File size: 1,692 Bytes
08a7b0a
 
 
 
 
 
968506e
08a7b0a
 
 
 
968506e
08a7b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
968506e
08a7b0a
 
968506e
08a7b0a
 
 
 
 
 
 
 
 
968506e
08a7b0a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from huggingface_hub import from_pretrained_keras
import keras_cv
import gradio as gr
from tensorflow import keras

keras.mixed_precision.set_global_policy("mixed_float16")
 
resolution = 512
dreambooth_model = keras_cv.models.StableDiffusion(
        img_width=resolution, img_height=resolution, jit_compile=True, 
    )
loaded_diffusion_model = from_pretrained_keras("ashishtanwer/shoe")
dreambooth_model._diffusion_model = loaded_diffusion_model


def generate_images(prompt: str, negative_prompt:str, num_imgs_to_gen: int, num_steps: int):
    generated_img = dreambooth_model.text_to_image(
        prompt, 
        negative_prompt=negative_prompt,
        batch_size=num_imgs_to_gen,
        num_steps=num_steps,
    )
   
    return generated_img
    
with gr.Blocks() as demo:
    gr.HTML("<h2 style=\"font-size: 2em; font-weight: bold\" align=\"center\">Radiance Shoe Demo</h2>")    
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(lines=1, value="sshh shoe", label="Base Prompt")
            negative_prompt = gr.Textbox(lines=1, value="deformed", label="Negative Prompt")
            samples = gr.Slider(minimum=1, maximum=10, default=1, step=1, label="Number of Image")
            num_steps = gr.Slider(label="Inference Steps",value=50)
            run = gr.Button(value="Run")
        with gr.Column():
            gallery = gr.Gallery(label="Outputs").style(grid=(1,2))

    run.click(generate_images, inputs=[prompt,negative_prompt, samples, num_steps], outputs=gallery)
    
    gr.Examples([["photo of sshh shoe","deformed", 1, 50]],
                [prompt,negative_prompt, samples,num_steps], gallery, generate_images)

demo.launch(debug=True)