File size: 13,501 Bytes
eadd7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import math
import torch
import torch.nn as nn
import os
import numpy as np
from timm.models.layers import DropPath
from timm.models.vision_transformer import PatchEmbed, Mlp

from diffusion.model.builder import MODELS
from diffusion.model.utils import auto_grad_checkpoint, to_2tuple
from diffusion.model.nets.PixArt_blocks import t2i_modulate, CaptionEmbedder, AttentionKVCompress, MultiHeadCrossAttention, T2IFinalLayer, TimestepEmbedder, LabelEmbedder, FinalLayer
from diffusion.utils.logger import get_root_logger


class PixArtBlock(nn.Module):
    """
    A PixArt block with adaptive layer norm (adaLN-single) conditioning.
    """

    def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, drop_path=0, input_size=None,
                 sampling=None, sr_ratio=1, qk_norm=False, **block_kwargs):
        super().__init__()
        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.attn = AttentionKVCompress(
            hidden_size, num_heads=num_heads, qkv_bias=True, sampling=sampling, sr_ratio=sr_ratio,
            qk_norm=qk_norm, **block_kwargs
        )
        self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs)
        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        # to be compatible with lower version pytorch
        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.mlp = Mlp(in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size ** 0.5)
        self.sampling = sampling
        self.sr_ratio = sr_ratio

    def forward(self, x, y, t, mask=None, **kwargs):
        B, N, C = x.shape

        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None] + t.reshape(B, 6, -1)).chunk(6, dim=1)
        x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C))
        x = x + self.cross_attn(x, y, mask)
        x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))

        return x


#############################################################################
#                                 Core PixArt Model                                #
#################################################################################
@MODELS.register_module()
class PixArt(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """

    def __init__(
            self,
            input_size=32,
            patch_size=2,
            in_channels=4,
            hidden_size=1152,
            depth=28,
            num_heads=16,
            mlp_ratio=4.0,
            class_dropout_prob=0.1,
            pred_sigma=True,
            drop_path: float = 0.,
            caption_channels=4096,
            pe_interpolation=1.0,
            config=None,
            model_max_length=120,
            qk_norm=False,
            kv_compress_config=None,
            **kwargs,
    ):
        super().__init__()
        self.pred_sigma = pred_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if pred_sigma else in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.pe_interpolation = pe_interpolation
        self.depth = depth

        self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
        self.t_embedder = TimestepEmbedder(hidden_size)
        num_patches = self.x_embedder.num_patches
        self.base_size = input_size // self.patch_size
        # Will use fixed sin-cos embedding:
        self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))

        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.t_block = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 6 * hidden_size, bias=True)
        )
        self.y_embedder = CaptionEmbedder(
            in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob,
            act_layer=approx_gelu, token_num=model_max_length)
        drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)]  # stochastic depth decay rule
        self.kv_compress_config = kv_compress_config
        if kv_compress_config is None:
            self.kv_compress_config = {
                'sampling': None,
                'scale_factor': 1,
                'kv_compress_layer': [],
            }
        self.blocks = nn.ModuleList([
            PixArtBlock(
                hidden_size, num_heads, mlp_ratio=mlp_ratio, drop_path=drop_path[i],
                input_size=(input_size // patch_size, input_size // patch_size),
                sampling=self.kv_compress_config['sampling'],
                sr_ratio=int(
                    self.kv_compress_config['scale_factor']
                ) if i in self.kv_compress_config['kv_compress_layer'] else 1,
                qk_norm=qk_norm,
            )
            for i in range(depth)
        ])
        self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels)

        self.initialize_weights()

        if config:
            logger = get_root_logger(os.path.join(config.work_dir, 'train_log.log'))
            logger.warning(f"position embed interpolation: {self.pe_interpolation}, base size: {self.base_size}")
            logger.warning(f"kv compress config: {self.kv_compress_config}")
        else:
            print(f'Warning: position embed interpolation: {self.pe_interpolation}, base size: {self.base_size}')
            print(f"kv compress config: {self.kv_compress_config}")


    def forward(self, x, timestep, y, mask=None, data_info=None, **kwargs):
        """
        Forward pass of PixArt.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N, 1, 120, C) tensor of class labels
        """
        x = x.to(self.dtype)
        timestep = timestep.to(self.dtype)
        y = y.to(self.dtype)
        pos_embed = self.pos_embed.to(self.dtype)
        self.h, self.w = x.shape[-2]//self.patch_size, x.shape[-1]//self.patch_size
        x = self.x_embedder(x) + pos_embed  # (N, T, D), where T = H * W / patch_size ** 2
        t = self.t_embedder(timestep.to(x.dtype))  # (N, D)
        t0 = self.t_block(t)
        y = self.y_embedder(y, self.training)  # (N, 1, L, D)
        if mask is not None:
            if mask.shape[0] != y.shape[0]:
                mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
            mask = mask.squeeze(1).squeeze(1)
            y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
            y_lens = mask.sum(dim=1).tolist()
        else:
            y_lens = [y.shape[2]] * y.shape[0]
            y = y.squeeze(1).view(1, -1, x.shape[-1])
        for block in self.blocks:
            x = auto_grad_checkpoint(block, x, y, t0, y_lens)  # (N, T, D) #support grad checkpoint
        x = self.final_layer(x, t)  # (N, T, patch_size ** 2 * out_channels)
        x = self.unpatchify(x)  # (N, out_channels, H, W)
        return x

    def forward_with_dpmsolver(self, x, timestep, y, mask=None, **kwargs):
        """
        dpm solver donnot need variance prediction
        """
        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        model_out = self.forward(x, timestep, y, mask)
        return model_out.chunk(2, dim=1)[0]

    def forward_with_cfg(self, x, timestep, y, cfg_scale, mask=None, **kwargs):
        """
        Forward pass of PixArt, but also batches the unconditional forward pass for classifier-free guidance.
        """
        # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
        half = x[: len(x) // 2]
        combined = torch.cat([half, half], dim=0)
        model_out = self.forward(combined, timestep, y, mask, kwargs)
        model_out = model_out['x'] if isinstance(model_out, dict) else model_out
        eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)
        return torch.cat([eps, rest], dim=1)

    def unpatchify(self, x):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.out_channels
        p = self.x_embedder.patch_size[0]
        h = w = int(x.shape[1] ** 0.5)
        assert h * w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p))
        return imgs

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize (and freeze) pos_embed by sin-cos embedding:
        pos_embed = get_2d_sincos_pos_embed(
            self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5),
            pe_interpolation=self.pe_interpolation, base_size=self.base_size
        )
        self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        w = self.x_embedder.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
        nn.init.normal_(self.t_block[1].weight, std=0.02)

        # Initialize caption embedding MLP:
        nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
        nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)

        # Zero-out adaLN modulation layers in PixArt blocks:
        for block in self.blocks:
            nn.init.constant_(block.cross_attn.proj.weight, 0)
            nn.init.constant_(block.cross_attn.proj.bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)

    @property
    def dtype(self):
        return next(self.parameters()).dtype


def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, pe_interpolation=1.0, base_size=16):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    if isinstance(grid_size, int):
        grid_size = to_2tuple(grid_size)
    grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0]/base_size) / pe_interpolation
    grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1]/base_size) / pe_interpolation
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)
    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])

    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.
    omega = 1. / 10000 ** omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


#################################################################################
#                                   PixArt Configs                                  #
#################################################################################
@MODELS.register_module()
def PixArt_XL_2(**kwargs):
    return PixArt(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)