Spaces:
Runtime error
Runtime error
File size: 1,692 Bytes
08a7b0a 968506e 08a7b0a 968506e 08a7b0a 968506e 08a7b0a 968506e 08a7b0a 968506e 08a7b0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
from huggingface_hub import from_pretrained_keras
import keras_cv
import gradio as gr
from tensorflow import keras
keras.mixed_precision.set_global_policy("mixed_float16")
resolution = 512
dreambooth_model = keras_cv.models.StableDiffusion(
img_width=resolution, img_height=resolution, jit_compile=True,
)
loaded_diffusion_model = from_pretrained_keras("ashishtanwer/shoe")
dreambooth_model._diffusion_model = loaded_diffusion_model
def generate_images(prompt: str, negative_prompt:str, num_imgs_to_gen: int, num_steps: int):
generated_img = dreambooth_model.text_to_image(
prompt,
negative_prompt=negative_prompt,
batch_size=num_imgs_to_gen,
num_steps=num_steps,
)
return generated_img
with gr.Blocks() as demo:
gr.HTML("<h2 style=\"font-size: 2em; font-weight: bold\" align=\"center\">Radiance Shoe Demo</h2>")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(lines=1, value="sshh shoe", label="Base Prompt")
negative_prompt = gr.Textbox(lines=1, value="deformed", label="Negative Prompt")
samples = gr.Slider(minimum=1, maximum=10, default=1, step=1, label="Number of Image")
num_steps = gr.Slider(label="Inference Steps",value=50)
run = gr.Button(value="Run")
with gr.Column():
gallery = gr.Gallery(label="Outputs").style(grid=(1,2))
run.click(generate_images, inputs=[prompt,negative_prompt, samples, num_steps], outputs=gallery)
gr.Examples([["photo of sshh shoe","deformed", 1, 50]],
[prompt,negative_prompt, samples,num_steps], gallery, generate_images)
demo.launch(debug=True) |