_path}")
101
  model = cached_model_path
102
- msg = f"Using Materials Project MACE for MACECalculator with {model}"
103
- print(msg)
104
 
105
  device = device or str(get_freer_device())
106
 
@@ -112,15 +120,15 @@ class MACE_OFF_Medium(MACECalculator):
112
  class CHGNet(CHGNetCalculator):
113
  def __init__(
114
  self,
115
- model: CHGNetModel | None = None,
116
- use_device: str | None = None,
117
  stress_weight: float | None = 1 / 160.21766208,
118
  on_isolated_atoms: Literal["ignore", "warn", "error"] = "warn",
119
  **kwargs,
120
  ) -> None:
121
- use_device = use_device or str(get_freer_device())
122
  super().__init__(
123
- model=model,
124
  use_device=use_device,
125
  stress_weight=stress_weight,
126
  on_isolated_atoms=on_isolated_atoms,
@@ -142,28 +150,31 @@ class CHGNet(CHGNetCalculator):
142
  class M3GNet(PESCalculator):
143
  def __init__(
144
  self,
 
 
145
  state_attr: torch.Tensor | None = None,
146
  stress_weight: float = 1.0,
147
  **kwargs,
148
  ) -> None:
149
- potential = matgl.load_model("M3GNet-MP-2021.2.8-PES")
150
  super().__init__(potential, state_attr, stress_weight, **kwargs)
151
 
152
 
153
  class EquiformerV2(OCPCalculator):
154
  def __init__(
155
  self,
156
- model_name="EquiformerV2-lE4-lF100-S2EFS-OC22",
 
157
  local_cache="/tmp/ocp/",
158
  cpu=False,
159
  seed=0,
160
  **kwargs,
161
  ) -> None:
162
  super().__init__(
163
- model_name=model_name,
164
  local_cache=local_cache,
165
  cpu=cpu,
166
- seed=0,
167
  **kwargs,
168
  )
169
 
@@ -178,17 +189,18 @@ class EquiformerV2(OCPCalculator):
178
  class EquiformerV2OC20(OCPCalculator):
179
  def __init__(
180
  self,
181
- model_name="EquiformerV2-31M-S2EF-OC20-All+MD",
 
182
  local_cache="/tmp/ocp/",
183
  cpu=False,
184
  seed=0,
185
  **kwargs,
186
  ) -> None:
187
  super().__init__(
188
- model_name=model_name,
189
  local_cache=local_cache,
190
  cpu=cpu,
191
- seed=0,
192
  **kwargs,
193
  )
194
 
@@ -196,17 +208,18 @@ class EquiformerV2OC20(OCPCalculator):
196
  class eSCN(OCPCalculator):
197
  def __init__(
198
  self,
199
- model_name="eSCN-L6-M3-Lay20-S2EF-OC20-All+MD",
 
200
  local_cache="/tmp/ocp/",
201
  cpu=False,
202
  seed=0,
203
  **kwargs,
204
  ) -> None:
205
  super().__init__(
206
- model_name=model_name,
207
  local_cache=local_cache,
208
  cpu=cpu,
209
- seed=0,
210
  **kwargs,
211
  )
212
 
@@ -219,20 +232,50 @@ class eSCN(OCPCalculator):
219
 
220
 
221
  class ALIGNN(AlignnAtomwiseCalculator):
222
- def __init__(self, dir_path: str = "/tmp/alignn/", device=None, **kwargs) -> None:
 
223
  _ = get_figshare_model_ff(dir_path=dir_path)
224
  device = device or get_freer_device()
225
  super().__init__(path=dir_path, device=device, **kwargs)
226
 
227
 
228
  class SevenNet(SevenNetCalculator):
229
- def __init__(self, device=None, **kwargs):
 
 
 
 
 
230
  device = device or get_freer_device()
231
- super().__init__("7net-0", device=device, **kwargs)
232
 
233
 
234
  class ORB(ORBCalculator):
235
- def __init__(self, device=None, **kwargs):
 
 
 
 
 
236
  device = device or get_freer_device()
237
- orbff = pretrained.orb_v1(device=device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238
  super().__init__(orbff, device=device, **kwargs)
 
1
+ from __future__ import annotations
2
+
3
  import os
4
+ from pathlib import Path
5
  from typing import Literal
6
 
7
  import matgl
8
+ import requests
9
  import torch
10
  from alignn.ff.ff import AlignnAtomwiseCalculator, get_figshare_model_ff
11
  from ase import Atoms
 
55
 
56
 
57
  class MACE_MP_Medium(MACECalculator):
58
+ def __init__(
59
+ self,
60
+ checkpoint="http://tinyurl.com/5yyxdm76",
61
+ device: str | None = None,
62
+ default_dtype="float32",
63
+ **kwargs,
64
+ ):
65
+ cache_dir = Path.home() / ".cache" / "mace"
66
  checkpoint_url_name = "".join(
67
+ c for c in os.path.basename(checkpoint) if c.isalnum() or c in "_"
68
  )
69
  cached_model_path = f"{cache_dir}/{checkpoint_url_name}"
70
  if not os.path.isfile(cached_model_path):
71
+ import urllib
72
+
73
  os.makedirs(cache_dir, exist_ok=True)
74
+ _, http_msg = urllib.request.urlretrieve(checkpoint, cached_model_path)
 
 
75
  if "Content-Type: text/html" in http_msg:
76
  raise RuntimeError(
77
+ f"Model download failed, please check the URL {checkpoint}"
78
  )
 
79
  model = cached_model_path
 
 
80
 
81
  device = device or str(get_freer_device())
82
 
 
85
  )
86
 
87
 
88
+ # TODO: could share the same class with MACE_MP_Medium
89
  class MACE_OFF_Medium(MACECalculator):
90
+ def __init__(
91
+ self,
92
+ checkpoint="https://github.com/ACEsuit/mace-off/raw/main/mace_off23/MACE-OFF23_medium.model?raw=true",
93
+ device: str | None = None,
94
+ default_dtype="float32",
95
+ **kwargs,
96
+ ):
97
+ cache_dir = Path.home() / ".cache" / "mace"
98
  checkpoint_url_name = "".join(
99
+ c for c in os.path.basename(checkpoint) if c.isalnum() or c in "_"
100
  )
101
  cached_model_path = f"{cache_dir}/{checkpoint_url_name}"
102
  if not os.path.isfile(cached_model_path):
103
+ import urllib
104
+
105
  os.makedirs(cache_dir, exist_ok=True)
106
+ _, http_msg = urllib.request.urlretrieve(checkpoint, cached_model_path)
 
 
107
  if "Content-Type: text/html" in http_msg:
108
  raise RuntimeError(
109
+ f"Model download failed, please check the URL {checkpoint}"
110
  )
 
111
  model = cached_model_path
 
 
112
 
113
  device = device or str(get_freer_device())
114
 
 
120
  class CHGNet(CHGNetCalculator):
121
  def __init__(
122
  self,
123
+ checkpoint: CHGNetModel | None = None, # TODO: specifiy version
124
+ device: str | None = None,
125
  stress_weight: float | None = 1 / 160.21766208,
126
  on_isolated_atoms: Literal["ignore", "warn", "error"] = "warn",
127
  **kwargs,
128
  ) -> None:
129
+ use_device = device or str(get_freer_device())
130
  super().__init__(
131
+ model=checkpoint,
132
  use_device=use_device,
133
  stress_weight=stress_weight,
134
  on_isolated_atoms=on_isolated_atoms,
 
150
  class M3GNet(PESCalculator):
151
  def __init__(
152
  self,
153
+ checkpoint="M3GNet-MP-2021.2.8-PES",
154
+ # TODO: cannot assign device
155
  state_attr: torch.Tensor | None = None,
156
  stress_weight: float = 1.0,
157
  **kwargs,
158
  ) -> None:
159
+ potential = matgl.load_model(checkpoint)
160
  super().__init__(potential, state_attr, stress_weight, **kwargs)
161
 
162
 
163
  class EquiformerV2(OCPCalculator):
164
  def __init__(
165
  self,
166
+ checkpoint="EquiformerV2-lE4-lF100-S2EFS-OC22", # TODO: import from registry
167
+ # TODO: cannot assign device
168
  local_cache="/tmp/ocp/",
169
  cpu=False,
170
  seed=0,
171
  **kwargs,
172
  ) -> None:
173
  super().__init__(
174
+ model_name=checkpoint,
175
  local_cache=local_cache,
176
  cpu=cpu,
177
+ seed=seed,
178
  **kwargs,
179
  )
180
 
 
189
  class EquiformerV2OC20(OCPCalculator):
190
  def __init__(
191
  self,
192
+ checkpoint="EquiformerV2-31M-S2EF-OC20-All+MD", # TODO: import from registry
193
+ # TODO: cannot assign device
194
  local_cache="/tmp/ocp/",
195
  cpu=False,
196
  seed=0,
197
  **kwargs,
198
  ) -> None:
199
  super().__init__(
200
+ model_name=checkpoint,
201
  local_cache=local_cache,
202
  cpu=cpu,
203
+ seed=seed,
204
  **kwargs,
205
  )
206
 
 
208
  class eSCN(OCPCalculator):
209
  def __init__(
210
  self,
211
+ checkpoint="eSCN-L6-M3-Lay20-S2EF-OC20-All+MD", # TODO: import from registry
212
+ # TODO: cannot assign device
213
  local_cache="/tmp/ocp/",
214
  cpu=False,
215
  seed=0,
216
  **kwargs,
217
  ) -> None:
218
  super().__init__(
219
+ model_name=checkpoint,
220
  local_cache=local_cache,
221
  cpu=cpu,
222
+ seed=seed,
223
  **kwargs,
224
  )
225
 
 
232
 
233
 
234
  class ALIGNN(AlignnAtomwiseCalculator):
235
+ def __init__(self, device=None, dir_path: str = "/tmp/alignn/", **kwargs) -> None:
236
+ # TODO: cannot control version
237
  _ = get_figshare_model_ff(dir_path=dir_path)
238
  device = device or get_freer_device()
239
  super().__init__(path=dir_path, device=device, **kwargs)
240
 
241
 
242
  class SevenNet(SevenNetCalculator):
243
+ def __init__(
244
+ self,
245
+ checkpoint="7net-0", # TODO: import from registry
246
+ device=None,
247
+ **kwargs,
248
+ ):
249
  device = device or get_freer_device()
250
+ super().__init__(checkpoint, device=device, **kwargs)
251
 
252
 
253
  class ORB(ORBCalculator):
254
+ def __init__(
255
+ self,
256
+ checkpoint="orbff-v1-20240827.ckpt",
257
+ device=None,
258
+ **kwargs,
259
+ ):
260
  device = device or get_freer_device()
261
+
262
+ cache_dir = Path.home() / ".cache" / "orb"
263
+ cache_dir.mkdir(parents=True, exist_ok=True)
264
+ ckpt_path = cache_dir / "orbff-v1-20240827.ckpt"
265
+
266
+ url = f"https://storage.googleapis.com/orbitalmaterials-public-models/forcefields/{checkpoint}"
267
+
268
+ if not ckpt_path.exists():
269
+ print(f"Downloading ORB model from {url} to {ckpt_path}...")
270
+ try:
271
+ response = requests.get(url, stream=True, timeout=120)
272
+ response.raise_for_status()
273
+ with open(ckpt_path, "wb") as f:
274
+ for chunk in response.iter_content(chunk_size=8192):
275
+ f.write(chunk)
276
+ print("Download completed.")
277
+ except requests.exceptions.RequestException as e:
278
+ raise RuntimeError("Failed to download ORB model.") from e
279
+
280
+ orbff = pretrained.orb_v1(weights_path=ckpt_path, device=device)
281
  super().__init__(orbff, device=device, **kwargs)
mlip_arena/models/registry.yaml CHANGED
@@ -27,7 +27,7 @@ CHGNet:
27
  module: externals
28
  class: CHGNet
29
  family: chgnet
30
- package: chgnet==0.3.5
31
  checkpoint:
32
  username: cyrusyc
33
  last-update: 2024-07-08T00:00:00
@@ -66,6 +66,54 @@ M3GNet:
66
  nvt: true
67
  npt: true
68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  EquiformerV2(OC22):
70
  module: externals
71
  class: EquiformerV2
@@ -169,52 +217,4 @@ ALIGNN:
169
  npt: true
170
  github: https://github.com/usnistgov/alignn
171
  doi: https://doi.org/10.1038/s41524-021-00650-1
172
- date: 2021-11-15
173
-
174
- SevenNet:
175
- module: externals
176
- class: SevenNet
177
- family: sevennet
178
- package: sevenn==0.9.4
179
- checkpoint: 7net-0
180
- username: cyrusyc
181
- last-update: 2024-03-25T14:30:00
182
- datetime: 2024-03-25T14:30:00 # TODO: Fake datetime
183
- datasets:
184
- - atomind/mptrj # TODO: fake HF dataset repo
185
- cpu-tasks:
186
- - alexandria
187
- - qmof
188
- gpu-tasks:
189
- - homonuclear-diatomics
190
- - combustion
191
- github: https://github.com/MDIL-SNU/SevenNet
192
- doi: https://doi.org/10.1021/acs.jctc.4c00190
193
- date: 2024-07-11
194
- prediction: EFS
195
- nvt: true
196
- npt: true
197
-
198
- ORB:
199
- module: externals
200
- class: ORB
201
- family: orb
202
- package: orb-models==0.3.1
203
- checkpoint: orb_v1
204
- username: cyrusyc
205
- last-update: 2024-03-25T14:30:00
206
- datetime: 2024-03-25T14:30:00 # TODO: Fake datetime
207
- datasets:
208
- - atomind/mptrj # TODO: fake HF dataset repo
209
- - atomind/alexandria
210
- cpu-tasks:
211
- - alexandria
212
- - qmof
213
- gpu-tasks:
214
- - homonuclear-diatomics
215
- github: https://github.com/orbital-materials/orb-models
216
- doi:
217
- date: 2024-09-03
218
- prediction: EFS
219
- nvt: true
220
- npt: true
 
27
  module: externals
28
  class: CHGNet
29
  family: chgnet
30
+ package: chgnet==0.3.8
31
  checkpoint:
32
  username: cyrusyc
33
  last-update: 2024-07-08T00:00:00
 
66
  nvt: true
67
  npt: true
68
 
69
+ ORB:
70
+ module: externals
71
+ class: ORB
72
+ family: orb
73
+ package: orb-models==0.3.1
74
+ checkpoint: orbff-v1-20240827.ckpt
75
+ username: cyrusyc
76
+ last-update: 2024-03-25T14:30:00
77
+ datetime: 2024-03-25T14:30:00 # TODO: Fake datetime
78
+ datasets:
79
+ - atomind/mptrj # TODO: fake HF dataset repo
80
+ - atomind/alexandria
81
+ cpu-tasks:
82
+ - alexandria
83
+ - qmof
84
+ gpu-tasks:
85
+ - homonuclear-diatomics
86
+ github: https://github.com/orbital-materials/orb-models
87
+ doi:
88
+ date: 2024-09-03
89
+ prediction: EFS
90
+ nvt: true
91
+ npt: true
92
+
93
+ SevenNet:
94
+ module: externals
95
+ class: SevenNet
96
+ family: sevennet
97
+ package: sevenn==0.9.4
98
+ checkpoint: 7net-0
99
+ username: cyrusyc
100
+ last-update: 2024-03-25T14:30:00
101
+ datetime: 2024-03-25T14:30:00 # TODO: Fake datetime
102
+ datasets:
103
+ - atomind/mptrj # TODO: fake HF dataset repo
104
+ cpu-tasks:
105
+ - alexandria
106
+ - qmof
107
+ gpu-tasks:
108
+ - homonuclear-diatomics
109
+ - combustion
110
+ github: https://github.com/MDIL-SNU/SevenNet
111
+ doi: https://doi.org/10.1021/acs.jctc.4c00190
112
+ date: 2024-07-11
113
+ prediction: EFS
114
+ nvt: true
115
+ npt: true
116
+
117
  EquiformerV2(OC22):
118
  module: externals
119
  class: EquiformerV2
 
217
  npt: true
218
  github: https://github.com/usnistgov/alignn
219
  doi: https://doi.org/10.1038/s41524-021-00650-1
220
+ date: 2021-11-15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mlip_arena/tasks/combustion/H256O128.extxyz ADDED
@@ -0,0 +1,386 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 384
2
+ Lattice="30.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 30.0" Properties=species:S:1:pos:R:3 Built=T with=T Packmol=T pbc="T T T"
3
+ H 6.71669500 27.40330700 13.68784000
4
+ H 6.56413900 26.94187400 13.13356600
5
+ H 4.01874500 24.54731500 2.42614400
6
+ H 4.06326800 24.60306800 1.69243900
7
+ H 19.81990800 11.97306900 11.66638000
8
+ H 19.80020800 12.70644500 11.59436300
9
+ H 28.98607000 12.86336400 12.19767400
10
+ H 29.00971400 12.88360500 12.93418200
11
+ H 10.37632500 7.60336700 9.09607600
12
+ H 10.09412100 7.01607100 9.44083300
13
+ H 10.21969400 27.00047900 10.37176700
14
+ H 9.56226800 26.66727600 10.35833100
15
+ H 3.51642300 4.64618300 13.26100400
16
+ H 3.19087000 4.01330300 13.06893100
17
+ H 17.07272200 26.43633800 3.97721600
18
+ H 17.76156200 26.60077000 4.18185100
19
+ H 3.58254200 8.40601100 1.85885100
20
+ H 3.32028600 8.99119200 1.49526000
21
+ H 20.93526200 14.99894700 19.94272400
22
+ H 20.92651600 14.99223100 20.67980700
23
+ H 26.78606500 14.69290300 18.64689300
24
+ H 26.43088200 14.16219600 19.01514500
25
+ H 23.31077000 25.02192200 25.42458800
26
+ H 23.23137700 24.98837100 26.15669800
27
+ H 4.23870900 22.06352800 2.24193700
28
+ H 4.13605700 21.89474500 2.95214000
29
+ H 17.19183000 13.50635300 20.97020900
30
+ H 17.33285700 13.55720300 20.24844800
31
+ H 11.40128700 21.01758100 13.20015300
32
+ H 11.23939200 21.24064200 13.88385500
33
+ H 8.08553400 17.35614800 4.83985100
34
+ H 7.85698800 18.00868300 4.58416100
35
+ H 18.23851700 17.87971000 18.64072400
36
+ H 18.18586700 17.93400600 19.37400000
37
+ H 7.67448900 9.27045600 9.58857400
38
+ H 8.38197500 9.28217700 9.38183700
39
+ H 22.81810900 7.01891100 11.62916000
40
+ H 23.02343500 6.88860700 10.93326000
41
+ H 7.00678500 28.41965000 16.15063200
42
+ H 6.61194800 29.00429800 16.36441700
43
+ H 10.22790300 12.62515700 19.02217900
44
+ H 10.06283300 12.03600000 19.43334700
45
+ H 5.67633000 19.26890500 3.09689400
46
+ H 6.16859600 19.35120500 3.63940200
47
+ H 7.83689900 28.57325000 6.00799800
48
+ H 8.20904000 29.01838100 5.55326500
49
+ H 24.24356500 1.95484800 23.83583200
50
+ H 24.33048700 1.23652000 23.97677000
51
+ H 8.15609200 12.56884200 2.83826200
52
+ H 8.47473700 12.51613700 2.17561500
53
+ H 1.98944400 22.63517100 9.38706600
54
+ H 1.99816600 22.52032700 8.65895300
55
+ H 3.21198500 13.34481400 26.27085600
56
+ H 2.83315800 12.78596400 26.56681200
57
+ H 23.13687400 14.90616700 17.31808300
58
+ H 23.60063200 15.47147100 17.41174900
59
+ H 24.37760200 23.67694500 6.16965600
60
+ H 24.26969800 23.54491000 5.45248300
61
+ H 12.12534300 0.92505100 5.56915800
62
+ H 12.59580200 1.08149500 6.11469100
63
+ H 14.77057800 23.04450600 14.78597800
64
+ H 14.88153400 22.32226700 14.88331100
65
+ H 10.12077400 6.02995200 19.27346700
66
+ H 10.56701000 5.58085700 19.65109300
67
+ H 8.88571400 26.92992500 13.97009200
68
+ H 9.13262800 27.42418800 13.48208400
69
+ H 13.61412900 25.32932600 5.89573200
70
+ H 14.17465000 25.02676400 5.52467300
71
+ H 17.25064000 9.39374700 16.24924400
72
+ H 17.23228900 9.42911200 16.98533300
73
+ H 12.66108800 13.49816800 7.35969900
74
+ H 12.75204000 13.66251500 6.64686500
75
+ H 19.85540500 12.40447200 18.67913500
76
+ H 19.87736300 13.08567100 18.39824500
77
+ H 21.16039700 14.54404800 12.22178400
78
+ H 20.77918300 14.69154600 11.60832300
79
+ H 1.89709500 13.01516500 11.87415000
80
+ H 1.61578300 12.78775700 11.23183900
81
+ H 22.48727800 20.55335700 26.81374300
82
+ H 22.08316200 19.93770500 26.84656000
83
+ H 18.09641200 11.03175000 20.02888200
84
+ H 18.08987100 11.14550300 19.30057500
85
+ H 9.03487100 28.27705600 17.67592300
86
+ H 9.02850300 28.47186100 18.38685500
87
+ H 21.61332100 18.16863300 14.82530000
88
+ H 20.91922800 18.33149900 15.01271300
89
+ H 5.06777300 6.91012100 12.14248900
90
+ H 5.14167800 7.53010400 12.53437400
91
+ H 15.24240300 1.00156500 8.79894400
92
+ H 15.15041500 1.70061000 8.58379800
93
+ H 7.38156900 16.75420300 20.84490000
94
+ H 7.49809200 17.42858000 20.57094300
95
+ H 5.80395600 5.23791900 23.23164500
96
+ H 5.59378400 5.32074900 23.93334300
97
+ H 25.86193300 21.36196900 25.55815300
98
+ H 26.43947000 21.14184700 25.15639300
99
+ H 15.99876300 19.78997000 1.87456100
100
+ H 15.41808700 19.79298200 2.32867600
101
+ H 13.76283200 27.95478100 8.97671100
102
+ H 13.72689900 27.99668400 8.24161500
103
+ H 3.90503500 26.10922400 10.77631300
104
+ H 3.36520200 25.83210000 11.19487700
105
+ H 3.70175700 2.02893500 10.84822800
106
+ H 3.98998200 2.68818200 11.00864200
107
+ H 19.61345400 10.74535100 22.22723700
108
+ H 19.65167500 10.72936900 22.96323800
109
+ H 21.15335200 11.20594200 26.99475000
110
+ H 21.53029400 10.81346000 27.49202900
111
+ H 20.09434500 6.25424400 17.87873800
112
+ H 20.01076700 6.21479100 18.61008800
113
+ H 3.69537200 12.39851000 8.93646700
114
+ H 4.09765200 11.81750500 9.14627000
115
+ H 22.83093000 16.73250700 24.19709400
116
+ H 23.31256100 17.17900100 23.86229600
117
+ H 3.36198000 12.89766000 23.38943200
118
+ H 3.45885500 13.00681500 24.11200700
119
+ H 2.04611800 15.71757800 8.59329600
120
+ H 1.43234600 15.77875600 8.18961900
121
+ H 6.12945900 15.14026700 20.02887800
122
+ H 6.02278200 14.57365100 20.48820400
123
+ H 5.08911400 27.18139700 2.77337500
124
+ H 5.06662100 27.18501900 3.51018800
125
+ H 14.70758200 4.01177700 13.31696800
126
+ H 14.89664300 4.24570600 12.64395500
127
+ H 3.65814300 29.03356400 14.88286700
128
+ H 3.73378000 28.95725100 14.15357400
129
+ H 16.99951200 11.42586000 13.86881500
130
+ H 17.03417100 11.12538100 13.19656200
131
+ H 2.06797500 18.08136200 13.54583400
132
+ H 1.48136600 18.09474000 13.99206700
133
+ H 14.60250500 7.57683000 5.97130200
134
+ H 15.33793200 7.61271900 6.00698800
135
+ H 26.83711700 3.23048000 3.03884500
136
+ H 26.55008700 3.90471800 3.11903900
137
+ H 22.99777600 19.34731400 20.31560600
138
+ H 22.45982800 19.77772100 20.57785400
139
+ H 16.41966600 2.80599400 11.89128000
140
+ H 16.56901900 2.08412200 11.88831400
141
+ H 11.73017700 14.43811800 22.41741700
142
+ H 11.12423500 14.82954800 22.56917700
143
+ H 17.38249100 23.87139500 12.76358200
144
+ H 17.38350900 23.82842900 12.02767000
145
+ H 1.00061100 21.01224200 1.31470000
146
+ H 1.44321900 21.03360900 1.90381400
147
+ H 8.09004900 6.72936800 0.99999800
148
+ H 8.19345600 7.35764200 1.37147100
149
+ H 3.89822700 15.37766400 9.73104000
150
+ H 4.54288400 15.70539800 9.87394700
151
+ H 22.22552500 28.69576500 19.77030500
152
+ H 21.65346500 29.00000300 19.41873800
153
+ H 4.65573400 15.45943800 27.22827700
154
+ H 5.35397400 15.56981400 27.43730400
155
+ H 12.98406500 8.83317400 11.91500600
156
+ H 12.47937800 9.06790600 11.43167900
157
+ H 21.24968700 1.72985200 23.51877400
158
+ H 21.91940400 2.02865000 23.44385400
159
+ H 11.59386400 22.25408800 27.15665400
160
+ H 11.73855200 21.54498900 27.29686000
161
+ H 21.77510800 4.83204700 19.45360300
162
+ H 21.74760500 4.86959100 18.71790800
163
+ H 28.68304100 9.21677300 24.30293500
164
+ H 28.79634600 9.49180700 23.62844900
165
+ H 18.79159300 1.71351500 2.69284300
166
+ H 18.77465700 2.18174600 3.26195300
167
+ H 19.17586000 13.02896000 14.86997500
168
+ H 19.71644200 13.51755200 14.75833800
169
+ H 6.02966400 25.52593900 10.73507600
170
+ H 5.80325300 25.22399900 10.10184400
171
+ H 7.38506300 1.43983700 15.49859600
172
+ H 6.79506700 1.06865500 15.73847300
173
+ H 27.58382000 24.42158300 19.38106600
174
+ H 27.42251200 25.04349100 19.01964600
175
+ H 9.93092500 22.73321600 10.93929900
176
+ H 10.22059100 22.24094300 11.40531900
177
+ H 15.50084100 11.06308800 6.45439200
178
+ H 15.87813400 11.34578600 5.88769500
179
+ H 16.10016600 28.54356000 2.40068100
180
+ H 16.19875700 27.92618400 2.01011700
181
+ H 17.12622300 9.66589700 8.78315600
182
+ H 16.48701000 9.96416700 8.99729500
183
+ H 25.00042100 21.05189700 28.69399300
184
+ H 25.35829500 20.90402200 28.06671900
185
+ H 11.72392500 14.35901600 14.78824400
186
+ H 11.48529200 14.43413500 14.09482800
187
+ H 27.80088200 28.99951400 23.03485400
188
+ H 27.35755700 28.41175300 23.07244700
189
+ H 2.81120100 21.97327000 6.33202600
190
+ H 3.02278700 22.64853600 6.53857400
191
+ H 11.16091600 21.16245100 20.56587100
192
+ H 10.97600400 21.57060200 19.98052200
193
+ H 25.63314200 8.24689800 11.42146200
194
+ H 25.84695500 7.98978900 10.76450500
195
+ H 5.21035300 25.88590800 28.03985400
196
+ H 4.61973200 25.44924700 28.10235800
197
+ H 14.83558600 10.14445700 28.76566400
198
+ H 14.45468700 10.77548600 28.75415200
199
+ H 24.19325000 21.19802200 21.61625300
200
+ H 24.60150400 21.42553100 22.18632500
201
+ H 3.38383900 29.00000600 6.51473400
202
+ H 3.38610800 28.83091700 7.23224200
203
+ H 17.13203800 26.72357300 21.49248700
204
+ H 17.08711600 27.41871500 21.25129500
205
+ H 21.43007400 22.30567900 19.46406700
206
+ H 20.99498700 21.73213800 19.30543700
207
+ H 19.31644700 11.15485400 16.07821400
208
+ H 19.68199100 11.18838700 16.71748400
209
+ H 10.93924200 5.99489900 26.27955500
210
+ H 10.41495800 5.47711900 26.30060500
211
+ H 14.95008000 15.52212300 7.01442400
212
+ H 14.72471900 15.69369600 7.69500400
213
+ H 18.99727600 22.68120300 25.90377400
214
+ H 19.40957700 23.25149200 25.68424600
215
+ H 8.88447900 1.79024300 17.17555900
216
+ H 8.86324600 1.77770600 17.91231200
217
+ H 12.15121200 1.54535800 11.42100700
218
+ H 11.71339400 1.67546500 11.99962700
219
+ H 2.22952700 10.78313900 28.21835700
220
+ H 2.22169400 10.63858800 27.49554500
221
+ H 4.71118900 24.88843500 6.95444600
222
+ H 4.75449800 25.06231100 6.23939000
223
+ H 1.28060100 1.44032300 19.29701200
224
+ H 1.83528100 1.36120500 18.81796700
225
+ H 12.45357900 9.77922200 25.48060700
226
+ H 11.74916000 9.99016300 25.53267400
227
+ H 8.23385400 11.13248500 18.56147300
228
+ H 8.05531600 10.83169400 19.21036700
229
+ H 24.48638300 19.81957100 23.69282200
230
+ H 25.13594000 19.58627200 23.95178100
231
+ H 26.70376200 9.82401100 27.55103500
232
+ H 26.90704500 9.33315600 28.06206400
233
+ H 8.00838700 4.22559800 18.28897400
234
+ H 8.42532000 3.95184600 17.74616600
235
+ H 14.94452000 3.51127400 4.84402200
236
+ H 14.89449900 3.42688600 5.57463200
237
+ H 19.83606200 2.22162900 13.82277900
238
+ H 20.02512800 2.59599500 13.21654700
239
+ H 6.67903100 3.41714500 3.27561700
240
+ H 5.96308500 3.29632200 3.40304000
241
+ H 3.40442700 8.43161300 18.68125100
242
+ H 3.47980300 8.38947800 19.41334200
243
+ H 11.59437400 13.32368500 26.26415800
244
+ H 12.23470100 13.62606800 26.46899700
245
+ H 14.10053700 2.78998700 1.85965400
246
+ H 14.21152000 2.83848100 2.58680300
247
+ H 20.73807400 13.46815700 24.67708300
248
+ H 21.38650500 13.80030400 24.56470100
249
+ H 20.60974700 10.79901200 13.69614100
250
+ H 20.72497000 10.71348400 14.41920500
251
+ H 3.17495000 22.77164300 26.22314900
252
+ H 3.62633300 22.80052800 25.64105600
253
+ H 28.64961800 27.52039100 17.72169200
254
+ H 28.65554600 27.60539900 18.45391600
255
+ H 7.29178200 28.18007600 2.36813400
256
+ H 7.28037500 28.22151000 3.10404600
257
+ H 6.81956500 10.50511700 4.98278800
258
+ H 6.16534900 10.84336000 4.95106300
259
+ O 28.65774000 26.05310300 1.73187800
260
+ O 27.82042800 25.18551200 1.41787100
261
+ O 7.89599500 15.38902200 14.65745800
262
+ O 7.88882100 15.60518500 13.43041800
263
+ O 11.37704800 22.17970800 3.53597600
264
+ O 10.62568400 23.16642300 3.65535900
265
+ O 13.21571800 10.10612800 5.39037400
266
+ O 13.81380800 10.31472700 4.31744300
267
+ O 12.93699800 12.19119900 15.32963100
268
+ O 13.36779300 11.62125600 16.35040800
269
+ O 27.62157300 9.98656400 1.83057900
270
+ O 26.68111300 10.54405800 1.23296700
271
+ O 6.77274700 17.50780000 1.73044000
272
+ O 5.79918400 17.87923300 1.04734400
273
+ O 26.06597600 11.96086100 28.39447800
274
+ O 26.32478700 12.75375600 27.46887600
275
+ O 1.16753100 1.35249300 15.49177600
276
+ O 1.18059100 1.20596000 14.25453600
277
+ O 15.08210300 17.91068800 23.23158100
278
+ O 15.17178200 18.46551400 22.11958700
279
+ O 18.60542300 22.96513600 18.41436700
280
+ O 19.71179100 23.45867400 18.70553300
281
+ O 1.55709700 26.18859700 1.16408800
282
+ O 2.61399600 26.49796400 1.74689400
283
+ O 13.99292900 14.15190600 21.10355700
284
+ O 14.04751700 14.18255600 19.85917400
285
+ O 10.38541200 18.23372400 12.93027500
286
+ O 9.91188600 17.49941400 12.04203600
287
+ O 24.58403200 25.06294600 21.97592600
288
+ O 25.05025500 26.20923800 21.83081500
289
+ O 12.79523200 10.91568200 21.34176200
290
+ O 12.59216100 11.07454900 22.56074900
291
+ O 7.88339000 21.12603300 4.34091800
292
+ O 8.23639900 20.09896500 3.73024400
293
+ O 14.29669600 11.48202900 10.12026500
294
+ O 14.65658800 11.78505600 8.96655000
295
+ O 24.45593800 10.09229400 18.89934500
296
+ O 23.27212000 10.31487400 19.21783900
297
+ O 10.14103800 28.74148400 8.55297800
298
+ O 9.09630200 28.47275800 9.17645200
299
+ O 6.53750100 18.89849400 13.13483400
300
+ O 7.18188100 19.75253500 12.49624700
301
+ O 5.99854200 21.81797900 5.25108200
302
+ O 5.99224800 23.06318800 5.20840100
303
+ O 9.03156900 6.67285800 22.94269500
304
+ O 7.94989000 6.26883900 23.41082700
305
+ O 11.37806100 15.86060900 17.89431700
306
+ O 10.58973300 15.69880900 16.94312500
307
+ O 18.69252800 21.49332500 14.52289300
308
+ O 19.04391300 21.05544000 13.41060100
309
+ O 10.88775200 25.62526500 15.90813900
310
+ O 10.56171400 25.66761900 17.10993500
311
+ O 5.83323700 6.64702500 10.08718000
312
+ O 5.78880400 6.30641500 8.88950900
313
+ O 7.71126200 8.59122800 18.86977200
314
+ O 7.73147600 8.60812400 17.62409400
315
+ O 20.74284900 2.12287500 21.37159100
316
+ O 20.54629600 2.47368100 20.19230800
317
+ O 9.33194100 10.52852700 15.25052100
318
+ O 8.99841100 9.39518300 14.85467600
319
+ O 15.28732400 14.68259500 9.86397700
320
+ O 14.24814200 15.19621500 10.32081500
321
+ O 8.79509800 2.36395800 13.47414000
322
+ O 8.02117200 2.64244400 12.53825000
323
+ O 22.07041200 27.82260300 11.86453400
324
+ O 22.47004200 27.29076900 10.81103700
325
+ O 25.64900400 10.71424900 24.59372700
326
+ O 25.14662500 10.86773900 25.72353300
327
+ O 17.46952600 13.14388400 17.59581300
328
+ O 17.02295500 12.33034400 16.76446800
329
+ O 12.27907200 3.72064200 4.88171600
330
+ O 12.34240900 3.77544700 3.63857800
331
+ O 19.50544800 19.26652500 26.41877500
332
+ O 19.46811300 19.42938700 27.65347700
333
+ O 16.09394700 23.74355500 8.66223700
334
+ O 16.43146400 24.61823500 7.84161300
335
+ O 12.88585100 27.95040100 27.15844000
336
+ O 13.33429000 28.28825200 28.27072000
337
+ O 17.90265700 22.35366300 6.91603700
338
+ O 18.19323300 21.88298700 5.79959800
339
+ O 23.38376600 4.75998600 8.13216000
340
+ O 23.39868600 4.98386700 9.35774600
341
+ O 16.75294800 1.89397000 5.04381400
342
+ O 17.32240900 2.99348800 5.18231300
343
+ O 17.56519600 7.26680100 21.77071000
344
+ O 18.31705700 8.25843700 21.83209000
345
+ O 11.99835900 11.23426800 18.12324800
346
+ O 12.36029500 11.59229700 19.26044800
347
+ O 7.58959900 13.32747400 11.00503600
348
+ O 6.37218600 13.53282600 10.83727300
349
+ O 18.59862600 24.35057600 9.30150100
350
+ O 18.94728500 24.62991400 8.13839600
351
+ O 23.48008200 18.54852600 17.99906900
352
+ O 23.36944900 17.83172600 16.98597300
353
+ O 22.77455400 28.18135800 14.92714700
354
+ O 23.86580000 27.65620500 14.63422500
355
+ O 20.78948500 3.67260900 1.83948100
356
+ O 21.56215500 3.51027100 2.80334500
357
+ O 9.05637000 15.36340100 27.31637100
358
+ O 10.18282500 14.88236800 27.54465200
359
+ O 5.36124000 14.96264300 23.52556700
360
+ O 4.24760100 14.87097200 22.97437700
361
+ O 22.64266600 13.26344800 26.40413500
362
+ O 22.64331400 14.50641200 26.49043800
363
+ O 1.32756400 12.17561700 20.06774300
364
+ O 2.10349400 12.35107600 21.02667600
365
+ O 1.18281700 3.80763100 4.94719100
366
+ O 1.01891800 2.82667000 5.69769700
367
+ O 12.59019600 17.94027500 24.45964400
368
+ O 12.50958200 18.08831700 23.22514300
369
+ O 9.77496800 21.51131100 7.49102600
370
+ O 10.45743600 20.53412700 7.85400700
371
+ O 1.69369700 6.90651400 3.72886700
372
+ O 1.19082500 6.11102100 4.54539400
373
+ O 26.88872500 10.54198400 11.12473400
374
+ O 27.32702000 10.28414700 9.98727000
375
+ O 1.72700700 26.73221500 14.58446600
376
+ O 2.56724200 25.91897900 15.01465200
377
+ O 10.15694600 18.69534200 19.15618300
378
+ O 9.99999700 19.29683100 20.23599100
379
+ O 1.99644200 10.71276900 12.34430700
380
+ O 2.09478800 10.26022600 13.50100000
381
+ O 2.90497500 4.19153100 2.82131400
382
+ O 1.84632400 4.84452600 2.74877200
383
+ O 5.05591600 16.45745000 12.34283200
384
+ O 6.13192000 15.97608900 11.93920500
385
+ O 6.49320100 16.95653500 24.96253500
386
+ O 6.59211000 17.17298400 26.18555300
mlip_arena/tasks/combustion/water.ipynb CHANGED
@@ -119,7 +119,7 @@
119
  },
120
  {
121
  "cell_type": "code",
122
- "execution_count": 3,
123
  "metadata": {},
124
  "outputs": [
125
  {
@@ -130,18 +130,29 @@
130
  "\n",
131
  "#SBATCH -A matgen\n",
132
  "#SBATCH --mem=0\n",
133
- "#SBATCH -t 02:00:00\n",
134
  "#SBATCH -J combustion-water\n",
135
  "#SBATCH -q regular\n",
136
  "#SBATCH -N 1\n",
137
  "#SBATCH -C gpu\n",
138
  "#SBATCH -G 4\n",
 
139
  "source ~/.bashrc\n",
140
  "module load python\n",
141
  "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\n",
142
- "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/bin/python -m distributed.cli.dask_worker tcp://128.55.64.16:40657 --name dummy-name --nthreads 1 --memory-limit 59.60GiB --nanny --death-timeout 86400\n",
143
  "\n"
144
  ]
 
 
 
 
 
 
 
 
 
 
145
  }
146
  ],
147
  "source": [
@@ -154,7 +165,7 @@
154
  " memory=\"64 GB\",\n",
155
  " shebang=\"#!/bin/bash\",\n",
156
  " account=\"matgen\",\n",
157
- " walltime=\"02:00:00\",\n",
158
  " job_mem=\"0\",\n",
159
  " job_script_prologue=[\n",
160
  " \"source ~/.bashrc\",\n",
@@ -168,7 +179,7 @@
168
  " f\"-N {nodes_per_alloc}\",\n",
169
  " \"-C gpu\",\n",
170
  " f\"-G {gpus_per_alloc}\",\n",
171
- " # f\"--exclusive\",\n",
172
  " # \"--time-min=00:30:00\",\n",
173
  " # \"--comment=1-00:00:00\",\n",
174
  " # \"--signal=B:USR1@60\",\n",
@@ -187,7 +198,7 @@
187
  },
188
  {
189
  "cell_type": "code",
190
- "execution_count": 4,
191
  "metadata": {},
192
  "outputs": [],
193
  "source": [
@@ -209,7 +220,7 @@
209
  " pressure=None,\n",
210
  " mb_velocity_seed=0,\n",
211
  " traj_file=Path(REGISTRY[model.name][\"family\"])\n",
212
- " / f\"{atoms.get_chemical_formula()}.traj\",\n",
213
  " traj_interval=1000,\n",
214
  " restart=True,\n",
215
  " )\n",
@@ -229,11 +240,11 @@
229
  {
230
  "data": {
231
  "text/html": [
232
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:32.556 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.engine - Created flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> for flow<span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\"> 'combustion'</span>\n",
233
  "</pre>\n"
234
  ],
235
  "text/plain": [
236
- "18:24:32.556 | \u001b[36mINFO\u001b[0m | prefect.engine - Created flow run\u001b[35m 'airborne-chupacabra'\u001b[0m for flow\u001b[1;35m 'combustion'\u001b[0m\n"
237
  ]
238
  },
239
  "metadata": {},
@@ -242,11 +253,11 @@
242
  {
243
  "data": {
244
  "text/html": [
245
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:32.563 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - View at <span style=\"color: #0000ff; text-decoration-color: #0000ff\">https://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/flow-runs/flow-run/fb8616ef-5579-49a7-81ce-0306180ca401</span>\n",
246
  "</pre>\n"
247
  ],
248
  "text/plain": [
249
- "18:24:32.563 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - View at \u001b[94mhttps://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/flow-runs/flow-run/fb8616ef-5579-49a7-81ce-0306180ca401\u001b[0m\n"
250
  ]
251
  },
252
  "metadata": {},
@@ -255,11 +266,11 @@
255
  {
256
  "data": {
257
  "text/html": [
258
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:32.565 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.task_runner.dask - Connecting to an existing Dask cluster at tcp://128.55.64.16:40657\n",
259
  "</pre>\n"
260
  ],
261
  "text/plain": [
262
- "18:24:32.565 | \u001b[36mINFO\u001b[0m | prefect.task_runner.dask - Connecting to an existing Dask cluster at tcp://128.55.64.16:40657\n"
263
  ]
264
  },
265
  "metadata": {},
@@ -268,11 +279,11 @@
268
  {
269
  "data": {
270
  "text/html": [
271
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:32.591 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.task_runner.dask - The Dask dashboard is available at <span style=\"color: #0000ff; text-decoration-color: #0000ff\">http://128.55.64.16:8787/status</span>\n",
272
  "</pre>\n"
273
  ],
274
  "text/plain": [
275
- "18:24:32.591 | \u001b[36mINFO\u001b[0m | prefect.task_runner.dask - The Dask dashboard is available at \u001b[94mhttp://128.55.64.16:8787/status\u001b[0m\n"
276
  ]
277
  },
278
  "metadata": {},
@@ -281,11 +292,11 @@
281
  {
282
  "data": {
283
  "text/html": [
284
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:33.239 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Created task run 'md-4' for task 'md'\n",
285
  "</pre>\n"
286
  ],
287
  "text/plain": [
288
- "18:24:33.239 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Created task run 'md-4' for task 'md'\n"
289
  ]
290
  },
291
  "metadata": {},
@@ -294,11 +305,11 @@
294
  {
295
  "data": {
296
  "text/html": [
297
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:33.280 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Created task run 'md-7' for task 'md'\n",
298
  "</pre>\n"
299
  ],
300
  "text/plain": [
301
- "18:24:33.280 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Created task run 'md-7' for task 'md'\n"
302
  ]
303
  },
304
  "metadata": {},
@@ -307,11 +318,11 @@
307
  {
308
  "data": {
309
  "text/html": [
310
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:33.286 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Created task run 'md-1' for task 'md'\n",
311
  "</pre>\n"
312
  ],
313
  "text/plain": [
314
- "18:24:33.286 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Created task run 'md-1' for task 'md'\n"
315
  ]
316
  },
317
  "metadata": {},
@@ -320,11 +331,11 @@
320
  {
321
  "data": {
322
  "text/html": [
323
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:33.289 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Created task run 'md-2' for task 'md'\n",
324
  "</pre>\n"
325
  ],
326
  "text/plain": [
327
- "18:24:33.289 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Created task run 'md-2' for task 'md'\n"
328
  ]
329
  },
330
  "metadata": {},
@@ -333,11 +344,11 @@
333
  {
334
  "data": {
335
  "text/html": [
336
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:33.292 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Created task run 'md-5' for task 'md'\n",
337
  "</pre>\n"
338
  ],
339
  "text/plain": [
340
- "18:24:33.292 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Created task run 'md-5' for task 'md'\n"
341
  ]
342
  },
343
  "metadata": {},
@@ -346,11 +357,11 @@
346
  {
347
  "data": {
348
  "text/html": [
349
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:33.295 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Created task run 'md-6' for task 'md'\n",
350
  "</pre>\n"
351
  ],
352
  "text/plain": [
353
- "18:24:33.295 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Created task run 'md-6' for task 'md'\n"
354
  ]
355
  },
356
  "metadata": {},
@@ -359,11 +370,11 @@
359
  {
360
  "data": {
361
  "text/html": [
362
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:33.298 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Created task run 'md-9' for task 'md'\n",
363
  "</pre>\n"
364
  ],
365
  "text/plain": [
366
- "18:24:33.298 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Created task run 'md-9' for task 'md'\n"
367
  ]
368
  },
369
  "metadata": {},
@@ -372,11 +383,11 @@
372
  {
373
  "data": {
374
  "text/html": [
375
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:33.301 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Created task run 'md-0' for task 'md'\n",
376
  "</pre>\n"
377
  ],
378
  "text/plain": [
379
- "18:24:33.301 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Created task run 'md-0' for task 'md'\n"
380
  ]
381
  },
382
  "metadata": {},
@@ -385,11 +396,11 @@
385
  {
386
  "data": {
387
  "text/html": [
388
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:33.304 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Created task run 'md-3' for task 'md'\n",
389
  "</pre>\n"
390
  ],
391
  "text/plain": [
392
- "18:24:33.304 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Created task run 'md-3' for task 'md'\n"
393
  ]
394
  },
395
  "metadata": {},
@@ -398,11 +409,11 @@
398
  {
399
  "data": {
400
  "text/html": [
401
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:33.306 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Created task run 'md-8' for task 'md'\n",
402
  "</pre>\n"
403
  ],
404
  "text/plain": [
405
- "18:24:33.306 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Created task run 'md-8' for task 'md'\n"
406
  ]
407
  },
408
  "metadata": {},
@@ -411,11 +422,11 @@
411
  {
412
  "data": {
413
  "text/html": [
414
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:37.559 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Submitted task run 'md-8' for execution.\n",
415
  "</pre>\n"
416
  ],
417
  "text/plain": [
418
- "18:24:37.559 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Submitted task run 'md-8' for execution.\n"
419
  ]
420
  },
421
  "metadata": {},
@@ -424,11 +435,11 @@
424
  {
425
  "data": {
426
  "text/html": [
427
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:37.712 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Submitted task run 'md-5' for execution.\n",
428
  "</pre>\n"
429
  ],
430
  "text/plain": [
431
- "18:24:37.712 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Submitted task run 'md-5' for execution.\n"
432
  ]
433
  },
434
  "metadata": {},
@@ -437,11 +448,11 @@
437
  {
438
  "data": {
439
  "text/html": [
440
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:37.731 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Submitted task run 'md-4' for execution.\n",
441
  "</pre>\n"
442
  ],
443
  "text/plain": [
444
- "18:24:37.731 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Submitted task run 'md-4' for execution.\n"
445
  ]
446
  },
447
  "metadata": {},
@@ -450,11 +461,11 @@
450
  {
451
  "data": {
452
  "text/html": [
453
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:37.745 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Submitted task run 'md-7' for execution.\n",
454
  "</pre>\n"
455
  ],
456
  "text/plain": [
457
- "18:24:37.745 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Submitted task run 'md-7' for execution.\n"
458
  ]
459
  },
460
  "metadata": {},
@@ -463,11 +474,11 @@
463
  {
464
  "data": {
465
  "text/html": [
466
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:37.755 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Submitted task run 'md-1' for execution.\n",
467
  "</pre>\n"
468
  ],
469
  "text/plain": [
470
- "18:24:37.755 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Submitted task run 'md-1' for execution.\n"
471
  ]
472
  },
473
  "metadata": {},
@@ -476,11 +487,11 @@
476
  {
477
  "data": {
478
  "text/html": [
479
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:37.771 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Submitted task run 'md-3' for execution.\n",
480
  "</pre>\n"
481
  ],
482
  "text/plain": [
483
- "18:24:37.771 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Submitted task run 'md-3' for execution.\n"
484
  ]
485
  },
486
  "metadata": {},
@@ -489,11 +500,11 @@
489
  {
490
  "data": {
491
  "text/html": [
492
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:37.789 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Submitted task run 'md-0' for execution.\n",
493
  "</pre>\n"
494
  ],
495
  "text/plain": [
496
- "18:24:37.789 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Submitted task run 'md-0' for execution.\n"
497
  ]
498
  },
499
  "metadata": {},
@@ -502,11 +513,11 @@
502
  {
503
  "data": {
504
  "text/html": [
505
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:37.803 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Submitted task run 'md-2' for execution.\n",
506
  "</pre>\n"
507
  ],
508
  "text/plain": [
509
- "18:24:37.803 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Submitted task run 'md-2' for execution.\n"
510
  ]
511
  },
512
  "metadata": {},
@@ -515,11 +526,11 @@
515
  {
516
  "data": {
517
  "text/html": [
518
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:37.813 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Submitted task run 'md-6' for execution.\n",
519
  "</pre>\n"
520
  ],
521
  "text/plain": [
522
- "18:24:37.813 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Submitted task run 'md-6' for execution.\n"
523
  ]
524
  },
525
  "metadata": {},
@@ -528,11 +539,11 @@
528
  {
529
  "data": {
530
  "text/html": [
531
- "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:37.843 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'airborne-chupacabra'</span> - Submitted task run 'md-9' for execution.\n",
532
  "</pre>\n"
533
  ],
534
  "text/plain": [
535
- "18:24:37.843 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'airborne-chupacabra'\u001b[0m - Submitted task run 'md-9' for execution.\n"
536
  ]
537
  },
538
  "metadata": {},
 
119
  },
120
  {
121
  "cell_type": "code",
122
+ "execution_count": 6,
123
  "metadata": {},
124
  "outputs": [
125
  {
 
130
  "\n",
131
  "#SBATCH -A matgen\n",
132
  "#SBATCH --mem=0\n",
133
+ "#SBATCH -t 01:45:00\n",
134
  "#SBATCH -J combustion-water\n",
135
  "#SBATCH -q regular\n",
136
  "#SBATCH -N 1\n",
137
  "#SBATCH -C gpu\n",
138
  "#SBATCH -G 4\n",
139
+ "#SBATCH --exclusive\n",
140
  "source ~/.bashrc\n",
141
  "module load python\n",
142
  "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\n",
143
+ "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/bin/python -m distributed.cli.dask_worker tcp://128.55.64.22:36743 --name dummy-name --nthreads 1 --memory-limit 59.60GiB --nanny --death-timeout 86400\n",
144
  "\n"
145
  ]
146
+ },
147
+ {
148
+ "name": "stderr",
149
+ "output_type": "stream",
150
+ "text": [
151
+ "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/distributed/node.py:182: UserWarning: Port 8787 is already in use.\n",
152
+ "Perhaps you already have a cluster running?\n",
153
+ "Hosting the HTTP server on port 34167 instead\n",
154
+ " warnings.warn(\n"
155
+ ]
156
  }
157
  ],
158
  "source": [
 
165
  " memory=\"64 GB\",\n",
166
  " shebang=\"#!/bin/bash\",\n",
167
  " account=\"matgen\",\n",
168
+ " walltime=\"01:45:00\",\n",
169
  " job_mem=\"0\",\n",
170
  " job_script_prologue=[\n",
171
  " \"source ~/.bashrc\",\n",
 
179
  " f\"-N {nodes_per_alloc}\",\n",
180
  " \"-C gpu\",\n",
181
  " f\"-G {gpus_per_alloc}\",\n",
182
+ " f\"--exclusive\",\n",
183
  " # \"--time-min=00:30:00\",\n",
184
  " # \"--comment=1-00:00:00\",\n",
185
  " # \"--signal=B:USR1@60\",\n",
 
198
  },
199
  {
200
  "cell_type": "code",
201
+ "execution_count": 7,
202
  "metadata": {},
203
  "outputs": [],
204
  "source": [
 
220
  " pressure=None,\n",
221
  " mb_velocity_seed=0,\n",
222
  " traj_file=Path(REGISTRY[model.name][\"family\"])\n",
223
+ " / f\"{model.name}_{atoms.get_chemical_formula()}.traj\",\n",
224
  " traj_interval=1000,\n",
225
  " restart=True,\n",
226
  " )\n",
 
240
  {
241
  "data": {
242
  "text/html": [
243
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.187 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.engine - Created flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> for flow<span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\"> 'combustion'</span>\n",
244
  "</pre>\n"
245
  ],
246
  "text/plain": [
247
+ "18:24:16.187 | \u001b[36mINFO\u001b[0m | prefect.engine - Created flow run\u001b[35m 'cinnamon-swine'\u001b[0m for flow\u001b[1;35m 'combustion'\u001b[0m\n"
248
  ]
249
  },
250
  "metadata": {},
 
253
  {
254
  "data": {
255
  "text/html": [
256
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.205 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - View at <span style=\"color: #0000ff; text-decoration-color: #0000ff\">https://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/flow-runs/flow-run/b40f12fb-6644-4319-8d19-5e01e7e282aa</span>\n",
257
  "</pre>\n"
258
  ],
259
  "text/plain": [
260
+ "18:24:16.205 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - View at \u001b[94mhttps://app.prefect.cloud/account/f7d40474-9362-4bfa-8950-ee6a43ec00f3/workspace/d4bb0913-5f5e-49f7-bfc5-06509088baeb/flow-runs/flow-run/b40f12fb-6644-4319-8d19-5e01e7e282aa\u001b[0m\n"
261
  ]
262
  },
263
  "metadata": {},
 
266
  {
267
  "data": {
268
  "text/html": [
269
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.207 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.task_runner.dask - Connecting to an existing Dask cluster at tcp://128.55.64.22:36743\n",
270
  "</pre>\n"
271
  ],
272
  "text/plain": [
273
+ "18:24:16.207 | \u001b[36mINFO\u001b[0m | prefect.task_runner.dask - Connecting to an existing Dask cluster at tcp://128.55.64.22:36743\n"
274
  ]
275
  },
276
  "metadata": {},
 
279
  {
280
  "data": {
281
  "text/html": [
282
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.213 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | prefect.task_runner.dask - The Dask dashboard is available at <span style=\"color: #0000ff; text-decoration-color: #0000ff\">http://128.55.64.22:34167/status</span>\n",
283
  "</pre>\n"
284
  ],
285
  "text/plain": [
286
+ "18:24:16.213 | \u001b[36mINFO\u001b[0m | prefect.task_runner.dask - The Dask dashboard is available at \u001b[94mhttp://128.55.64.22:34167/status\u001b[0m\n"
287
  ]
288
  },
289
  "metadata": {},
 
292
  {
293
  "data": {
294
  "text/html": [
295
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.764 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Created task run 'md-0' for task 'md'\n",
296
  "</pre>\n"
297
  ],
298
  "text/plain": [
299
+ "18:24:16.764 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Created task run 'md-0' for task 'md'\n"
300
  ]
301
  },
302
  "metadata": {},
 
305
  {
306
  "data": {
307
  "text/html": [
308
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.793 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Created task run 'md-1' for task 'md'\n",
309
  "</pre>\n"
310
  ],
311
  "text/plain": [
312
+ "18:24:16.793 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Created task run 'md-1' for task 'md'\n"
313
  ]
314
  },
315
  "metadata": {},
 
318
  {
319
  "data": {
320
  "text/html": [
321
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.797 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Created task run 'md-3' for task 'md'\n",
322
  "</pre>\n"
323
  ],
324
  "text/plain": [
325
+ "18:24:16.797 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Created task run 'md-3' for task 'md'\n"
326
  ]
327
  },
328
  "metadata": {},
 
331
  {
332
  "data": {
333
  "text/html": [
334
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.800 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Created task run 'md-4' for task 'md'\n",
335
  "</pre>\n"
336
  ],
337
  "text/plain": [
338
+ "18:24:16.800 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Created task run 'md-4' for task 'md'\n"
339
  ]
340
  },
341
  "metadata": {},
 
344
  {
345
  "data": {
346
  "text/html": [
347
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.803 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Created task run 'md-8' for task 'md'\n",
348
  "</pre>\n"
349
  ],
350
  "text/plain": [
351
+ "18:24:16.803 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Created task run 'md-8' for task 'md'\n"
352
  ]
353
  },
354
  "metadata": {},
 
357
  {
358
  "data": {
359
  "text/html": [
360
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.805 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Created task run 'md-9' for task 'md'\n",
361
  "</pre>\n"
362
  ],
363
  "text/plain": [
364
+ "18:24:16.805 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Created task run 'md-9' for task 'md'\n"
365
  ]
366
  },
367
  "metadata": {},
 
370
  {
371
  "data": {
372
  "text/html": [
373
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.808 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Created task run 'md-2' for task 'md'\n",
374
  "</pre>\n"
375
  ],
376
  "text/plain": [
377
+ "18:24:16.808 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Created task run 'md-2' for task 'md'\n"
378
  ]
379
  },
380
  "metadata": {},
 
383
  {
384
  "data": {
385
  "text/html": [
386
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.810 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Created task run 'md-6' for task 'md'\n",
387
  "</pre>\n"
388
  ],
389
  "text/plain": [
390
+ "18:24:16.810 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Created task run 'md-6' for task 'md'\n"
391
  ]
392
  },
393
  "metadata": {},
 
396
  {
397
  "data": {
398
  "text/html": [
399
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.813 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Created task run 'md-7' for task 'md'\n",
400
  "</pre>\n"
401
  ],
402
  "text/plain": [
403
+ "18:24:16.813 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Created task run 'md-7' for task 'md'\n"
404
  ]
405
  },
406
  "metadata": {},
 
409
  {
410
  "data": {
411
  "text/html": [
412
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:16.949 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Created task run 'md-5' for task 'md'\n",
413
  "</pre>\n"
414
  ],
415
  "text/plain": [
416
+ "18:24:16.949 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Created task run 'md-5' for task 'md'\n"
417
  ]
418
  },
419
  "metadata": {},
 
422
  {
423
  "data": {
424
  "text/html": [
425
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:17.496 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Submitted task run 'md-9' for execution.\n",
426
  "</pre>\n"
427
  ],
428
  "text/plain": [
429
+ "18:24:17.496 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Submitted task run 'md-9' for execution.\n"
430
  ]
431
  },
432
  "metadata": {},
 
435
  {
436
  "data": {
437
  "text/html": [
438
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:17.510 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Submitted task run 'md-7' for execution.\n",
439
  "</pre>\n"
440
  ],
441
  "text/plain": [
442
+ "18:24:17.510 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Submitted task run 'md-7' for execution.\n"
443
  ]
444
  },
445
  "metadata": {},
 
448
  {
449
  "data": {
450
  "text/html": [
451
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:17.520 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Submitted task run 'md-1' for execution.\n",
452
  "</pre>\n"
453
  ],
454
  "text/plain": [
455
+ "18:24:17.520 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Submitted task run 'md-1' for execution.\n"
456
  ]
457
  },
458
  "metadata": {},
 
461
  {
462
  "data": {
463
  "text/html": [
464
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:17.529 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Submitted task run 'md-5' for execution.\n",
465
  "</pre>\n"
466
  ],
467
  "text/plain": [
468
+ "18:24:17.529 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Submitted task run 'md-5' for execution.\n"
469
  ]
470
  },
471
  "metadata": {},
 
474
  {
475
  "data": {
476
  "text/html": [
477
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:17.536 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Submitted task run 'md-8' for execution.\n",
478
  "</pre>\n"
479
  ],
480
  "text/plain": [
481
+ "18:24:17.536 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Submitted task run 'md-8' for execution.\n"
482
  ]
483
  },
484
  "metadata": {},
 
487
  {
488
  "data": {
489
  "text/html": [
490
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:17.550 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Submitted task run 'md-0' for execution.\n",
491
  "</pre>\n"
492
  ],
493
  "text/plain": [
494
+ "18:24:17.550 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Submitted task run 'md-0' for execution.\n"
495
  ]
496
  },
497
  "metadata": {},
 
500
  {
501
  "data": {
502
  "text/html": [
503
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:17.605 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Submitted task run 'md-3' for execution.\n",
504
  "</pre>\n"
505
  ],
506
  "text/plain": [
507
+ "18:24:17.605 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Submitted task run 'md-3' for execution.\n"
508
  ]
509
  },
510
  "metadata": {},
 
513
  {
514
  "data": {
515
  "text/html": [
516
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:17.614 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Submitted task run 'md-4' for execution.\n",
517
  "</pre>\n"
518
  ],
519
  "text/plain": [
520
+ "18:24:17.614 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Submitted task run 'md-4' for execution.\n"
521
  ]
522
  },
523
  "metadata": {},
 
526
  {
527
  "data": {
528
  "text/html": [
529
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:17.621 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Submitted task run 'md-6' for execution.\n",
530
  "</pre>\n"
531
  ],
532
  "text/plain": [
533
+ "18:24:17.621 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Submitted task run 'md-6' for execution.\n"
534
  ]
535
  },
536
  "metadata": {},
 
539
  {
540
  "data": {
541
  "text/html": [
542
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">18:24:17.635 | <span style=\"color: #008080; text-decoration-color: #008080\">INFO</span> | Flow run<span style=\"color: #800080; text-decoration-color: #800080\"> 'cinnamon-swine'</span> - Submitted task run 'md-2' for execution.\n",
543
  "</pre>\n"
544
  ],
545
  "text/plain": [
546
+ "18:24:17.635 | \u001b[36mINFO\u001b[0m | Flow run\u001b[35m 'cinnamon-swine'\u001b[0m - Submitted task run 'md-2' for execution.\n"
547
  ]
548
  },
549
  "metadata": {},
mlip_arena/tasks/diatomics/alignn/run.ipynb DELETED
@@ -1,243 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "3200850a-b8fb-4f50-9815-16ae8da0f942",
7
- "metadata": {
8
- "tags": []
9
- },
10
- "outputs": [],
11
- "source": [
12
- "from ase import Atoms, Atom\n",
13
- "from ase.io import read, write\n",
14
- "from ase.data import chemical_symbols, covalent_radii, vdw_alvarez\n",
15
- "from ase.parallel import paropen as open\n",
16
- "\n",
17
- "from pathlib import Path\n",
18
- "import os\n",
19
- "import numpy as np\n",
20
- "from pymatgen.core import Element\n",
21
- "from tqdm.auto import tqdm\n",
22
- "import pandas as pd\n",
23
- "\n",
24
- "\n",
25
- "from alignn.ff.ff import AlignnAtomwiseCalculator,default_path\n",
26
- "\n",
27
- "\n",
28
- "model_path = default_path()\n",
29
- "calc = AlignnAtomwiseCalculator(path=model_path, device='cuda')\n",
30
- "\n",
31
- "model_name = 'ALIGNN'\n"
32
- ]
33
- },
34
- {
35
- "cell_type": "code",
36
- "execution_count": null,
37
- "id": "90887faa-1601-4c4c-9c44-d16731471d7f",
38
- "metadata": {
39
- "scrolled": true,
40
- "tags": []
41
- },
42
- "outputs": [],
43
- "source": [
44
- "\n",
45
- "\n",
46
- "for symbol in tqdm(chemical_symbols):\n",
47
- " \n",
48
- " s = set([symbol])\n",
49
- " \n",
50
- " if 'X' in s:\n",
51
- " continue\n",
52
- " \n",
53
- " try:\n",
54
- " atom = Atom(symbol)\n",
55
- " rmin = covalent_radii[atom.number] * 0.95\n",
56
- " rvdw = vdw_alvarez.vdw_radii[atom.number] if atom.number < len(vdw_alvarez.vdw_radii) else np.nan \n",
57
- " rmax = 3.1 * rvdw if not np.isnan(rvdw) else 6\n",
58
- " rstep = 0.01 #if rmin < 1 else 0.4\n",
59
- "\n",
60
- " a = 2 * rmax\n",
61
- "\n",
62
- " npts = int((rmax - rmin)/rstep)\n",
63
- "\n",
64
- " rs = np.linspace(rmin, rmax, npts)\n",
65
- " e = np.zeros_like(rs)\n",
66
- "\n",
67
- " da = symbol + symbol\n",
68
- "\n",
69
- " out_dir = Path(str(da))\n",
70
- "\n",
71
- " os.makedirs(out_dir, exist_ok=True)\n",
72
- "\n",
73
- " skip = 0\n",
74
- " \n",
75
- " element = Element(symbol)\n",
76
- " \n",
77
- " try:\n",
78
- " m = element.valence[1]\n",
79
- " if element.valence == (0, 2):\n",
80
- " m = 0\n",
81
- " except:\n",
82
- " m = 0\n",
83
- " \n",
84
- " \n",
85
- " r = rs[0]\n",
86
- " \n",
87
- " positions = [\n",
88
- " [a/2-r/2, a/2, a/2],\n",
89
- " [a/2+r/2, a/2, a/2],\n",
90
- " ]\n",
91
- " \n",
92
- " traj_fpath = out_dir / f\"{model_name}.extxyz\"\n",
93
- "\n",
94
- " if traj_fpath.exists():\n",
95
- " traj = read(traj_fpath, index=\":\")\n",
96
- " skip = len(traj)\n",
97
- " atoms = traj[-1]\n",
98
- " else:\n",
99
- " # Create the unit cell with two atoms\n",
100
- " atoms = Atoms(\n",
101
- " da, \n",
102
- " positions=positions,\n",
103
- " # magmoms=magmoms,\n",
104
- " cell=[a, a+0.001, a+0.002], \n",
105
- " pbc=True\n",
106
- " )\n",
107
- " \n",
108
- " print(atoms)\n",
109
- "\n",
110
- " calc = calc\n",
111
- "\n",
112
- " atoms.calc = calc\n",
113
- "\n",
114
- " for i, r in enumerate(tqdm(rs)):\n",
115
- "\n",
116
- " if i < skip:\n",
117
- " continue\n",
118
- "\n",
119
- " positions = [\n",
120
- " [a/2-r/2, a/2, a/2],\n",
121
- " [a/2+r/2, a/2, a/2],\n",
122
- " ]\n",
123
- " \n",
124
- " # atoms.set_initial_magnetic_moments(magmoms)\n",
125
- " \n",
126
- " atoms.set_positions(positions)\n",
127
- "\n",
128
- " e[i] = atoms.get_potential_energy()\n",
129
- " \n",
130
- " atoms.calc.results.update({\n",
131
- " \"forces\": atoms.get_forces()\n",
132
- " })\n",
133
- "\n",
134
- " write(traj_fpath, atoms, append=\"a\")\n",
135
- " except Exception as e:\n",
136
- " print(e)\n"
137
- ]
138
- },
139
- {
140
- "cell_type": "code",
141
- "execution_count": null,
142
- "id": "a0ac2c09-370b-4fdd-bf74-ea5c4ade0215",
143
- "metadata": {},
144
- "outputs": [],
145
- "source": [
146
- "\n",
147
- "\n",
148
- "df = pd.DataFrame(columns=['name', 'method', 'R', 'E', 'F', 'S^2'])\n",
149
- "\n",
150
- "for symbol in tqdm(chemical_symbols):\n",
151
- " \n",
152
- " da = symbol + symbol\n",
153
- " \n",
154
- " out_dir = Path(da)\n",
155
- " \n",
156
- " traj_fpath = out_dir / f\"{model_name}.extxyz\"\n",
157
- "\n",
158
- "\n",
159
- " if traj_fpath.exists():\n",
160
- " traj = read(traj_fpath, index=\":\")\n",
161
- " else:\n",
162
- " continue\n",
163
- " \n",
164
- " Rs, Es, Fs, S2s = [], [], [], []\n",
165
- " for atoms in traj:\n",
166
- " \n",
167
- " vec = atoms.positions[1] - atoms.positions[0]\n",
168
- " r = np.linalg.norm(vec)\n",
169
- " e = atoms.get_potential_energy()\n",
170
- " f = np.inner(vec/r, atoms.get_forces()[1])\n",
171
- " # s2 = np.mean(np.power(atoms.get_magnetic_moments(), 2))\n",
172
- " \n",
173
- " Rs.append(r)\n",
174
- " Es.append(e)\n",
175
- " Fs.append(f)\n",
176
- " # S2s.append(s2)\n",
177
- " \n",
178
- " data = {\n",
179
- " 'name': da,\n",
180
- " 'method': 'ALIGNN',\n",
181
- " 'R': Rs,\n",
182
- " 'E': Es,\n",
183
- " 'F': Fs,\n",
184
- " 'S^2': S2s\n",
185
- " }\n",
186
- "\n",
187
- " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n",
188
- "\n",
189
- "json_fpath = 'homonuclear-diatomics.json'\n",
190
- "\n",
191
- "df.to_json(json_fpath, orient='records') "
192
- ]
193
- },
194
- {
195
- "cell_type": "code",
196
- "execution_count": null,
197
- "id": "e0dd4367-3dca-440f-a7a9-7fdd84183f2c",
198
- "metadata": {
199
- "tags": []
200
- },
201
- "outputs": [],
202
- "source": [
203
- "df"
204
- ]
205
- },
206
- {
207
- "cell_type": "code",
208
- "execution_count": null,
209
- "id": "4e6ae884-89f3-43f2-8fd9-19bf00c91566",
210
- "metadata": {},
211
- "outputs": [],
212
- "source": []
213
- }
214
- ],
215
- "metadata": {
216
- "kernelspec": {
217
- "display_name": "mlip-arena",
218
- "language": "python",
219
- "name": "mlip-arena"
220
- },
221
- "language_info": {
222
- "codemirror_mode": {
223
- "name": "ipython",
224
- "version": 3
225
- },
226
- "file_extension": ".py",
227
- "mimetype": "text/x-python",
228
- "name": "python",
229
- "nbconvert_exporter": "python",
230
- "pygments_lexer": "ipython3",
231
- "version": "3.11.8"
232
- },
233
- "widgets": {
234
- "application/vnd.jupyter.widget-state+json": {
235
- "state": {},
236
- "version_major": 2,
237
- "version_minor": 0
238
- }
239
- }
240
- },
241
- "nbformat": 4,
242
- "nbformat_minor": 5
243
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mlip_arena/tasks/diatomics/chgnet/homonuclear-diatomics.json CHANGED
The diff for this file is too large to render. See raw diff
 
mlip_arena/tasks/diatomics/equiformer/homonuclear-diatomics.json CHANGED
The diff for this file is too large to render. See raw diff
 
mlip_arena/tasks/diatomics/m3gnet/homonuclear-diatomics.json CHANGED
The diff for this file is too large to render. See raw diff
 
mlip_arena/tasks/diatomics/mace-mp/homonuclear-diatomics.json CHANGED
The diff for this file is too large to render. See raw diff
 
mlip_arena/tasks/diatomics/mace-off/homonuclear-diatomics.json CHANGED
The diff for this file is too large to render. See raw diff
 
mlip_arena/tasks/diatomics/orb/homonuclear-diatomics.json CHANGED
The diff for this file is too large to render. See raw diff
 
mlip_arena/tasks/diatomics/run.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
mlip_arena/tasks/diatomics/sevennet/homonuclear-diatomics.json CHANGED
The diff for this file is too large to render. See raw diff
 
pyproject.toml CHANGED
@@ -37,16 +37,37 @@ dependencies=[
37
  ]
38
 
39
  [project.optional-dependencies]
40
- m3gnet = ["matgl", "dgl", "torch<=2.2.1"]
41
- mace = ["mace-torch"]
42
- chgnet = ["chgnet"]
43
- fairchem = ["fairchem"]
 
 
 
 
 
 
 
 
44
  app = [
45
  "streamlit",
46
  "plotly",
47
  "bokeh==2.4.3",
48
  "statsmodels"
49
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  [project.urls]
52
  Homepage = "https://github.com/atomind-ai/mlip-arena"
 
37
  ]
38
 
39
  [project.optional-dependencies]
40
+ run = [
41
+ "torch==2.2.0",
42
+ "e3nn==0.5.1",
43
+ "matgl==1.1.2",
44
+ "dgl==2.4.0+cu121",
45
+ "mace-torch==0.3.4",
46
+ "chgnet==0.3.8",
47
+ "fairchem-core==0.1.0",
48
+ "sevenn==0.9.3.post1",
49
+ "orb-models==0.3.1",
50
+ "alignn==2024.5.27"
51
+ ]
52
  app = [
53
  "streamlit",
54
  "plotly",
55
  "bokeh==2.4.3",
56
  "statsmodels"
57
  ]
58
+ test = [
59
+ "torch==2.2.0",
60
+ "e3nn==0.5.1",
61
+ "matgl==1.1.2",
62
+ "dgl==2.4.0+cu121",
63
+ "mace-torch==0.3.4",
64
+ "chgnet==0.3.8",
65
+ "fairchem-core==0.1.0",
66
+ "sevenn==0.9.3.post1",
67
+ "orb-models==0.3.1",
68
+ "alignn==2024.5.27",
69
+ "pytest"
70
+ ]
71
 
72
  [project.urls]
73
  Homepage = "https://github.com/atomind-ai/mlip-arena"
scripts/install-pyg.sh CHANGED
@@ -1,15 +1,11 @@
1
 
2
 
3
  # PyTorch Geometric (OCP)
4
- TORCH=2.2.0
5
  CUDA=cu121
6
 
7
  pip install --verbose --no-cache torch-scatter -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html
8
  pip install --verbose --no-cache torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html
9
 
10
- # DGL (M3GNet)
11
- pip install --verbose --no-cache dgl -f https://data.dgl.ai/wheels/{CUDA}/repo.html
12
-
13
-
14
- # DGL (ALIGNN)
15
- # pip install --verbose --no-cache dgl -f https://data.dgl.ai/wheels/torch-2.2/cu122/repo.html
 
1
 
2
 
3
  # PyTorch Geometric (OCP)
4
+ TORCH=2.3.1
5
  CUDA=cu121
6
 
7
  pip install --verbose --no-cache torch-scatter -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html
8
  pip install --verbose --no-cache torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html
9
 
10
+ # DGL (M3GNet, ALIGNN)
11
+ pip install dgl -U -f https://data.dgl.ai/wheels/torch-2.3/cu121/repo.html
 
 
 
 
tests/download_models.py DELETED
@@ -1,5 +0,0 @@
1
- from huggingface_hub import hf_hub_download
2
-
3
- fpath = hf_hub_download(repo_id="cyrusyc/mace-universal", subfolder="pretrained", filename="2023-12-12-mace-128-L1_epoch-199.model")
4
-
5
- print(fpath)
 
 
 
 
 
 
tests/hf_hub.ipynb DELETED
@@ -1,480 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 7,
6
- "metadata": {},
7
- "outputs": [],
8
- "source": [
9
- "import torch\n",
10
- "from huggingface_hub import hf_hub_download\n",
11
- "from ase.calculators.calculator import Calculator\n",
12
- "# from mlip_arena.models import MLIP, MLIPCalculator, ModuleMLIP\n",
13
- "\n",
14
- "from mlip_arena.models.externals import MACE_MP_Medium\n",
15
- "\n",
16
- "from mlip_arena.models.utils import MLIPMap, MLIPEnum"
17
- ]
18
- },
19
- {
20
- "cell_type": "code",
21
- "execution_count": 9,
22
- "metadata": {},
23
- "outputs": [
24
- {
25
- "data": {
26
- "text/plain": [
27
- "True"
28
- ]
29
- },
30
- "execution_count": 9,
31
- "metadata": {},
32
- "output_type": "execute_result"
33
- }
34
- ],
35
- "source": [
36
- "issubclass(MLIPEnum[\"MACE-MP(M)\"].value, Calculator)"
37
- ]
38
- },
39
- {
40
- "cell_type": "code",
41
- "execution_count": 13,
42
- "metadata": {},
43
- "outputs": [
44
- {
45
- "data": {
46
- "text/plain": [
47
- "True"
48
- ]
49
- },
50
- "execution_count": 13,
51
- "metadata": {},
52
- "output_type": "execute_result"
53
- }
54
- ],
55
- "source": [
56
- "isinstance(MLIPEnum[\"MACE-MP(M)\"], MLIPEnum)# in MLIPEnum"
57
- ]
58
- },
59
- {
60
- "cell_type": "code",
61
- "execution_count": 16,
62
- "metadata": {},
63
- "outputs": [
64
- {
65
- "data": {
66
- "text/plain": [
67
- "['MACE-MP(M)', 'CHGNet', 'EquiformerV2(OC22)', 'eSCN(OC20)']"
68
- ]
69
- },
70
- "execution_count": 16,
71
- "metadata": {},
72
- "output_type": "execute_result"
73
- }
74
- ],
75
- "source": [
76
- "MLIPEnum._member_names_"
77
- ]
78
- },
79
- {
80
- "cell_type": "code",
81
- "execution_count": 9,
82
- "metadata": {},
83
- "outputs": [
84
- {
85
- "data": {
86
- "text/plain": [
87
- "{'MACE-MP(M)': mlip_arena.models.externals.MACE_MP_Medium,\n",
88
- " 'CHGNet': mlip_arena.models.externals.CHGNet,\n",
89
- " 'EquiformerV2(OC22)': mlip_arena.models.externals.EquiformerV2,\n",
90
- " 'eSCN(OC20)': mlip_arena.models.externals.eSCN}"
91
- ]
92
- },
93
- "execution_count": 9,
94
- "metadata": {},
95
- "output_type": "execute_result"
96
- }
97
- ],
98
- "source": [
99
- "MLIPMap"
100
- ]
101
- },
102
- {
103
- "cell_type": "code",
104
- "execution_count": 8,
105
- "metadata": {},
106
- "outputs": [
107
- {
108
- "name": "stdout",
109
- "output_type": "stream",
110
- "text": [
111
- "MLIPEnum.MACE-MP(M)\n",
112
- "MLIPEnum.CHGNet\n",
113
- "MLIPEnum.EquiformerV2(OC22)\n",
114
- "MLIPEnum.eSCN(OC20)\n"
115
- ]
116
- }
117
- ],
118
- "source": [
119
- "for mlip in MLIPEnum:\n",
120
- " print(mlip)"
121
- ]
122
- },
123
- {
124
- "cell_type": "code",
125
- "execution_count": 4,
126
- "metadata": {},
127
- "outputs": [
128
- {
129
- "data": {
130
- "text/plain": [
131
- "mlip_arena.models.externals.MACE_MP_Medium"
132
- ]
133
- },
134
- "execution_count": 4,
135
- "metadata": {},
136
- "output_type": "execute_result"
137
- }
138
- ],
139
- "source": [
140
- "MLIPMap['MACE-MP(M)']"
141
- ]
142
- },
143
- {
144
- "cell_type": "code",
145
- "execution_count": 2,
146
- "metadata": {},
147
- "outputs": [
148
- {
149
- "name": "stdout",
150
- "output_type": "stream",
151
- "text": [
152
- "Using Materials Project MACE for MACECalculator with /global/homes/c/cyrusyc/.cache/mace/5yyxdm76\n",
153
- "Selected GPU cuda:0 with 40338.06 MB free memory from 1 GPUs\n",
154
- "Default dtype float32 does not match model dtype float64, converting models to float32.\n"
155
- ]
156
- }
157
- ],
158
- "source": [
159
- "mace_mp = MACE_MP_Medium()"
160
- ]
161
- },
162
- {
163
- "cell_type": "code",
164
- "execution_count": 3,
165
- "metadata": {},
166
- "outputs": [
167
- {
168
- "name": "stdout",
169
- "output_type": "stream",
170
- "text": [
171
- "Select GPU cuda:0 with 40316.98 MB free memory from 1 GPUs\n",
172
- "CHGNet v0.3.0 initialized with 412,525 parameters\n",
173
- "CHGNet will run on cuda:0\n"
174
- ]
175
- },
176
- {
177
- "name": "stderr",
178
- "output_type": "stream",
179
- "text": [
180
- "WARNING:root:Detected old config, converting to new format. Consider updating to avoid potential incompatibilities.\n",
181
- "WARNING:root:Skipping scheduler setup. No training set found.\n"
182
- ]
183
- }
184
- ],
185
- "source": [
186
- "from mlip_arena.models.externals import EquiformerV2, CHGNet\n",
187
- "\n",
188
- "chgnet = CHGNet()\n",
189
- "\n",
190
- "equiformer_v2 = EquiformerV2()\n"
191
- ]
192
- },
193
- {
194
- "cell_type": "code",
195
- "execution_count": 2,
196
- "metadata": {},
197
- "outputs": [],
198
- "source": [
199
- "\n",
200
- "fpath = hf_hub_download(\n",
201
- " repo_id=\"cyrusyc/mace-universal\",\n",
202
- " subfolder=\"pretrained\",\n",
203
- " filename=\"2023-12-12-mace-128-L1_epoch-199.model\",\n",
204
- " revision=None, # TODO: Add revision\n",
205
- ")\n",
206
- "\n",
207
- "model = torch.load(fpath, map_location=\"cpu\")"
208
- ]
209
- },
210
- {
211
- "cell_type": "code",
212
- "execution_count": 3,
213
- "metadata": {},
214
- "outputs": [],
215
- "source": [
216
- "module = ModuleMLIP(model=model)"
217
- ]
218
- },
219
- {
220
- "cell_type": "code",
221
- "execution_count": 4,
222
- "metadata": {},
223
- "outputs": [
224
- {
225
- "data": {
226
- "text/plain": [
227
- "CommitInfo(commit_url='https://huggingface.co/atomind/mace-mp-medium/commit/eb12c5387b9e655d83a4e2e10c0f0779c3745227', commit_message='Push model using huggingface_hub.', commit_description='', oid='eb12c5387b9e655d83a4e2e10c0f0779c3745227', pr_url=None, pr_revision=None, pr_num=None)"
228
- ]
229
- },
230
- "execution_count": 4,
231
- "metadata": {},
232
- "output_type": "execute_result"
233
- }
234
- ],
235
- "source": [
236
- "module.save_pretrained(\n",
237
- " \"mace\",\n",
238
- " repo_id=\"atomind/MACE_MP_Medium\".lower().replace(\"_\", \"-\"),\n",
239
- " push_to_hub=True\n",
240
- ")"
241
- ]
242
- },
243
- {
244
- "cell_type": "code",
245
- "execution_count": 1,
246
- "metadata": {},
247
- "outputs": [
248
- {
249
- "name": "stderr",
250
- "output_type": "stream",
251
- "text": [
252
- "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
253
- " from .autonotebook import tqdm as notebook_tqdm\n"
254
- ]
255
- }
256
- ],
257
- "source": [
258
- "\n",
259
- "from mlip_arena.models.mace import MACE_MP_Medium\n",
260
- "import torch\n",
261
- "\n",
262
- "calc = MACE_MP_Medium(device=torch.device(\"cuda\"))"
263
- ]
264
- },
265
- {
266
- "cell_type": "code",
267
- "execution_count": 2,
268
- "metadata": {},
269
- "outputs": [
270
- {
271
- "data": {
272
- "text/plain": [
273
- "ScaleShiftMACE(\n",
274
- " (node_embedding): LinearNodeEmbeddingBlock(\n",
275
- " (linear): Linear(89x0e -> 128x0e | 11392 weights)\n",
276
- " )\n",
277
- " (radial_embedding): RadialEmbeddingBlock(\n",
278
- " (bessel_fn): BesselBasis(r_max=6.0, num_basis=10, trainable=False)\n",
279
- " (cutoff_fn): PolynomialCutoff(p=5.0, r_max=6.0)\n",
280
- " )\n",
281
- " (spherical_harmonics): SphericalHarmonics()\n",
282
- " (atomic_energies_fn): AtomicEnergiesBlock(energies=[-3.6672, -1.3321, -3.4821, -4.7367, -7.7249, -8.4056, -7.3601, -7.2846, -4.8965, 0.0000, -2.7594, -2.8140, -4.8469, -7.6948, -6.9633, -4.6726, -2.8117, -0.0626, -2.6176, -5.3905, -7.8858, -10.2684, -8.6651, -9.2331, -8.3050, -7.0490, -5.5774, -5.1727, -3.2521, -1.2902, -3.5271, -4.7085, -3.9765, -3.8862, -2.5185, 6.7669, -2.5635, -4.9380, -10.1498, -11.8469, -12.1389, -8.7917, -8.7869, -7.7809, -6.8500, -4.8910, -2.0634, -0.6396, -2.7887, -3.8186, -3.5871, -2.8804, -1.6356, 9.8467, -2.7653, -4.9910, -8.9337, -8.7356, -8.0190, -8.2515, -7.5917, -8.1697, -13.5927, -18.5175, -7.6474, -8.1230, -7.6078, -6.8503, -7.8269, -3.5848, -7.4554, -12.7963, -14.1081, -9.3549, -11.3875, -9.6219, -7.3244, -5.3047, -2.3801, 0.2495, -2.3240, -3.7300, -3.4388, -5.0629, -11.0246, -12.2656, -13.8556, -14.9331, -15.2828])\n",
283
- " (interactions): ModuleList(\n",
284
- " (0): RealAgnosticResidualInteractionBlock(\n",
285
- " (linear_up): Linear(128x0e -> 128x0e | 16384 weights)\n",
286
- " (conv_tp): TensorProduct(128x0e x 1x0e+1x1o+1x2e+1x3o -> 128x0e+128x1o+128x2e+128x3o | 512 paths | 512 weights)\n",
287
- " (conv_tp_weights): FullyConnectedNet[10, 64, 64, 64, 512]\n",
288
- " (linear): Linear(128x0e+128x1o+128x2e+128x3o -> 128x0e+128x1o+128x2e+128x3o | 65536 weights)\n",
289
- " (skip_tp): FullyConnectedTensorProduct(128x0e x 89x0e -> 128x0e+128x1o | 1458176 paths | 1458176 weights)\n",
290
- " (reshape): reshape_irreps()\n",
291
- " )\n",
292
- " (1): RealAgnosticResidualInteractionBlock(\n",
293
- " (linear_up): Linear(128x0e+128x1o -> 128x0e+128x1o | 32768 weights)\n",
294
- " (conv_tp): TensorProduct(128x0e+128x1o x 1x0e+1x1o+1x2e+1x3o -> 256x0e+384x1o+384x2e+256x3o | 1280 paths | 1280 weights)\n",
295
- " (conv_tp_weights): FullyConnectedNet[10, 64, 64, 64, 1280]\n",
296
- " (linear): Linear(256x0e+384x1o+384x2e+256x3o -> 128x0e+128x1o+128x2e+128x3o | 163840 weights)\n",
297
- " (skip_tp): FullyConnectedTensorProduct(128x0e+128x1o x 89x0e -> 128x0e | 1458176 paths | 1458176 weights)\n",
298
- " (reshape): reshape_irreps()\n",
299
- " )\n",
300
- " )\n",
301
- " (products): ModuleList(\n",
302
- " (0): EquivariantProductBasisBlock(\n",
303
- " (symmetric_contractions): SymmetricContraction(\n",
304
- " (contractions): ModuleList(\n",
305
- " (0): Contraction(\n",
306
- " (contractions_weighting): ModuleList(\n",
307
- " (0-1): 2 x GraphModule()\n",
308
- " )\n",
309
- " (contractions_features): ModuleList(\n",
310
- " (0-1): 2 x GraphModule()\n",
311
- " )\n",
312
- " (weights): ParameterList(\n",
313
- " (0): Parameter containing: [torch.float64 of size 89x4x128 (cuda:0)]\n",
314
- " (1): Parameter containing: [torch.float64 of size 89x1x128 (cuda:0)]\n",
315
- " )\n",
316
- " (graph_opt_main): GraphModule()\n",
317
- " )\n",
318
- " (1): Contraction(\n",
319
- " (contractions_weighting): ModuleList(\n",
320
- " (0-1): 2 x GraphModule()\n",
321
- " )\n",
322
- " (contractions_features): ModuleList(\n",
323
- " (0-1): 2 x GraphModule()\n",
324
- " )\n",
325
- " (weights): ParameterList(\n",
326
- " (0): Parameter containing: [torch.float64 of size 89x6x128 (cuda:0)]\n",
327
- " (1): Parameter containing: [torch.float64 of size 89x1x128 (cuda:0)]\n",
328
- " )\n",
329
- " (graph_opt_main): GraphModule()\n",
330
- " )\n",
331
- " )\n",
332
- " )\n",
333
- " (linear): Linear(128x0e+128x1o -> 128x0e+128x1o | 32768 weights)\n",
334
- " )\n",
335
- " (1): EquivariantProductBasisBlock(\n",
336
- " (symmetric_contractions): SymmetricContraction(\n",
337
- " (contractions): ModuleList(\n",
338
- " (0): Contraction(\n",
339
- " (contractions_weighting): ModuleList(\n",
340
- " (0-1): 2 x GraphModule()\n",
341
- " )\n",
342
- " (contractions_features): ModuleList(\n",
343
- " (0-1): 2 x GraphModule()\n",
344
- " )\n",
345
- " (weights): ParameterList(\n",
346
- " (0): Parameter containing: [torch.float64 of size 89x4x128 (cuda:0)]\n",
347
- " (1): Parameter containing: [torch.float64 of size 89x1x128 (cuda:0)]\n",
348
- " )\n",
349
- " (graph_opt_main): GraphModule()\n",
350
- " )\n",
351
- " )\n",
352
- " )\n",
353
- " (linear): Linear(128x0e -> 128x0e | 16384 weights)\n",
354
- " )\n",
355
- " )\n",
356
- " (readouts): ModuleList(\n",
357
- " (0): LinearReadoutBlock(\n",
358
- " (linear): Linear(128x0e+128x1o -> 1x0e | 128 weights)\n",
359
- " )\n",
360
- " (1): NonLinearReadoutBlock(\n",
361
- " (linear_1): Linear(128x0e -> 16x0e | 2048 weights)\n",
362
- " (non_linearity): Activation [x] (16x0e -> 16x0e)\n",
363
- " (linear_2): Linear(16x0e -> 1x0e | 16 weights)\n",
364
- " )\n",
365
- " )\n",
366
- " (scale_shift): ScaleShiftBlock(scale=0.804154, shift=0.164097)\n",
367
- ")"
368
- ]
369
- },
370
- "execution_count": 2,
371
- "metadata": {},
372
- "output_type": "execute_result"
373
- }
374
- ],
375
- "source": [
376
- "calc.model\n"
377
- ]
378
- },
379
- {
380
- "cell_type": "code",
381
- "execution_count": 2,
382
- "metadata": {},
383
- "outputs": [],
384
- "source": [
385
- "from mlip_arena.models import MLIP\n",
386
- "\n",
387
- "model = MLIP.from_pretrained(\"atomind/mace-mp-medium\", map_location=\"cuda\", revision=\"main\")"
388
- ]
389
- },
390
- {
391
- "cell_type": "code",
392
- "execution_count": 5,
393
- "metadata": {},
394
- "outputs": [
395
- {
396
- "data": {
397
- "text/plain": [
398
- "<generator object Module.modules at 0x7ff33915f920>"
399
- ]
400
- },
401
- "execution_count": 5,
402
- "metadata": {},
403
- "output_type": "execute_result"
404
- }
405
- ],
406
- "source": [
407
- "model.modules()"
408
- ]
409
- },
410
- {
411
- "cell_type": "code",
412
- "execution_count": 8,
413
- "metadata": {},
414
- "outputs": [
415
- {
416
- "ename": "AttributeError",
417
- "evalue": "MLIP has no attribute `model`",
418
- "output_type": "error",
419
- "traceback": [
420
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
421
- "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
422
- "Cell \u001b[0;32mIn[8], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_submodule\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
423
- "File \u001b[0;32m/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/torch/nn/modules/module.py:681\u001b[0m, in \u001b[0;36mModule.get_submodule\u001b[0;34m(self, target)\u001b[0m\n\u001b[1;32m 678\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m item \u001b[38;5;129;01min\u001b[39;00m atoms:\n\u001b[1;32m 680\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(mod, item):\n\u001b[0;32m--> 681\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m(mod\u001b[38;5;241m.\u001b[39m_get_name() \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m has no \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 682\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mattribute `\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m+\u001b[39m item \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 684\u001b[0m mod \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(mod, item)\n\u001b[1;32m 686\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mod, torch\u001b[38;5;241m.\u001b[39mnn\u001b[38;5;241m.\u001b[39mModule):\n",
424
- "\u001b[0;31mAttributeError\u001b[0m: MLIP has no attribute `model`"
425
- ]
426
- }
427
- ],
428
- "source": [
429
- "model.get_submodule(\"model\")"
430
- ]
431
- },
432
- {
433
- "cell_type": "code",
434
- "execution_count": null,
435
- "metadata": {},
436
- "outputs": [],
437
- "source": [
438
- "for name, param in model.named_parameters():\n",
439
- " print(name, param.data)"
440
- ]
441
- },
442
- {
443
- "cell_type": "code",
444
- "execution_count": null,
445
- "metadata": {},
446
- "outputs": [],
447
- "source": [
448
- "print(module)"
449
- ]
450
- },
451
- {
452
- "cell_type": "code",
453
- "execution_count": null,
454
- "metadata": {},
455
- "outputs": [],
456
- "source": []
457
- }
458
- ],
459
- "metadata": {
460
- "kernelspec": {
461
- "display_name": "Python 3",
462
- "language": "python",
463
- "name": "python3"
464
- },
465
- "language_info": {
466
- "codemirror_mode": {
467
- "name": "ipython",
468
- "version": 3
469
- },
470
- "file_extension": ".py",
471
- "mimetype": "text/x-python",
472
- "name": "python",
473
- "nbconvert_exporter": "python",
474
- "pygments_lexer": "ipython3",
475
- "version": "3.11.8"
476
- }
477
- },
478
- "nbformat": 4,
479
- "nbformat_minor": 2
480
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tests/oxygen_diatomics.ipynb DELETED
The diff for this file is too large to render. See raw diff