File size: 27,914 Bytes
eadd7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
import os
import sys
import types
from pathlib import Path
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent))
import argparse
import datetime
import time
import warnings
warnings.filterwarnings("ignore")  # ignore warning
import torch
import torch.nn as nn
from accelerate import Accelerator, InitProcessGroupKwargs
from accelerate.utils import DistributedType
from diffusers.models import AutoencoderKL
from transformers import T5EncoderModel, T5Tokenizer
from torch.utils.data import RandomSampler
from mmcv.runner import LogBuffer
from copy import deepcopy
import numpy as np
import torch.nn.functional as F
from tqdm import tqdm
from PIL import Image
import gc

from diffusion import IDDPM
from diffusion.utils.checkpoint import save_checkpoint, load_checkpoint
from diffusion.utils.dist_utils import synchronize, get_world_size, clip_grad_norm_, flush
from diffusion.data.builder import build_dataset, build_dataloader, set_data_root
from diffusion.model.builder import build_model
from diffusion.utils.logger import get_root_logger
from diffusion.utils.misc import set_random_seed, read_config, init_random_seed, DebugUnderflowOverflow
from diffusion.utils.optimizer import build_optimizer, auto_scale_lr
from diffusion.utils.lr_scheduler import build_lr_scheduler
from diffusion.utils.data_sampler import AspectRatioBatchSampler, BalancedAspectRatioBatchSampler
from diffusion.lcm_scheduler import LCMScheduler
from torchvision.utils import save_image


def set_fsdp_env():
    os.environ["ACCELERATE_USE_FSDP"] = 'true'
    os.environ["FSDP_AUTO_WRAP_POLICY"] = 'TRANSFORMER_BASED_WRAP'
    os.environ["FSDP_BACKWARD_PREFETCH"] = 'BACKWARD_PRE'
    os.environ["FSDP_TRANSFORMER_CLS_TO_WRAP"] = 'PixArtBlock'


def ema_update(model_dest: nn.Module, model_src: nn.Module, rate):
    param_dict_src = dict(model_src.named_parameters())
    for p_name, p_dest in model_dest.named_parameters():
        p_src = param_dict_src[p_name]
        assert p_src is not p_dest
        p_dest.data.mul_(rate).add_((1 - rate) * p_src.data)


def append_dims(x, target_dims):
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
    return x[(...,) + (None,) * dims_to_append]


# From LCMScheduler.get_scalings_for_boundary_condition_discrete
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0):
    c_skip = sigma_data**2 / ((timestep / 0.1) ** 2 + sigma_data**2)
    c_out = (timestep / 0.1) / ((timestep / 0.1) ** 2 + sigma_data**2) ** 0.5
    return c_skip, c_out


def extract_into_tensor(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


class DDIMSolver:
    def __init__(self, alpha_cumprods, timesteps=1000, ddim_timesteps=50):
        # DDIM sampling parameters
        step_ratio = timesteps // ddim_timesteps

        self.ddim_timesteps = (np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype(np.int64) - 1
        self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps]
        self.ddim_alpha_cumprods_prev = np.asarray(
            [alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist()
        )
        # convert to torch tensors
        self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long()
        self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods)
        self.ddim_alpha_cumprods_prev = torch.from_numpy(self.ddim_alpha_cumprods_prev)

    def to(self, device):
        self.ddim_timesteps = self.ddim_timesteps.to(device)
        self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device)
        self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(device)
        return self

    def ddim_step(self, pred_x0, pred_noise, timestep_index):
        alpha_cumprod_prev = extract_into_tensor(self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape)
        dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise
        x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt
        return x_prev


@torch.inference_mode()
def log_validation(model, step, device):
    torch.cuda.empty_cache()
    model = accelerator.unwrap_model(model).eval()
    scheduler = LCMScheduler(beta_start=0.0001, beta_end=0.02, beta_schedule="linear", prediction_type="epsilon")
    scheduler.set_timesteps(4, 50)
    infer_timesteps = scheduler.timesteps

    hw = torch.tensor([[1024, 1024]], dtype=torch.float, device=device).repeat(1, 1)
    ar = torch.tensor([[1.]], device=device).repeat(1, 1)
    # Create sampling noise:
    logger.info("Running validation... ")
    image_logs = []

    latents = []
    for prompt in validation_prompts:
        infer_latents = torch.randn(1, 4, latent_size, latent_size, device=device)
        embed = torch.load(f'output/tmp/{prompt}_{max_length}token.pth', map_location='cpu')
        caption_embs, emb_masks = embed['caption_embeds'].to(device), embed['emb_mask'].to(device)
        model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks)

        # 7. LCM MultiStep Sampling Loop:
        for i, t in tqdm(list(enumerate(infer_timesteps))):
            ts = torch.full((1,), t, device=device, dtype=torch.long)

            # model prediction (v-prediction, eps, x)
            model_pred = model(infer_latents, ts, caption_embs, **model_kwargs)[:, :4]

            # compute the previous noisy sample x_t -> x_t-1
            infer_latents, denoised = scheduler.step(model_pred, i, t, infer_latents, return_dict=False)
        latents.append(denoised)
    torch.cuda.empty_cache()
    vae = AutoencoderKL.from_pretrained(config.vae_pretrained).cuda()
    for prompt, latent in zip(validation_prompts, latents):
        samples = vae.decode(latent.detach() / vae.config.scaling_factor).sample
        samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()[0]
        image = Image.fromarray(samples)
        image_logs.append({"validation_prompt": prompt, "images": [image]})

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            for log in image_logs:
                images = log["images"]
                validation_prompt = log["validation_prompt"]
                formatted_images = []
                for image in images:
                    formatted_images.append(np.asarray(image))

                formatted_images = np.stack(formatted_images)

                tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC")
        elif tracker.name == "wandb":
            import wandb
            formatted_images = []

            for log in image_logs:
                images = log["images"]
                validation_prompt = log["validation_prompt"]
                for image in images:
                    image = wandb.Image(image, caption=validation_prompt)
                    formatted_images.append(image)

            tracker.log({"validation": formatted_images})
        else:
            logger.warn(f"image logging not implemented for {tracker.name}")

    gc.collect()
    torch.cuda.empty_cache()
    return image_logs


def train():
    if config.get('debug_nan', False):
        DebugUnderflowOverflow(model)
        logger.info('NaN debugger registered. Start to detect overflow during training.')
    time_start, last_tic = time.time(), time.time()
    log_buffer = LogBuffer()

    start_step = start_epoch * len(train_dataloader)
    global_step = 0
    total_steps = len(train_dataloader) * config.num_epochs

    load_vae_feat = getattr(train_dataloader.dataset, 'load_vae_feat', False)
    load_t5_feat = getattr(train_dataloader.dataset, 'load_t5_feat', False)

    # Create uncond embeds for classifier free guidance
    uncond_prompt_embeds = model.module.y_embedder.y_embedding.repeat(config.train_batch_size, 1, 1, 1)

    # Now you train the model
    for epoch in range(start_epoch + 1, config.num_epochs + 1):
        data_time_start= time.time()
        data_time_all = 0
        for step, batch in enumerate(train_dataloader):
            data_time_all += time.time() - data_time_start
            if load_vae_feat:
                z = batch[0]
            else:
                with torch.no_grad():
                    with torch.cuda.amp.autocast(enabled=config.mixed_precision == 'fp16'):
                        posterior = vae.encode(batch[0]).latent_dist
                        if config.sample_posterior:
                            z = posterior.sample()
                        else:
                            z = posterior.mode()
            latents = z * config.scale_factor
            data_info = {'img_hw': batch[3]['img_hw'].to(latents.dtype), 'aspect_ratio': batch[3]['aspect_ratio'].to(latents.dtype),}
            if load_t5_feat:
                y = batch[1]
                y_mask = batch[2]
            else:
                with torch.no_grad():
                    txt_tokens = tokenizer(
                        batch[1], max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
                    ).to(accelerator.device)
                    y = text_encoder(
                        txt_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0][:, None]
                    y_mask = txt_tokens.attention_mask[:, None, None]

            # Sample a random timestep for each image
            grad_norm = None
            with accelerator.accumulate(model):
                # Predict the noise residual
                optimizer.zero_grad()
                # Sample noise that we'll add to the latents
                noise = torch.randn_like(latents)
                bsz = latents.shape[0]

                # Sample a random timestep for each image t_n ~ U[0, N - k - 1] without bias.
                topk = config.train_sampling_steps // config.num_ddim_timesteps
                index = torch.randint(0, config.num_ddim_timesteps, (bsz,), device=latents.device).long()
                start_timesteps = solver.ddim_timesteps[index]
                timesteps = start_timesteps - topk
                timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps)

                # Get boundary scalings for start_timesteps and (end) timesteps.
                c_skip_start, c_out_start = scalings_for_boundary_conditions(start_timesteps)
                c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]]
                c_skip, c_out = scalings_for_boundary_conditions(timesteps)
                c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]]

                # Sample a random guidance scale w from U[w_min, w_max] and embed it
                # w = (config.w_max - config.w_min) * torch.rand((bsz,)) + config.w_min
                w = config.cfg_scale * torch.ones((bsz,))
                w = w.reshape(bsz, 1, 1, 1)
                w = w.to(device=latents.device, dtype=latents.dtype)

                # Get online LCM prediction on z_{t_{n + k}}, w, c, t_{n + k}
                _, pred_x_0, noisy_model_input = train_diffusion.training_losses(
                    model, latents, start_timesteps,
                    model_kwargs=dict(y=y, mask=y_mask, data_info=data_info),
                    noise=noise
                )

                model_pred = c_skip_start * noisy_model_input + c_out_start * pred_x_0

                # Use the ODE solver to predict the kth step in the augmented PF-ODE trajectory after
                # noisy_latents with both the conditioning embedding c and unconditional embedding 0
                # Get teacher model prediction on noisy_latents and conditional embedding
                with torch.no_grad():
                    with torch.autocast("cuda"):
                        cond_teacher_output, cond_pred_x0, _ = train_diffusion.training_losses(
                            model_teacher, latents, start_timesteps,
                            model_kwargs=dict(y=y, mask=y_mask, data_info=data_info),
                            noise=noise
                        )

                        # Get teacher model prediction on noisy_latents and unconditional embedding
                        uncond_teacher_output, uncond_pred_x0, _ = train_diffusion.training_losses(
                            model_teacher, latents, start_timesteps,
                            model_kwargs=dict(y=uncond_prompt_embeds, mask=y_mask, data_info=data_info),
                            noise=noise
                        )

                        # Perform "CFG" to get x_prev estimate (using the LCM paper's CFG formulation)
                        pred_x0 = cond_pred_x0 + w * (cond_pred_x0 - uncond_pred_x0)
                        pred_noise = cond_teacher_output + w * (cond_teacher_output - uncond_teacher_output)
                        x_prev = solver.ddim_step(pred_x0, pred_noise, index)

                # Get target LCM prediction on x_prev, w, c, t_n
                with torch.no_grad():
                    with torch.autocast("cuda", enabled=True):
                        _, pred_x_0, _ = train_diffusion.training_losses(
                            model_ema, x_prev.float(), timesteps,
                            model_kwargs=dict(y=y, mask=y_mask, data_info=data_info),
                            skip_noise=True
                        )

                    target = c_skip * x_prev + c_out * pred_x_0

                # Calculate loss
                if config.loss_type == "l2":
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
                elif config.loss_type == "huber":
                    loss = torch.mean(torch.sqrt((model_pred.float() - target.float()) ** 2 + config.huber_c**2) - config.huber_c)

                # Backpropagation on the online student model (`model`)
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    grad_norm = accelerator.clip_grad_norm_(model.parameters(), config.gradient_clip)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad(set_to_none=True)

                if accelerator.sync_gradients:
                    ema_update(model_ema, model, config.ema_decay)

            lr = lr_scheduler.get_last_lr()[0]
            logs = {"loss": accelerator.gather(loss).mean().item()}
            if grad_norm is not None:
                logs.update(grad_norm=accelerator.gather(grad_norm).mean().item())
            log_buffer.update(logs)
            if (step + 1) % config.log_interval == 0 or (step + 1) == 1:
                t = (time.time() - last_tic) / config.log_interval
                t_d = data_time_all / config.log_interval
                avg_time = (time.time() - time_start) / (global_step + 1)
                eta = str(datetime.timedelta(seconds=int(avg_time * (total_steps - start_step - global_step - 1))))
                eta_epoch = str(datetime.timedelta(seconds=int(avg_time * (len(train_dataloader) - step - 1))))
                # avg_loss = sum(loss_buffer) / len(loss_buffer)
                log_buffer.average()
                info = f"Step/Epoch [{(epoch-1)*len(train_dataloader)+step+1}/{epoch}][{step + 1}/{len(train_dataloader)}]:total_eta: {eta}, " \
                       f"epoch_eta:{eta_epoch}, time_all:{t:.3f}, time_data:{t_d:.3f}, lr:{lr:.3e}, s:({data_info['img_hw'][0][0].item()}, {data_info['img_hw'][0][1].item()}), "
                info += ', '.join([f"{k}:{v:.4f}" for k, v in log_buffer.output.items()])
                logger.info(info)
                last_tic = time.time()
                log_buffer.clear()
                data_time_all = 0
            logs.update(lr=lr)
            accelerator.log(logs, step=global_step + start_step)

            global_step += 1
            data_time_start= time.time()

            accelerator.wait_for_everyone()
            if accelerator.is_main_process:
                if ((epoch - 1) * len(train_dataloader) + step + 1) % config.save_model_steps == 0:
                    os.umask(0o000)
                    save_checkpoint(os.path.join(config.work_dir, 'checkpoints'),
                                    epoch=epoch,
                                    step=(epoch - 1) * len(train_dataloader) + step + 1,
                                    model=accelerator.unwrap_model(model),
                                    model_ema=accelerator.unwrap_model(model_ema),
                                    optimizer=optimizer,
                                    lr_scheduler=lr_scheduler
                                    )
                if ((epoch - 1) * len(train_dataloader) + step + 1) % config.eval_sampling_steps == 0:
                    log_validation(model, global_step, device=accelerator.device)

        accelerator.wait_for_everyone()
        if accelerator.is_main_process:
            if epoch % config.save_model_epochs == 0 or epoch == config.num_epochs:
                os.umask(0o000)
                save_checkpoint(os.path.join(config.work_dir, 'checkpoints'),
                                epoch=epoch,
                                step=(epoch - 1) * len(train_dataloader) + step + 1,
                                model=accelerator.unwrap_model(model),
                                model_ema=accelerator.unwrap_model(model_ema),
                                optimizer=optimizer,
                                lr_scheduler=lr_scheduler
                                )
        synchronize()


def parse_args():
    parser = argparse.ArgumentParser(description="Process some integers.")
    parser.add_argument("config", type=str, help="config")
    parser.add_argument("--cloud", action='store_true', default=False, help="cloud or local machine")
    parser.add_argument('--work-dir', help='the dir to save logs and models')
    parser.add_argument('--resume-from', help='the dir to resume the training')
    parser.add_argument('--load-from', default=None, help='the dir to load a ckpt for training')
    parser.add_argument('--local-rank', type=int, default=-1)
    parser.add_argument('--local_rank', type=int, default=-1)
    parser.add_argument('--debug', action='store_true')
    parser.add_argument(
        "--pipeline_load_from", default='output/pretrained_models/pixart_sigma_sdxlvae_T5_diffusers',
        type=str, help="Download for loading text_encoder, "
                       "tokenizer and vae from https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers"
    )
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()
    config = read_config(args.config)
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        config.work_dir = args.work_dir
    if args.cloud:
        config.data_root = '/data/data'
    if args.resume_from is not None:
        config.load_from = None
        config.resume_from = dict(
            checkpoint=args.resume_from,
            load_ema=False,
            resume_optimizer=True,
            resume_lr_scheduler=True)
    if args.debug:
        config.log_interval = 1
        config.train_batch_size = 2

    os.umask(0o000)
    os.makedirs(config.work_dir, exist_ok=True)

    init_handler = InitProcessGroupKwargs()
    init_handler.timeout = datetime.timedelta(seconds=5400)  # change timeout to avoid a strange NCCL bug
    # Initialize accelerator and tensorboard logging
    if config.use_fsdp:
        init_train = 'FSDP'
        from accelerate import FullyShardedDataParallelPlugin
        from torch.distributed.fsdp.fully_sharded_data_parallel import FullStateDictConfig
        set_fsdp_env()
        fsdp_plugin = FullyShardedDataParallelPlugin(state_dict_config=FullStateDictConfig(offload_to_cpu=False, rank0_only=False),)
    else:
        init_train = 'DDP'
        fsdp_plugin = None

    even_batches = True
    if config.multi_scale:
        even_batches=False,

    accelerator = Accelerator(
        mixed_precision=config.mixed_precision,
        gradient_accumulation_steps=config.gradient_accumulation_steps,
        log_with="tensorboard",
        project_dir=os.path.join(config.work_dir, "logs"),
        fsdp_plugin=fsdp_plugin,
        even_batches=even_batches,
        kwargs_handlers=[init_handler]
    )

    logger = get_root_logger(os.path.join(config.work_dir, 'train_log.log'))

    config.seed = init_random_seed(config.get('seed', None))
    set_random_seed(config.seed)

    if accelerator.is_main_process:
        config.dump(os.path.join(config.work_dir, 'config.py'))

    logger.info(f"Config: \n{config.pretty_text}")
    logger.info(f"World_size: {get_world_size()}, seed: {config.seed}")
    logger.info(f"Initializing: {init_train} for training")
    image_size = config.image_size  # @param [256, 512]
    latent_size = int(image_size) // 8
    pred_sigma = getattr(config, 'pred_sigma', True)
    learn_sigma = getattr(config, 'learn_sigma', True) and pred_sigma
    max_length = config.model_max_length
    model_kwargs={"pe_interpolation": config.pe_interpolation, 'config':config, 'model_max_length': max_length}

    # build models
    train_diffusion = IDDPM(str(config.train_sampling_steps), learn_sigma=learn_sigma, pred_sigma=pred_sigma,
                            snr=config.snr_loss, return_startx=True)
    model = build_model(config.model,
                        config.grad_checkpointing,
                        config.get('fp32_attention', False),
                        input_size=latent_size,
                        learn_sigma=learn_sigma,
                        pred_sigma=pred_sigma,
                        **model_kwargs).train()
    logger.info(f"{model.__class__.__name__} Model Parameters: {sum(p.numel() for p in model.parameters()):,}")

    if config.load_from is not None:
        if args.load_from is not None:
            config.load_from = args.load_from
        missing, unexpected = load_checkpoint(
            config.load_from, model, load_ema=config.get('load_ema', False), max_length=max_length)
        logger.warning(f'Missing keys: {missing}')
        logger.warning(f'Unexpected keys: {unexpected}')

    model_ema = deepcopy(model).eval()
    model_teacher = deepcopy(model).eval()

    if not config.data.load_vae_feat:
        vae = AutoencoderKL.from_pretrained(config.vae_pretrained).cuda()

    # prepare for FSDP clip grad norm calculation
    if accelerator.distributed_type == DistributedType.FSDP:
        for m in accelerator._models:
            m.clip_grad_norm_ = types.MethodType(clip_grad_norm_, m)
    tokenizer = text_encoder = None
    if not config.data.load_t5_feat:
        tokenizer = T5Tokenizer.from_pretrained(args.pipeline_load_from, subfolder="tokenizer")
        text_encoder = T5EncoderModel.from_pretrained(
            args.pipeline_load_from, subfolder="text_encoder", torch_dtype=torch.float16).to(accelerator.device)

    logger.info(f"vae sacle factor: {config.scale_factor}")

    # build dataloader
    set_data_root(config.data_root)
    dataset = build_dataset(config.data, resolution=image_size, aspect_ratio_type=config.aspect_ratio_type)
    if config.multi_scale:
        batch_sampler = AspectRatioBatchSampler(sampler=RandomSampler(dataset), dataset=dataset,
                                                batch_size=config.train_batch_size, aspect_ratios=dataset.aspect_ratio, drop_last=True,
                                                ratio_nums=dataset.ratio_nums, config=config, valid_num=config.valid_num)
        train_dataloader = build_dataloader(dataset, batch_sampler=batch_sampler, num_workers=config.num_workers)
    else:
        train_dataloader = build_dataloader(dataset, num_workers=config.num_workers, batch_size=config.train_batch_size, shuffle=True)

    # preparing embeddings for visualization. We put it here for saving GPU memory
    validation_prompts = [
        "dog",
        "portrait photo of a girl, photograph, highly detailed face, depth of field",
        "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
        "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
        "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
    ]
    logger.info("Preparing Visulalization prompt embeddings...")
    skip = True
    for prompt in validation_prompts:
        if not os.path.exists(f'output/tmp/{prompt}_{max_length}token.pth'):
            skip = False
            break
    logger.info("Preparing Visualization prompt embeddings...")
    if accelerator.is_main_process and not skip:
        if config.data.load_t5_feat and (tokenizer is None or text_encoder is None):
            logger.info(f"Loading text encoder and tokenizer from {args.pipeline_load_from} ...")
            tokenizer = T5Tokenizer.from_pretrained(args.pipeline_load_from, subfolder="tokenizer")
            text_encoder = T5EncoderModel.from_pretrained(
                args.pipeline_load_from, subfolder="text_encoder", torch_dtype=torch.float16).to(accelerator.device)
        for prompt in validation_prompts:
            txt_tokens = tokenizer(
                prompt, max_length=max_length,  padding="max_length", truncation=True, return_tensors="pt"
            ).to(accelerator.device)
            caption_emb = text_encoder(txt_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0]
            torch.save(
                {'caption_embeds': caption_emb, 'emb_mask': txt_tokens.attention_mask},
                f'output/tmp/{prompt}_{max_length}token.pth')
        if config.data.load_t5_feat:
            del tokenizer
            del txt_tokens
        flush()
        time.sleep(5)

    # build optimizer and lr scheduler
    lr_scale_ratio = 1
    if config.get('auto_lr', None):
        lr_scale_ratio = auto_scale_lr(config.train_batch_size * get_world_size() * config.gradient_accumulation_steps,
                                       config.optimizer,
                                       **config.auto_lr)
    optimizer = build_optimizer(model, config.optimizer)
    lr_scheduler = build_lr_scheduler(config, optimizer, train_dataloader, lr_scale_ratio)

    timestamp = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())

    if accelerator.is_main_process:
        accelerator.init_trackers(f"tb_{timestamp}")

    start_epoch = 0
    if config.resume_from is not None and config.resume_from['checkpoint'] is not None:
        start_epoch, missing, unexpected = load_checkpoint(**config.resume_from,
                                                           model=model,
                                                           model_ema=model_ema,
                                                           optimizer=optimizer,
                                                           lr_scheduler=lr_scheduler,
                                                           )

        logger.warning(f'Missing keys: {missing}')
        logger.warning(f'Unexpected keys: {unexpected}')

    solver = DDIMSolver(train_diffusion.alphas_cumprod, timesteps=config.train_sampling_steps, ddim_timesteps=config.num_ddim_timesteps)
    solver.to(accelerator.device)
    # Prepare everything
    # There is no specific order to remember, you just need to unpack the
    # objects in the same order you gave them to the prepare method.
    model, model_ema, model_teacher = accelerator.prepare(model, model_ema, model_teacher)
    optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler)
    train()