Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,154 Bytes
a0188fc fd96f46 a0188fc a81b12c a0188fc 8113c0b f69e84b 8113c0b a0188fc fd96f46 a0188fc fd96f46 20dc541 a0188fc 3ad7345 a0188fc 7849f7f 849d516 aad18c2 849d516 aad18c2 849d516 a0188fc aad18c2 a0188fc aad18c2 849d516 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import gradio as gr
import torch
from transformers import pipeline
import os
import spaces
#load_dotenv()
key=os.environ["HF_KEY"]
def load_model():
print("[INFO] Loading model... This may take a minute on Spaces")
pipe = pipeline(
task="fill-mask",
model="atlasia/XLM-RoBERTa-Morocco",
token=key,
device=0,
torch_dtype=torch.float16 # Use half precision
)
print("[INFO] Model loaded successfully!")
return pipe
print("[INFO] load model ...")
pipe=load_model()
print("[INFO] model loaded")
@spaces.GPU
def predict(text):
outputs = pipe(text)
scores= [x["score"] for x in outputs]
tokens= [x["token_str"] for x in outputs]
return {label: float(prob) for label, prob in zip(tokens, scores)}
# Create Gradio interface
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
# Input text box
input_text = gr.Textbox(
label="Input",
placeholder="Enter text here...",
rtl=True
)
# Button row
with gr.Row():
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit", variant="primary")
# Output probabilities
output_labels = gr.Label(
label="Prediction Results",
show_label=False
)
# Examples section with basic configuration
gr.Examples(
examples=["العاصمة د <mask> هي الرباط","المغرب <mask> زوين","انا سميتي مريم، و كنسكن ف<mask> العاصمة دفلسطين"],
inputs=input_text,
fn=predict,
outputs=output_labels,
cache_examples=True
)
# Button actions
submit_btn.click(
predict,
inputs=input_text,
outputs=output_labels
)
clear_btn.click(
lambda: "",
outputs=input_text
)
# Launch the app with simple queue
demo.queue() # No parameters for older Gradio versions
demo.launch() |