File size: 18,657 Bytes
eadd7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import os
import sys
import torch.nn as nn
from torch.utils.checkpoint import checkpoint, checkpoint_sequential
import torch.nn.functional as F
import torch
import torch.distributed as dist
import re
import math
from collections.abc import Iterable
from itertools import repeat
from torchvision import transforms as T
import random
from PIL import Image


def _ntuple(n):
    def parse(x):
        if isinstance(x, Iterable) and not isinstance(x, str):
            return x
        return tuple(repeat(x, n))
    return parse


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)

def set_grad_checkpoint(model, use_fp32_attention=False, gc_step=1):
    assert isinstance(model, nn.Module)

    def set_attr(module):
        module.grad_checkpointing = True
        module.fp32_attention = use_fp32_attention
        module.grad_checkpointing_step = gc_step
    model.apply(set_attr)


def auto_grad_checkpoint(module, *args, **kwargs):
    if getattr(module, 'grad_checkpointing', False):
        if isinstance(module, Iterable):
            gc_step = module[0].grad_checkpointing_step
            return checkpoint_sequential(module, gc_step, *args, **kwargs)
        else:
            return checkpoint(module, *args, **kwargs)
    return module(*args, **kwargs)


def checkpoint_sequential(functions, step, input, *args, **kwargs):

    # Hack for keyword-only parameter in a python 2.7-compliant way
    preserve = kwargs.pop('preserve_rng_state', True)
    if kwargs:
        raise ValueError("Unexpected keyword arguments: " + ",".join(arg for arg in kwargs))

    def run_function(start, end, functions):
        def forward(input):
            for j in range(start, end + 1):
                input = functions[j](input, *args)
            return input
        return forward

    if isinstance(functions, torch.nn.Sequential):
        functions = list(functions.children())

    # the last chunk has to be non-volatile
    end = -1
    segment = len(functions) // step
    for start in range(0, step * (segment - 1), step):
        end = start + step - 1
        input = checkpoint(run_function(start, end, functions), input, preserve_rng_state=preserve)
    return run_function(end + 1, len(functions) - 1, functions)(input)


def window_partition(x, window_size):
    """
    Partition into non-overlapping windows with padding if needed.
    Args:
        x (tensor): input tokens with [B, H, W, C].
        window_size (int): window size.

    Returns:
        windows: windows after partition with [B * num_windows, window_size, window_size, C].
        (Hp, Wp): padded height and width before partition
    """
    B, H, W, C = x.shape

    pad_h = (window_size - H % window_size) % window_size
    pad_w = (window_size - W % window_size) % window_size
    if pad_h > 0 or pad_w > 0:
        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
    Hp, Wp = H + pad_h, W + pad_w

    x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows, (Hp, Wp)


def window_unpartition(windows, window_size, pad_hw, hw):
    """
    Window unpartition into original sequences and removing padding.
    Args:
        x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
        window_size (int): window size.
        pad_hw (Tuple): padded height and width (Hp, Wp).
        hw (Tuple): original height and width (H, W) before padding.

    Returns:
        x: unpartitioned sequences with [B, H, W, C].
    """
    Hp, Wp = pad_hw
    H, W = hw
    B = windows.shape[0] // (Hp * Wp // window_size // window_size)
    x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)

    if Hp > H or Wp > W:
        x = x[:, :H, :W, :].contiguous()
    return x


def get_rel_pos(q_size, k_size, rel_pos):
    """
    Get relative positional embeddings according to the relative positions of
        query and key sizes.
    Args:
        q_size (int): size of query q.
        k_size (int): size of key k.
        rel_pos (Tensor): relative position embeddings (L, C).

    Returns:
        Extracted positional embeddings according to relative positions.
    """
    max_rel_dist = int(2 * max(q_size, k_size) - 1)
    # Interpolate rel pos if needed.
    if rel_pos.shape[0] != max_rel_dist:
        # Interpolate rel pos.
        rel_pos_resized = F.interpolate(
            rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
            size=max_rel_dist,
            mode="linear",
        )
        rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
    else:
        rel_pos_resized = rel_pos

    # Scale the coords with short length if shapes for q and k are different.
    q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
    k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
    relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)

    return rel_pos_resized[relative_coords.long()]


def add_decomposed_rel_pos(attn, q, rel_pos_h, rel_pos_w, q_size, k_size):
    """
    Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
    https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py   # noqa B950
    Args:
        attn (Tensor): attention map.
        q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
        rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
        rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
        q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
        k_size (Tuple): spatial sequence size of key k with (k_h, k_w).

    Returns:
        attn (Tensor): attention map with added relative positional embeddings.
    """
    q_h, q_w = q_size
    k_h, k_w = k_size
    Rh = get_rel_pos(q_h, k_h, rel_pos_h)
    Rw = get_rel_pos(q_w, k_w, rel_pos_w)

    B, _, dim = q.shape
    r_q = q.reshape(B, q_h, q_w, dim)
    rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
    rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)

    attn = (
        attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
    ).view(B, q_h * q_w, k_h * k_w)

    return attn

def mean_flat(tensor):
    return tensor.mean(dim=list(range(1, tensor.ndim)))


#################################################################################
#                          Token Masking and Unmasking                          #
#################################################################################
def get_mask(batch, length, mask_ratio, device, mask_type=None, data_info=None, extra_len=0):
    """
    Get the binary mask for the input sequence.
    Args:
        - batch: batch size
        - length: sequence length
        - mask_ratio: ratio of tokens to mask
        - data_info: dictionary with info for reconstruction
    return:
        mask_dict with following keys:
        - mask: binary mask, 0 is keep, 1 is remove
        - ids_keep: indices of tokens to keep
        - ids_restore: indices to restore the original order
    """
    assert mask_type in ['random', 'fft', 'laplacian', 'group']
    mask = torch.ones([batch, length], device=device)
    len_keep = int(length * (1 - mask_ratio)) - extra_len

    if mask_type == 'random' or mask_type == 'group':
        noise = torch.rand(batch, length, device=device)  # noise in [0, 1]
        ids_shuffle = torch.argsort(noise, dim=1)  # ascend: small is keep, large is remove
        ids_restore = torch.argsort(ids_shuffle, dim=1)
        # keep the first subset
        ids_keep = ids_shuffle[:, :len_keep]
        ids_removed = ids_shuffle[:, len_keep:]

    elif mask_type in ['fft', 'laplacian']:
        if 'strength' in data_info:
            strength = data_info['strength']

        else:
            N = data_info['N'][0]
            img = data_info['ori_img']
            # 获取原图的尺寸信息
            _, C, H, W = img.shape
            if mask_type == 'fft':
                # 对图片进行reshape,将其变为patch (3, H/N, N, W/N, N)
                reshaped_image = img.reshape((batch, -1, H // N, N, W // N, N))
                fft_image = torch.fft.fftn(reshaped_image, dim=(3, 5))
                # 取绝对值并求和获取频率强度
                strength = torch.sum(torch.abs(fft_image), dim=(1, 3, 5)).reshape((batch, -1,))
            elif type == 'laplacian':
                laplacian_kernel = torch.tensor([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype=torch.float32).reshape(1, 1, 3, 3)
                laplacian_kernel = laplacian_kernel.repeat(C, 1, 1, 1)
                # 对图片进行reshape,将其变为patch (3, H/N, N, W/N, N)
                reshaped_image = img.reshape(-1, C, H // N, N, W // N, N).permute(0, 2, 4, 1, 3, 5).reshape(-1, C, N, N)
                laplacian_response = F.conv2d(reshaped_image, laplacian_kernel, padding=1, groups=C)
                strength = laplacian_response.sum(dim=[1, 2, 3]).reshape((batch, -1,))

        # 对频率强度进行归一化,然后使用torch.multinomial进行采样
        probabilities = strength / (strength.max(dim=1)[0][:, None]+1e-5)
        ids_shuffle = torch.multinomial(probabilities.clip(1e-5, 1), length, replacement=False)
        ids_keep = ids_shuffle[:, :len_keep]
        ids_restore = torch.argsort(ids_shuffle, dim=1)
        ids_removed = ids_shuffle[:, len_keep:]

    mask[:, :len_keep] = 0
    mask = torch.gather(mask, dim=1, index=ids_restore)

    return {'mask': mask,
            'ids_keep': ids_keep,
            'ids_restore': ids_restore,
            'ids_removed': ids_removed}


def mask_out_token(x, ids_keep, ids_removed=None):
    """
    Mask out the tokens specified by ids_keep.
    Args:
        - x: input sequence, [N, L, D]
        - ids_keep: indices of tokens to keep
    return:
        - x_masked: masked sequence
    """
    N, L, D = x.shape  # batch, length, dim
    x_remain = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
    if ids_removed is not None:
        x_masked = torch.gather(x, dim=1, index=ids_removed.unsqueeze(-1).repeat(1, 1, D))
        return x_remain, x_masked
    else:
        return x_remain


def mask_tokens(x, mask_ratio):
    """
    Perform per-sample random masking by per-sample shuffling.
    Per-sample shuffling is done by argsort random noise.
    x: [N, L, D], sequence
    """
    N, L, D = x.shape  # batch, length, dim
    len_keep = int(L * (1 - mask_ratio))

    noise = torch.rand(N, L, device=x.device)  # noise in [0, 1]

    # sort noise for each sample
    ids_shuffle = torch.argsort(noise, dim=1)  # ascend: small is keep, large is remove
    ids_restore = torch.argsort(ids_shuffle, dim=1)

    # keep the first subset
    ids_keep = ids_shuffle[:, :len_keep]
    x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))

    # generate the binary mask: 0 is keep, 1 is remove
    mask = torch.ones([N, L], device=x.device)
    mask[:, :len_keep] = 0
    mask = torch.gather(mask, dim=1, index=ids_restore)

    return x_masked, mask, ids_restore


def unmask_tokens(x, ids_restore, mask_token):
    # x: [N, T, D] if extras == 0 (i.e., no cls token) else x: [N, T+1, D]
    mask_tokens = mask_token.repeat(x.shape[0], ids_restore.shape[1] - x.shape[1], 1)
    x = torch.cat([x, mask_tokens], dim=1)
    x = torch.gather(x, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]))  # unshuffle
    return x


# Parse 'None' to None and others to float value
def parse_float_none(s):
    assert isinstance(s, str)
    return None if s == 'None' else float(s)


#----------------------------------------------------------------------------
# Parse a comma separated list of numbers or ranges and return a list of ints.
# Example: '1,2,5-10' returns [1, 2, 5, 6, 7, 8, 9, 10]

def parse_int_list(s):
    if isinstance(s, list): return s
    ranges = []
    range_re = re.compile(r'^(\d+)-(\d+)$')
    for p in s.split(','):
        m = range_re.match(p)
        if m:
            ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
        else:
            ranges.append(int(p))
    return ranges


def init_processes(fn, args):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = args.master_address
    os.environ['MASTER_PORT'] = str(random.randint(2000, 6000))
    print(f'MASTER_ADDR = {os.environ["MASTER_ADDR"]}')
    print(f'MASTER_PORT = {os.environ["MASTER_PORT"]}')
    torch.cuda.set_device(args.local_rank)
    dist.init_process_group(backend='nccl', init_method='env://', rank=args.global_rank, world_size=args.global_size)
    fn(args)
    if args.global_size > 1:
        cleanup()


def mprint(*args, **kwargs):
    """
    Print only from rank 0.
    """
    if dist.get_rank() == 0:
        print(*args, **kwargs)


def cleanup():
    """
    End DDP training.
    """
    dist.barrier()
    mprint("Done!")
    dist.barrier()
    dist.destroy_process_group()


#----------------------------------------------------------------------------
# logging info.
class Logger(object):
    """
    Redirect stderr to stdout, optionally print stdout to a file,
    and optionally force flushing on both stdout and the file.
    """

    def __init__(self, file_name=None, file_mode="w", should_flush=True):
        self.file = None

        if file_name is not None:
            self.file = open(file_name, file_mode)

        self.should_flush = should_flush
        self.stdout = sys.stdout
        self.stderr = sys.stderr

        sys.stdout = self
        sys.stderr = self

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()

    def write(self, text):
        """Write text to stdout (and a file) and optionally flush."""
        if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
            return

        if self.file is not None:
            self.file.write(text)

        self.stdout.write(text)

        if self.should_flush:
            self.flush()

    def flush(self):
        """Flush written text to both stdout and a file, if open."""
        if self.file is not None:
            self.file.flush()

        self.stdout.flush()

    def close(self):
        """Flush, close possible files, and remove stdout/stderr mirroring."""
        self.flush()

        # if using multiple loggers, prevent closing in wrong order
        if sys.stdout is self:
            sys.stdout = self.stdout
        if sys.stderr is self:
            sys.stderr = self.stderr

        if self.file is not None:
            self.file.close()


class StackedRandomGenerator:
    def __init__(self, device, seeds):
        super().__init__()
        self.generators = [torch.Generator(device).manual_seed(int(seed) % (1 << 32)) for seed in seeds]

    def randn(self, size, **kwargs):
        assert size[0] == len(self.generators)
        return torch.stack([torch.randn(size[1:], generator=gen, **kwargs) for gen in self.generators])

    def randn_like(self, input):
        return self.randn(input.shape, dtype=input.dtype, layout=input.layout, device=input.device)

    def randint(self, *args, size, **kwargs):
        assert size[0] == len(self.generators)
        return torch.stack([torch.randint(*args, size=size[1:], generator=gen, **kwargs) for gen in self.generators])


def prepare_prompt_ar(prompt, ratios, device='cpu', show=True):
    # get aspect_ratio or ar
    aspect_ratios = re.findall(r"--aspect_ratio\s+(\d+:\d+)", prompt)
    ars = re.findall(r"--ar\s+(\d+:\d+)", prompt)
    custom_hw = re.findall(r"--hw\s+(\d+:\d+)", prompt)
    if show:
        print("aspect_ratios:", aspect_ratios, "ars:", ars, "hws:", custom_hw)
    prompt_clean = prompt.split("--aspect_ratio")[0].split("--ar")[0].split("--hw")[0]
    if len(aspect_ratios) + len(ars) + len(custom_hw) == 0 and show:
        print("Wrong prompt format. Set to default ar: 1. change your prompt into format '--ar h:w or --hw h:w' for correct generating")
    if len(aspect_ratios) != 0:
        ar = float(aspect_ratios[0].split(':')[0]) / float(aspect_ratios[0].split(':')[1])
    elif len(ars) != 0:
        ar = float(ars[0].split(':')[0]) / float(ars[0].split(':')[1])
    else:
        ar = 1.
    closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
    if len(custom_hw) != 0:
        custom_hw = [float(custom_hw[0].split(':')[0]), float(custom_hw[0].split(':')[1])]
    else:
        custom_hw = ratios[closest_ratio]
    default_hw = ratios[closest_ratio]
    prompt_show = f'prompt: {prompt_clean.strip()}\nSize: --ar {closest_ratio}, --bin hw {ratios[closest_ratio]}, --custom hw {custom_hw}'
    return prompt_clean, prompt_show, torch.tensor(default_hw, device=device)[None], torch.tensor([float(closest_ratio)], device=device)[None], torch.tensor(custom_hw, device=device)[None]


def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int):
    orig_hw = torch.tensor([samples.shape[2], samples.shape[3]], dtype=torch.int)
    custom_hw = torch.tensor([int(new_height), int(new_width)], dtype=torch.int)

    if (orig_hw != custom_hw).all():
        ratio = max(custom_hw[0] / orig_hw[0], custom_hw[1] / orig_hw[1])
        resized_width = int(orig_hw[1] * ratio)
        resized_height = int(orig_hw[0] * ratio)

        transform = T.Compose([
            T.Resize((resized_height, resized_width)),
            T.CenterCrop(custom_hw.tolist())
        ])
        return transform(samples)
    else:
        return samples


def resize_and_crop_img(img: Image, new_width, new_height):
    orig_width, orig_height = img.size

    ratio = max(new_width/orig_width, new_height/orig_height)
    resized_width = int(orig_width * ratio)
    resized_height = int(orig_height * ratio)

    img = img.resize((resized_width, resized_height), Image.LANCZOS)

    left = (resized_width - new_width)/2
    top = (resized_height - new_height)/2
    right = (resized_width + new_width)/2
    bottom = (resized_height + new_height)/2

    img = img.crop((left, top, right, bottom))

    return img



def mask_feature(emb, mask):
    if emb.shape[0] == 1:
        keep_index = mask.sum().item()
        return emb[:, :, :keep_index, :], keep_index
    else:
        masked_feature = emb * mask[:, None, :, None]
        return masked_feature, emb.shape[2]