File size: 10,025 Bytes
eadd7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
"""
This file contains primitives for multi-gpu communication.
This is useful when doing distributed training.
"""
import os
import pickle
import shutil

import gc
import mmcv
import torch
import torch.distributed as dist
from mmcv.runner import get_dist_info


def is_distributed():
    return get_world_size() > 1


def get_world_size():
    if not dist.is_available():
        return 1
    if not dist.is_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not dist.is_available():
        return 0
    if not dist.is_initialized():
        return 0
    return dist.get_rank()


def get_local_rank():
    if not dist.is_available():
        return 0
    if not dist.is_initialized():
        return 0
    local_rank = int(os.getenv('LOCAL_RANK', 0))
    return local_rank


def is_master():
    return get_rank() == 0


def is_local_master():
    return get_local_rank() == 0


def get_local_proc_group(group_size=8):
    world_size = get_world_size()
    if world_size <= group_size or group_size == 1:
        return None
    assert world_size % group_size == 0, f'world size ({world_size}) should be evenly divided by group size ({group_size}).'
    process_groups = getattr(get_local_proc_group, 'process_groups', dict())
    if group_size not in process_groups:
        num_groups = dist.get_world_size() // group_size
        groups = [list(range(i * group_size, (i + 1) * group_size)) for i in range(num_groups)]
        process_groups.update({group_size: [torch.distributed.new_group(group) for group in groups]})
        get_local_proc_group.process_groups = process_groups

    group_idx = get_rank() // group_size
    process_groups = get_local_proc_group.process_groups.get(group_size)[group_idx]
    return process_groups


def synchronize():
    """
    Helper function to synchronize (barrier) among all processes when
    using distributed training
    """
    if not dist.is_available():
        return
    if not dist.is_initialized():
        return
    world_size = dist.get_world_size()
    if world_size == 1:
        return
    dist.barrier()


def all_gather(data):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors)
    Args:
        data: any picklable object
    Returns:
        list[data]: list of data gathered from each rank
    """
    to_device = torch.device("cuda")
    # to_device = torch.device("cpu")

    world_size = get_world_size()
    if world_size == 1:
        return [data]

    # serialized to a Tensor
    buffer = pickle.dumps(data)
    storage = torch.ByteStorage.from_buffer(buffer)
    tensor = torch.ByteTensor(storage).to(to_device)

    # obtain Tensor size of each rank
    local_size = torch.LongTensor([tensor.numel()]).to(to_device)
    size_list = [torch.LongTensor([0]).to(to_device) for _ in range(world_size)]
    dist.all_gather(size_list, local_size)
    size_list = [int(size.item()) for size in size_list]
    max_size = max(size_list)

    # receiving Tensor from all ranks
    # we pad the tensor because torch all_gather does not support
    # gathering tensors of different shapes
    tensor_list = []
    for _ in size_list:
        tensor_list.append(torch.ByteTensor(size=(max_size,)).to(to_device))
    if local_size != max_size:
        padding = torch.ByteTensor(size=(max_size - local_size,)).to(to_device)
        tensor = torch.cat((tensor, padding), dim=0)
    dist.all_gather(tensor_list, tensor)

    data_list = []
    for size, tensor in zip(size_list, tensor_list):
        buffer = tensor.cpu().numpy().tobytes()[:size]
        data_list.append(pickle.loads(buffer))

    return data_list


def reduce_dict(input_dict, average=True):
    """
    Args:
        input_dict (dict): all the values will be reduced
        average (bool): whether to do average or sum
    Reduce the values in the dictionary from all processes so that process with rank
    0 has the averaged results. Returns a dict with the same fields as
    input_dict, after reduction.
    """
    world_size = get_world_size()
    if world_size < 2:
        return input_dict
    with torch.no_grad():
        names = []
        values = []
        # sort the keys so that they are consistent across processes
        for k in sorted(input_dict.keys()):
            names.append(k)
            values.append(input_dict[k])
        values = torch.stack(values, dim=0)
        dist.reduce(values, dst=0)
        if dist.get_rank() == 0 and average:
            # only main process gets accumulated, so only divide by
            # world_size in this case
            values /= world_size
        reduced_dict = {k: v for k, v in zip(names, values)}
    return reduced_dict


def broadcast(data, **kwargs):
    if get_world_size() == 1:
        return data
    data = [data]
    dist.broadcast_object_list(data, **kwargs)
    return data[0]


def all_gather_cpu(result_part, tmpdir=None, collect_by_master=True):
    rank, world_size = get_dist_info()
    if tmpdir is None:
        tmpdir = './tmp'
    if rank == 0:
        mmcv.mkdir_or_exist(tmpdir)
    synchronize()
    # dump the part result to the dir
    mmcv.dump(result_part, os.path.join(tmpdir, f'part_{rank}.pkl'))
    synchronize()
    # collect all parts
    if collect_by_master and rank != 0:
        return None
    else:
        # load results of all parts from tmp dir
        results = []
        for i in range(world_size):
            part_file = os.path.join(tmpdir, f'part_{i}.pkl')
            results.append(mmcv.load(part_file))
    if not collect_by_master:
        synchronize()
    # remove tmp dir
    if rank == 0:
        shutil.rmtree(tmpdir)
    return results

def all_gather_tensor(tensor, group_size=None, group=None):
    if group_size is None:
        group_size = get_world_size()
    if group_size == 1:
        output = [tensor]
    else:
        output = [torch.zeros_like(tensor) for _ in range(group_size)]
        dist.all_gather(output, tensor, group=group)
    return output


def gather_difflen_tensor(feat, num_samples_list, concat=True, group=None, group_size=None):
    world_size = get_world_size()
    if world_size == 1:
        if not concat:
            return [feat]
        return feat
    num_samples, *feat_dim = feat.size()
    # padding to max number of samples
    feat_padding = feat.new_zeros((max(num_samples_list), *feat_dim))
    feat_padding[:num_samples] = feat
    # gather
    feat_gather = all_gather_tensor(feat_padding, group=group, group_size=group_size)
    for r, num in enumerate(num_samples_list):
        feat_gather[r] = feat_gather[r][:num]
    if concat:
        feat_gather = torch.cat(feat_gather)
    return feat_gather


class GatherLayer(torch.autograd.Function):
    '''Gather tensors from all process, supporting backward propagation.
    '''

    @staticmethod
    def forward(ctx, input):
        ctx.save_for_backward(input)
        num_samples = torch.tensor(input.size(0), dtype=torch.long, device=input.device)
        ctx.num_samples_list = all_gather_tensor(num_samples)
        output = gather_difflen_tensor(input, ctx.num_samples_list, concat=False)
        return tuple(output)

    @staticmethod
    def backward(ctx, *grads):  # tuple(output)'s grad
        input, = ctx.saved_tensors
        num_samples_list = ctx.num_samples_list
        rank = get_rank()
        start, end = sum(num_samples_list[:rank]), sum(num_samples_list[:rank + 1])
        grads = torch.cat(grads)
        if is_distributed():
            dist.all_reduce(grads)
        grad_out = torch.zeros_like(input)
        grad_out[:] = grads[start:end]
        return grad_out, None, None


class GatherLayerWithGroup(torch.autograd.Function):
    '''Gather tensors from all process, supporting backward propagation.
    '''

    @staticmethod
    def forward(ctx, input, group, group_size):
        ctx.save_for_backward(input)
        ctx.group_size = group_size
        output = all_gather_tensor(input, group=group, group_size=group_size)
        return tuple(output)

    @staticmethod
    def backward(ctx, *grads):  # tuple(output)'s grad
        input, = ctx.saved_tensors
        grads = torch.stack(grads)
        if is_distributed():
            dist.all_reduce(grads)
        grad_out = torch.zeros_like(input)
        grad_out[:] = grads[get_rank() % ctx.group_size]
        return grad_out, None, None


def gather_layer_with_group(data, group=None, group_size=None):
    if group_size is None:
        group_size = get_world_size()
    output = GatherLayer.apply(data, group, group_size)
    return output

from typing import Union
import math
# from torch.distributed.fsdp.fully_sharded_data_parallel import TrainingState_, _calc_grad_norm

@torch.no_grad()
def clip_grad_norm_(
    self, max_norm: Union[float, int], norm_type: Union[float, int] = 2.0
) -> None:
    self._lazy_init()
    self._wait_for_previous_optim_step()
    assert self._is_root, "clip_grad_norm should only be called on the root (parent) instance"
    self._assert_state(TrainingState_.IDLE)

    max_norm = float(max_norm)
    norm_type = float(norm_type)
    # Computes the max norm for this shard's gradients and sync's across workers
    local_norm = _calc_grad_norm(self.params_with_grad, norm_type).cuda()  # type: ignore[arg-type]
    if norm_type == math.inf:
        total_norm = local_norm
        dist.all_reduce(total_norm, op=torch.distributed.ReduceOp.MAX, group=self.process_group)
    else:
        total_norm = local_norm ** norm_type
        dist.all_reduce(total_norm, group=self.process_group)
        total_norm = total_norm ** (1.0 / norm_type)

    clip_coef = torch.tensor(max_norm, dtype=total_norm.dtype, device=total_norm.device) / (total_norm + 1e-6)
    if clip_coef < 1:
        # multiply by clip_coef, aka, (max_norm/total_norm).
        for p in self.params_with_grad:
            assert p.grad is not None
            p.grad.detach().mul_(clip_coef.to(p.grad.device))
    return total_norm


def flush():
    gc.collect()
    torch.cuda.empty_cache()