File size: 16,715 Bytes
eadd7b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from typing import List, Optional, Tuple, Union
import warnings

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss

import math

from transformers import AutoConfig, AutoModelForCausalLM, CLIPVisionModel, CLIPImageProcessor

from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast

from diffusion.model.llava.mpt.modeling_mpt import MPTConfig, MPTForCausalLM, MPTModel


DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"


class LlavaMPTConfig(MPTConfig):
    model_type = "llava_mpt"


class LlavaMPTModel(MPTModel):
    config_class = LlavaMPTConfig

    def __init__(self, config: MPTConfig, mm_vision_tower=None, mm_hidden_size=None):
        super(LlavaMPTModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            # HACK: for FSDP
            self.vision_tower = [CLIPVisionModel.from_pretrained(config.mm_vision_tower)]
            # self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower)

        if hasattr(config, "use_mm_proj"):
            self.mm_projector = nn.Linear(config.mm_hidden_size, config.d_model)

    def initialize_vision_modules(self, vision_tower, mm_vision_select_layer,
                                  pretrain_mm_mlp_adapter=None, tune_mm_mlp_adapter=False):
        self.config.mm_vision_tower = vision_tower

        image_processor = CLIPImageProcessor.from_pretrained(vision_tower)

        if not hasattr(self, 'vision_tower'):
            vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
        else:
            vision_tower = self.vision_tower[0]
        vision_tower.requires_grad_(False)
        vision_tower = vision_tower.to(torch.float16)
        self.vision_tower = [vision_tower]

        vision_config = vision_tower.config
        num_patches = (vision_config.image_size // vision_config.patch_size) ** 2

        self.config.use_mm_proj = True
        self.config.mm_hidden_size = vision_config.hidden_size
        self.config.mm_vision_select_layer = mm_vision_select_layer

        if not hasattr(self, 'mm_projector'):
            self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.d_model)

        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
            self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items() if 'mm_projector' in k})

        return dict(
            image_processor=image_processor,
            image_token_len=num_patches,
            vision_config=vision_config
        )

    def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, images=None):

        # HACK: replace back original embeddings for LLaVA pretraining
        orig_embeds_params = getattr(self, 'orig_embeds_params', None)
        # if orig_embeds_params is not None:
        #     orig_embeds_params = orig_embeds_params[0]
        #     with torch.no_grad():
        #         self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data

        inputs_embeds = self.wte(input_ids)

        vision_tower = getattr(self, 'vision_tower', None)
        if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
            # TODO: this is a modified multimodal LLM -- Haotian Liu
            vision_tower = vision_tower[0]  # HACK: for FSDP
            with torch.no_grad():
                if type(images) is list:
                    # variable length images
                    image_features = []
                    for image in images:
                        image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True)
                        select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
                        select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
                        image_feature = select_hidden_state[:, 1:]
                        image_features.append(image_feature)
                else:
                    image_forward_outs = vision_tower(images, output_hidden_states=True)
                    select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
                    select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
                    image_features = select_hidden_state[:, 1:]
            if type(images) is list:
                image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features]
            else:
                image_features = self.mm_projector(image_features)
            dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
            dummy_image_features = self.mm_projector(dummy_image_features)

            new_input_embeds = []
            cur_image_idx = 0
            for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
                if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0:
                    # multimodal LLM, but the current sample is not multimodal
                    cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
                    new_input_embeds.append(cur_input_embeds)
                    continue
                if vision_tower.config.use_im_start_end:
                    cur_image_features = image_features[cur_image_idx]
                    num_patches = cur_image_features.shape[0]
                    if (cur_input_ids == vision_tower.config.im_start_token).sum() != (cur_input_ids == vision_tower.config.im_end_token).sum():
                        raise ValueError("The number of image start tokens and image end tokens should be the same.")
                    image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0]
                    for image_start_token_pos in image_start_tokens:
                        cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device)
                        num_patches = cur_image_features.shape[0]
                        if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token:
                            raise ValueError("The image end token should follow the image start token.")
                        if orig_embeds_params is not None:
                            cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
                        else:
                            cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
                        cur_image_idx += 1
                    new_input_embeds.append(cur_new_input_embeds)
                else:
                    cur_image_features = image_features[cur_image_idx]
                    num_patches = cur_image_features.shape[0]
                    if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches:
                        raise ValueError("The number of image patch tokens should be the same as the number of image patches.")
                    masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0]
                    mask_index_start = masked_indices[0]
                    if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any():
                        raise ValueError("The image patch tokens should be consecutive.")
                    if orig_embeds_params is not None:
                        cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0)
                    else:
                        cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0)
                    new_input_embeds.append(cur_new_input_embeds)
            inputs_embeds = torch.stack(new_input_embeds, dim=0)

        return super(LlavaMPTModel, self).forward(input_ids=None, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, tok_emb=inputs_embeds)


class LlavaMPTForCausalLM(MPTForCausalLM):
    config_class = LlavaMPTConfig
    supports_gradient_checkpointing = True

    def __init__(self, config):
        super(MPTForCausalLM, self).__init__(config)

        if not config.tie_word_embeddings:
            raise ValueError('MPTForCausalLM only supports tied word embeddings')
        self.transformer = LlavaMPTModel(config)
        self.logit_scale = None
        if config.logit_scale is not None:
            logit_scale = config.logit_scale
            if isinstance(logit_scale, str):
                if logit_scale == 'inv_sqrt_d_model':
                    logit_scale = 1 / math.sqrt(config.d_model)
                else:
                    raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
            self.logit_scale = logit_scale

    def get_model(self):
        return self.transformer

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, LlavaMPTModel):
            module.gradient_checkpointing = value

    def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, images=None):
        return_dict = return_dict if return_dict is not None else self.config.return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, images=images)
        logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight)
        if self.logit_scale is not None:
            if self.logit_scale == 0:
                warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
            logits *= self.logit_scale
        loss = None
        if labels is not None:
            labels = torch.roll(labels, shifts=-1)
            labels[:, -1] = -100
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
        return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states)

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        if inputs_embeds is not None:
            raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
        attention_mask = kwargs['attention_mask'].bool()
        if attention_mask[:, -1].sum() != attention_mask.shape[0]:
            raise NotImplementedError('MPT does not support generation with right padding.')
        if self.transformer.attn_uses_sequence_id and self.training:
            sequence_id = torch.zeros_like(input_ids[:1])
        else:
            sequence_id = None
        if past_key_values is not None:
            input_ids = input_ids[:, -1].unsqueeze(-1)
        if self.transformer.prefix_lm:
            prefix_mask = torch.ones_like(attention_mask)
            if kwargs.get('use_cache') == False:
                raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
        else:
            prefix_mask = None
        return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True), "images": kwargs.get("images", None)}

    def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
                                    tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None):
        vision_config = self.get_model().vision_tower[0].config
        vision_config.use_im_start_end = mm_use_im_start_end
        tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        self.resize_token_embeddings(len(tokenizer))

        if mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))
            vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if tune_mm_mlp_adapter:
                self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)]
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
                embed_tokens_weight = mm_projector_weights['transformer.wte.weight']
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")

        vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]

AutoConfig.register("llava_mpt", LlavaMPTConfig)
AutoModelForCausalLM.register(LlavaMPTConfig, LlavaMPTForCausalLM)