Spaces:
Runtime error
Runtime error
File size: 8,296 Bytes
c8d36ae 597bf7d 7a75a86 597bf7d 554bac5 597bf7d 554bac5 597bf7d 554bac5 597bf7d fb9cb6e 597bf7d 2918df9 597bf7d 2918df9 597bf7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
"""
For every token in the dataset, we take its hidden state and project it onto a two-dimensional plane. Data points are colored by label/prediction, with mislabeled examples marked by a small black border.
"""
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
from src.subpages.page import Context, Page
@st.cache
def reduce_dim_svd(X, n_iter: int, random_state=42):
"""Dimensionality reduction using truncated SVD (aka LSA).
This transformer performs linear dimensionality reduction by means of truncated singular value decomposition (SVD). Contrary to PCA, this estimator does not center the data before computing the singular value decomposition. This means it can work with sparse matrices efficiently.
Args:
X: Training data
n_iter (int): Desired dimensionality of output data. Must be strictly less than the number of features.
random_state (int, optional): Used during randomized svd. Pass an int for reproducible results across multiple function calls. Defaults to 42.
Returns:
ndarray: Reduced version of X, ndarray of shape (n_samples, 2).
"""
from sklearn.decomposition import TruncatedSVD
svd = TruncatedSVD(n_components=2, n_iter=n_iter, random_state=random_state)
return svd.fit_transform(X)
@st.cache
def reduce_dim_pca(X, random_state=42):
"""Principal component analysis (PCA).
Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD.
Args:
X: Training data
random_state (int, optional): Used when the 'arpack' or 'randomized' solvers are used. Pass an int for reproducible results across multiple function calls.
Returns:
ndarray: Reduced version of X, ndarray of shape (n_samples, 2).
"""
from sklearn.decomposition import PCA
return PCA(n_components=2, random_state=random_state).fit_transform(X)
@st.cache
def reduce_dim_umap(X, n_neighbors=5, min_dist=0.1, metric="euclidean"):
"""Uniform Manifold Approximation and Projection
Finds a low dimensional embedding of the data that approximates an underlying manifold.
Args:
X: Training data
n_neighbors (int, optional): The size of local neighborhood (in terms of number of neighboring sample points) used for manifold approximation. Larger values result in more global views of the manifold, while smaller values result in more local data being preserved. In general values should be in the range 2 to 100. Defaults to 5.
min_dist (float, optional): The effective minimum distance between embedded points. Smaller values will result in a more clustered/clumped embedding where nearby points on the manifold are drawn closer together, while larger values will result on a more even dispersal of points. The value should be set relative to the `spread` value, which determines the scale at which embedded points will be spread out. Defaults to 0.1.
metric (str, optional): The metric to use to compute distances in high dimensional space (see UMAP docs for options). Defaults to "euclidean".
Returns:
ndarray: Reduced version of X, ndarray of shape (n_samples, 2).
"""
from umap import UMAP
return UMAP(n_neighbors=n_neighbors, min_dist=min_dist, metric=metric).fit_transform(X)
class HiddenStatesPage(Page):
name = "Hidden States"
icon = "grid-3x3"
def get_widget_defaults(self):
return {
"n_tokens": 1_000,
"svd_n_iter": 5,
"svd_random_state": 42,
"umap_n_neighbors": 15,
"umap_metric": "euclidean",
"umap_min_dist": 0.1,
}
def render(self, context: Context):
st.title("Embeddings")
with st.expander("💡", expanded=True):
st.write(
"For every token in the dataset, we take its hidden state and project it onto a two-dimensional plane. Data points are colored by label/prediction, with mislabeled examples signified by a small black border."
)
col1, _, col2 = st.columns([9 / 32, 1 / 32, 22 / 32])
df = context.df_tokens_merged.copy()
dim_algo = "SVD"
n_tokens = 100
with col1:
st.subheader("Settings")
n_tokens = st.slider(
"#tokens",
key="n_tokens",
min_value=100,
max_value=len(df["tokens"].unique()),
step=100,
)
dim_algo = st.selectbox("Dimensionality reduction algorithm", ["SVD", "PCA", "UMAP"])
if dim_algo == "SVD":
svd_n_iter = st.slider(
"#iterations",
key="svd_n_iter",
min_value=1,
max_value=10,
step=1,
)
elif dim_algo == "UMAP":
umap_n_neighbors = st.slider(
"#neighbors",
key="umap_n_neighbors",
min_value=2,
max_value=100,
step=1,
)
umap_min_dist = st.number_input(
"Min distance", key="umap_min_dist", value=0.1, min_value=0.0, max_value=1.0
)
umap_metric = st.selectbox(
"Metric", ["euclidean", "manhattan", "chebyshev", "minkowski"]
)
else:
pass
with col2:
sents = df.groupby("ids").apply(lambda x: " ".join(x["tokens"].tolist()))
X = np.array(df["hidden_states"].tolist())
transformed_hidden_states = None
if dim_algo == "SVD":
transformed_hidden_states = reduce_dim_svd(X, n_iter=svd_n_iter) # type: ignore
elif dim_algo == "PCA":
transformed_hidden_states = reduce_dim_pca(X)
elif dim_algo == "UMAP":
transformed_hidden_states = reduce_dim_umap(
X, n_neighbors=umap_n_neighbors, min_dist=umap_min_dist, metric=umap_metric # type: ignore
)
assert isinstance(transformed_hidden_states, np.ndarray)
df["x"] = transformed_hidden_states[:, 0]
df["y"] = transformed_hidden_states[:, 1]
df["sent0"] = df["ids"].map(lambda x: " ".join(sents[x][0:50].split()))
df["sent1"] = df["ids"].map(lambda x: " ".join(sents[x][50:100].split()))
df["sent2"] = df["ids"].map(lambda x: " ".join(sents[x][100:150].split()))
df["sent3"] = df["ids"].map(lambda x: " ".join(sents[x][150:200].split()))
df["sent4"] = df["ids"].map(lambda x: " ".join(sents[x][200:250].split()))
df["mislabeled"] = df["labels"] != df["preds"]
subset = df[:n_tokens]
mislabeled_examples_trace = go.Scatter(
x=subset[subset["mislabeled"]]["x"],
y=subset[subset["mislabeled"]]["y"],
mode="markers",
marker=dict(
size=6,
color="rgba(0,0,0,0)",
line=dict(width=1),
),
hoverinfo="skip",
)
st.subheader("Projection Results")
fig = px.scatter(
subset,
x="x",
y="y",
color="labels",
hover_data=["ids", "preds", "sent0", "sent1", "sent2", "sent3", "sent4"],
hover_name="tokens",
title="Colored by label",
)
fig.add_trace(mislabeled_examples_trace)
st.plotly_chart(fig)
fig = px.scatter(
subset,
x="x",
y="y",
color="preds",
hover_data=["ids", "labels", "sent0", "sent1", "sent2", "sent3", "sent4"],
hover_name="tokens",
title="Colored by prediction",
)
fig.add_trace(mislabeled_examples_trace)
st.plotly_chart(fig)
|