ashishtanwer commited on
Commit
968506e
1 Parent(s): 08a7b0a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -15
app.py CHANGED
@@ -4,25 +4,16 @@ import gradio as gr
4
  from tensorflow import keras
5
 
6
  keras.mixed_precision.set_global_policy("mixed_float16")
7
- # load keras model
8
  resolution = 512
9
  dreambooth_model = keras_cv.models.StableDiffusion(
10
  img_width=resolution, img_height=resolution, jit_compile=True,
11
  )
12
- loaded_diffusion_model = from_pretrained_keras("keras-dreambooth/keras-diffusion-traditional-furniture")
13
  dreambooth_model._diffusion_model = loaded_diffusion_model
14
 
15
 
16
  def generate_images(prompt: str, negative_prompt:str, num_imgs_to_gen: int, num_steps: int):
17
- """
18
- This function is used to generate images using our fine-tuned keras dreambooth stable diffusion model.
19
- Args:
20
- prompt (str): The text input given by the user based on which images will be generated.
21
- num_imgs_to_gen (int): The number of images to be generated using given prompt.
22
- num_steps (int): The number of denoising steps
23
- Returns:
24
- generated_img (List): List of images that were generated using the model
25
- """
26
  generated_img = dreambooth_model.text_to_image(
27
  prompt,
28
  negative_prompt=negative_prompt,
@@ -33,10 +24,10 @@ def generate_images(prompt: str, negative_prompt:str, num_imgs_to_gen: int, num_
33
  return generated_img
34
 
35
  with gr.Blocks() as demo:
36
- gr.HTML("<h2 style=\"font-size: 2em; font-weight: bold\" align=\"center\">Keras Dreambooth - Traditional Furniture Demo</h2>")
37
  with gr.Row():
38
  with gr.Column():
39
- prompt = gr.Textbox(lines=1, value="sks traditional furniture", label="Base Prompt")
40
  negative_prompt = gr.Textbox(lines=1, value="deformed", label="Negative Prompt")
41
  samples = gr.Slider(minimum=1, maximum=10, default=1, step=1, label="Number of Image")
42
  num_steps = gr.Slider(label="Inference Steps",value=50)
@@ -46,8 +37,7 @@ with gr.Blocks() as demo:
46
 
47
  run.click(generate_images, inputs=[prompt,negative_prompt, samples, num_steps], outputs=gallery)
48
 
49
- gr.Examples([["photo of traditional furniture","deformed", 1, 50]],
50
  [prompt,negative_prompt, samples,num_steps], gallery, generate_images)
51
- gr.Markdown('\n Demo created by: <a href=\"https://huggingface.co/kadirnar/\">Kadir Nar</a>')
52
 
53
  demo.launch(debug=True)
 
4
  from tensorflow import keras
5
 
6
  keras.mixed_precision.set_global_policy("mixed_float16")
7
+
8
  resolution = 512
9
  dreambooth_model = keras_cv.models.StableDiffusion(
10
  img_width=resolution, img_height=resolution, jit_compile=True,
11
  )
12
+ loaded_diffusion_model = from_pretrained_keras("ashishtanwer/shoe")
13
  dreambooth_model._diffusion_model = loaded_diffusion_model
14
 
15
 
16
  def generate_images(prompt: str, negative_prompt:str, num_imgs_to_gen: int, num_steps: int):
 
 
 
 
 
 
 
 
 
17
  generated_img = dreambooth_model.text_to_image(
18
  prompt,
19
  negative_prompt=negative_prompt,
 
24
  return generated_img
25
 
26
  with gr.Blocks() as demo:
27
+ gr.HTML("<h2 style=\"font-size: 2em; font-weight: bold\" align=\"center\">Radiance Shoe Demo</h2>")
28
  with gr.Row():
29
  with gr.Column():
30
+ prompt = gr.Textbox(lines=1, value="sshh shoe", label="Base Prompt")
31
  negative_prompt = gr.Textbox(lines=1, value="deformed", label="Negative Prompt")
32
  samples = gr.Slider(minimum=1, maximum=10, default=1, step=1, label="Number of Image")
33
  num_steps = gr.Slider(label="Inference Steps",value=50)
 
37
 
38
  run.click(generate_images, inputs=[prompt,negative_prompt, samples, num_steps], outputs=gallery)
39
 
40
+ gr.Examples([["photo of sshh shoe","deformed", 1, 50]],
41
  [prompt,negative_prompt, samples,num_steps], gallery, generate_images)
 
42
 
43
  demo.launch(debug=True)