Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,754 Bytes
eadd7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import argparse
import datetime
import os
import sys
import time
import types
import warnings
from pathlib import Path
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent))
import numpy as np
import torch
from accelerate import Accelerator, InitProcessGroupKwargs
from accelerate.utils import DistributedType
from diffusers.models import AutoencoderKL
from transformers import T5EncoderModel, T5Tokenizer
from mmcv.runner import LogBuffer
from PIL import Image
from torch.utils.data import RandomSampler
from diffusion import IDDPM, DPMS
from diffusion.data.builder import build_dataset, build_dataloader, set_data_root
from diffusion.model.builder import build_model
from diffusion.utils.checkpoint import save_checkpoint, load_checkpoint
from diffusion.utils.data_sampler import AspectRatioBatchSampler
from diffusion.utils.dist_utils import synchronize, get_world_size, clip_grad_norm_, flush
from diffusion.utils.logger import get_root_logger, rename_file_with_creation_time
from diffusion.utils.lr_scheduler import build_lr_scheduler
from diffusion.utils.misc import set_random_seed, read_config, init_random_seed, DebugUnderflowOverflow
from diffusion.utils.optimizer import build_optimizer, auto_scale_lr
warnings.filterwarnings("ignore") # ignore warning
def set_fsdp_env():
os.environ["ACCELERATE_USE_FSDP"] = 'true'
os.environ["FSDP_AUTO_WRAP_POLICY"] = 'TRANSFORMER_BASED_WRAP'
os.environ["FSDP_BACKWARD_PREFETCH"] = 'BACKWARD_PRE'
os.environ["FSDP_TRANSFORMER_CLS_TO_WRAP"] = 'PixArtBlock'
@torch.inference_mode()
def log_validation(model, step, device, vae=None):
torch.cuda.empty_cache()
model = accelerator.unwrap_model(model).eval()
hw = torch.tensor([[1024, 1024]], dtype=torch.float, device=device).repeat(1, 1)
ar = torch.tensor([[1.]], device=device).repeat(1, 1)
null_y = torch.load(f'output/pretrained_models/null_embed_diffusers_{max_length}token.pth')
null_y = null_y['uncond_prompt_embeds'].to(device)
# Create sampling noise:
logger.info("Running validation... ")
image_logs = []
latents = []
for prompt in validation_prompts:
z = torch.randn(1, 4, latent_size, latent_size, device=device)
embed = torch.load(f'output/tmp/{prompt}_{max_length}token.pth', map_location='cpu')
caption_embs, emb_masks = embed['caption_embeds'].to(device), embed['emb_mask'].to(device)
# caption_embs = caption_embs[:, None]
# emb_masks = emb_masks[:, None]
model_kwargs = dict(data_info={'img_hw': hw, 'aspect_ratio': ar}, mask=emb_masks)
dpm_solver = DPMS(model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
cfg_scale=4.5,
model_kwargs=model_kwargs)
denoised = dpm_solver.sample(
z,
steps=14,
order=2,
skip_type="time_uniform",
method="multistep",
)
latents.append(denoised)
torch.cuda.empty_cache()
if vae is None:
vae = AutoencoderKL.from_pretrained(config.vae_pretrained).to(accelerator.device).to(torch.float16)
for prompt, latent in zip(validation_prompts, latents):
latent = latent.to(torch.float16)
samples = vae.decode(latent.detach() / vae.config.scaling_factor).sample
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()[0]
image = Image.fromarray(samples)
image_logs.append({"validation_prompt": prompt, "images": [image]})
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
for log in image_logs:
images = log["images"]
validation_prompt = log["validation_prompt"]
formatted_images = []
for image in images:
formatted_images.append(np.asarray(image))
formatted_images = np.stack(formatted_images)
tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC")
elif tracker.name == "wandb":
import wandb
formatted_images = []
for log in image_logs:
images = log["images"]
validation_prompt = log["validation_prompt"]
for image in images:
image = wandb.Image(image, caption=validation_prompt)
formatted_images.append(image)
tracker.log({"validation": formatted_images})
else:
logger.warn(f"image logging not implemented for {tracker.name}")
del vae
flush()
return image_logs
def train():
if config.get('debug_nan', False):
DebugUnderflowOverflow(model)
logger.info('NaN debugger registered. Start to detect overflow during training.')
time_start, last_tic = time.time(), time.time()
log_buffer = LogBuffer()
global_step = start_step + 1
load_vae_feat = getattr(train_dataloader.dataset, 'load_vae_feat', False)
load_t5_feat = getattr(train_dataloader.dataset, 'load_t5_feat', False)
# Now you train the model
for epoch in range(start_epoch + 1, config.num_epochs + 1):
data_time_start= time.time()
data_time_all = 0
for step, batch in enumerate(train_dataloader):
if step < skip_step:
global_step += 1
continue # skip data in the resumed ckpt
if load_vae_feat:
z = batch[0]
else:
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=(config.mixed_precision == 'fp16' or config.mixed_precision == 'bf16')):
posterior = vae.encode(batch[0]).latent_dist
if config.sample_posterior:
z = posterior.sample()
else:
z = posterior.mode()
clean_images = z * config.scale_factor
data_info = batch[3]
if load_t5_feat:
y = batch[1]
y_mask = batch[2]
else:
with torch.no_grad():
txt_tokens = tokenizer(
batch[1], max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
).to(accelerator.device)
y = text_encoder(
txt_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0][:, None]
y_mask = txt_tokens.attention_mask[:, None, None]
# Sample a random timestep for each image
bs = clean_images.shape[0]
timesteps = torch.randint(0, config.train_sampling_steps, (bs,), device=clean_images.device).long()
grad_norm = None
data_time_all += time.time() - data_time_start
with accelerator.accumulate(model):
# Predict the noise residual
optimizer.zero_grad()
loss_term = train_diffusion.training_losses(model, clean_images, timesteps, model_kwargs=dict(y=y, mask=y_mask, data_info=data_info))
loss = loss_term['loss'].mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
grad_norm = accelerator.clip_grad_norm_(model.parameters(), config.gradient_clip)
optimizer.step()
lr_scheduler.step()
lr = lr_scheduler.get_last_lr()[0]
logs = {args.loss_report_name: accelerator.gather(loss).mean().item()}
if grad_norm is not None:
logs.update(grad_norm=accelerator.gather(grad_norm).mean().item())
log_buffer.update(logs)
if (step + 1) % config.log_interval == 0 or (step + 1) == 1:
t = (time.time() - last_tic) / config.log_interval
t_d = data_time_all / config.log_interval
avg_time = (time.time() - time_start) / (global_step + 1)
eta = str(datetime.timedelta(seconds=int(avg_time * (total_steps - global_step - 1))))
eta_epoch = str(datetime.timedelta(seconds=int(avg_time * (len(train_dataloader) - step - 1))))
log_buffer.average()
info = f"Step/Epoch [{global_step}/{epoch}][{step + 1}/{len(train_dataloader)}]:total_eta: {eta}, " \
f"epoch_eta:{eta_epoch}, time_all:{t:.3f}, time_data:{t_d:.3f}, lr:{lr:.3e}, s:({model.module.h}, {model.module.w}), "
info += ', '.join([f"{k}:{v:.4f}" for k, v in log_buffer.output.items()])
logger.info(info)
last_tic = time.time()
log_buffer.clear()
data_time_all = 0
logs.update(lr=lr)
accelerator.log(logs, step=global_step)
global_step += 1
data_time_start = time.time()
if global_step % config.save_model_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
os.umask(0o000)
save_checkpoint(os.path.join(config.work_dir, 'checkpoints'),
epoch=epoch,
step=global_step,
model=accelerator.unwrap_model(model),
optimizer=optimizer,
lr_scheduler=lr_scheduler
)
if config.visualize and (global_step % config.eval_sampling_steps == 0 or (step + 1) == 1):
accelerator.wait_for_everyone()
if accelerator.is_main_process:
log_validation(model, global_step, device=accelerator.device, vae=vae)
if epoch % config.save_model_epochs == 0 or epoch == config.num_epochs:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
os.umask(0o000)
save_checkpoint(os.path.join(config.work_dir, 'checkpoints'),
epoch=epoch,
step=global_step,
model=accelerator.unwrap_model(model),
optimizer=optimizer,
lr_scheduler=lr_scheduler
)
accelerator.wait_for_everyone()
def parse_args():
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument("config", type=str, help="config")
parser.add_argument("--cloud", action='store_true', default=False, help="cloud or local machine")
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument('--resume-from', help='the dir to resume the training')
parser.add_argument('--load-from', default=None, help='the dir to load a ckpt for training')
parser.add_argument('--local-rank', type=int, default=-1)
parser.add_argument('--local_rank', type=int, default=-1)
parser.add_argument('--debug', action='store_true')
parser.add_argument(
"--pipeline_load_from", default='output/pretrained_models/pixart_sigma_sdxlvae_T5_diffusers',
type=str, help="Download for loading text_encoder, "
"tokenizer and vae from https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers"
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="text2image-fine-tune",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
parser.add_argument("--loss_report_name", type=str, default="loss")
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
config = read_config(args.config)
if args.work_dir is not None:
config.work_dir = args.work_dir
if args.resume_from is not None:
config.load_from = None
config.resume_from = dict(
checkpoint=args.resume_from,
load_ema=False,
resume_optimizer=True,
resume_lr_scheduler=True)
if args.debug:
config.log_interval = 1
config.train_batch_size = 2
os.umask(0o000)
os.makedirs(config.work_dir, exist_ok=True)
init_handler = InitProcessGroupKwargs()
init_handler.timeout = datetime.timedelta(seconds=5400) # change timeout to avoid a strange NCCL bug
# Initialize accelerator and tensorboard logging
if config.use_fsdp:
init_train = 'FSDP'
from accelerate import FullyShardedDataParallelPlugin
from torch.distributed.fsdp.fully_sharded_data_parallel import FullStateDictConfig
set_fsdp_env()
fsdp_plugin = FullyShardedDataParallelPlugin(state_dict_config=FullStateDictConfig(offload_to_cpu=False, rank0_only=False),)
else:
init_train = 'DDP'
fsdp_plugin = None
even_batches = True
if config.multi_scale:
even_batches=False,
accelerator = Accelerator(
mixed_precision=config.mixed_precision,
gradient_accumulation_steps=config.gradient_accumulation_steps,
log_with=args.report_to,
project_dir=os.path.join(config.work_dir, "logs"),
fsdp_plugin=fsdp_plugin,
even_batches=even_batches,
kwargs_handlers=[init_handler]
)
log_name = 'train_log.log'
if accelerator.is_main_process:
if os.path.exists(os.path.join(config.work_dir, log_name)):
rename_file_with_creation_time(os.path.join(config.work_dir, log_name))
logger = get_root_logger(os.path.join(config.work_dir, log_name))
logger.info(accelerator.state)
config.seed = init_random_seed(config.get('seed', None))
set_random_seed(config.seed)
if accelerator.is_main_process:
config.dump(os.path.join(config.work_dir, 'config.py'))
logger.info(f"Config: \n{config.pretty_text}")
logger.info(f"World_size: {get_world_size()}, seed: {config.seed}")
logger.info(f"Initializing: {init_train} for training")
image_size = config.image_size # @param [256, 512]
latent_size = int(image_size) // 8
pred_sigma = getattr(config, 'pred_sigma', True)
learn_sigma = getattr(config, 'learn_sigma', True) and pred_sigma
max_length = config.model_max_length
kv_compress_config = config.kv_compress_config if config.kv_compress else None
vae = None
if not config.data.load_vae_feat:
vae = AutoencoderKL.from_pretrained(config.vae_pretrained, torch_dtype=torch.float16).to(accelerator.device)
config.scale_factor = vae.config.scaling_factor
tokenizer = text_encoder = None
if not config.data.load_t5_feat:
tokenizer = T5Tokenizer.from_pretrained(args.pipeline_load_from, subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(
args.pipeline_load_from, subfolder="text_encoder", torch_dtype=torch.float16).to(accelerator.device)
logger.info(f"vae sacle factor: {config.scale_factor}")
if config.visualize:
# preparing embeddings for visualization. We put it here for saving GPU memory
validation_prompts = [
"dog",
"portrait photo of a girl, photograph, highly detailed face, depth of field",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
]
skip = True
for prompt in validation_prompts:
if not (os.path.exists(f'output/tmp/{prompt}_{max_length}token.pth')
and os.path.exists(f'output/pretrained_models/null_embed_diffusers_{max_length}token.pth')):
skip = False
logger.info("Preparing Visualization prompt embeddings...")
break
if accelerator.is_main_process and not skip:
if config.data.load_t5_feat and (tokenizer is None or text_encoder is None):
logger.info(f"Loading text encoder and tokenizer from {args.pipeline_load_from} ...")
tokenizer = T5Tokenizer.from_pretrained(args.pipeline_load_from, subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(
args.pipeline_load_from, subfolder="text_encoder", torch_dtype=torch.float16).to(accelerator.device)
for prompt in validation_prompts:
txt_tokens = tokenizer(
prompt, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
).to(accelerator.device)
caption_emb = text_encoder(txt_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0]
torch.save(
{'caption_embeds': caption_emb, 'emb_mask': txt_tokens.attention_mask},
f'output/tmp/{prompt}_{max_length}token.pth')
null_tokens = tokenizer(
"", max_length=max_length, padding="max_length", truncation=True, return_tensors="pt"
).to(accelerator.device)
null_token_emb = text_encoder(null_tokens.input_ids, attention_mask=txt_tokens.attention_mask)[0]
torch.save(
{'uncond_prompt_embeds': null_token_emb, 'uncond_prompt_embeds_mask': null_tokens.attention_mask},
f'output/pretrained_models/null_embed_diffusers_{max_length}token.pth')
if config.data.load_t5_feat:
del tokenizer
del txt_tokens
flush()
model_kwargs={"pe_interpolation": config.pe_interpolation, "config":config,
"model_max_length": max_length, "qk_norm": config.qk_norm,
"kv_compress_config": kv_compress_config, "micro_condition": config.micro_condition}
# build models
train_diffusion = IDDPM(str(config.train_sampling_steps), learn_sigma=learn_sigma, pred_sigma=pred_sigma, snr=config.snr_loss)
model = build_model(config.model,
config.grad_checkpointing,
config.get('fp32_attention', False),
input_size=latent_size,
learn_sigma=learn_sigma,
pred_sigma=pred_sigma,
**model_kwargs).train()
logger.info(f"{model.__class__.__name__} Model Parameters: {sum(p.numel() for p in model.parameters()):,}")
if args.load_from is not None:
config.load_from = args.load_from
if config.load_from is not None:
missing, unexpected = load_checkpoint(
config.load_from, model, load_ema=config.get('load_ema', False), max_length=max_length)
logger.warning(f'Missing keys: {missing}')
logger.warning(f'Unexpected keys: {unexpected}')
# prepare for FSDP clip grad norm calculation
if accelerator.distributed_type == DistributedType.FSDP:
for m in accelerator._models:
m.clip_grad_norm_ = types.MethodType(clip_grad_norm_, m)
# build dataloader
set_data_root(config.data_root)
dataset = build_dataset(
config.data, resolution=image_size, aspect_ratio_type=config.aspect_ratio_type,
real_prompt_ratio=config.real_prompt_ratio, max_length=max_length, config=config,
)
if config.multi_scale:
batch_sampler = AspectRatioBatchSampler(sampler=RandomSampler(dataset), dataset=dataset,
batch_size=config.train_batch_size, aspect_ratios=dataset.aspect_ratio, drop_last=True,
ratio_nums=dataset.ratio_nums, config=config, valid_num=config.valid_num)
train_dataloader = build_dataloader(dataset, batch_sampler=batch_sampler, num_workers=config.num_workers)
else:
train_dataloader = build_dataloader(dataset, num_workers=config.num_workers, batch_size=config.train_batch_size, shuffle=True)
# build optimizer and lr scheduler
lr_scale_ratio = 1
if config.get('auto_lr', None):
lr_scale_ratio = auto_scale_lr(config.train_batch_size * get_world_size() * config.gradient_accumulation_steps,
config.optimizer, **config.auto_lr)
optimizer = build_optimizer(model, config.optimizer)
lr_scheduler = build_lr_scheduler(config, optimizer, train_dataloader, lr_scale_ratio)
timestamp = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())
if accelerator.is_main_process:
tracker_config = dict(vars(config))
try:
accelerator.init_trackers(args.tracker_project_name, tracker_config)
except:
accelerator.init_trackers(f"tb_{timestamp}")
start_epoch = 0
start_step = 0
skip_step = config.skip_step
total_steps = len(train_dataloader) * config.num_epochs
if config.resume_from is not None and config.resume_from['checkpoint'] is not None:
resume_path = config.resume_from['checkpoint']
path = os.path.basename(resume_path)
start_epoch = int(path.replace('.pth', '').split("_")[1]) - 1
start_step = int(path.replace('.pth', '').split("_")[3])
_, missing, unexpected = load_checkpoint(**config.resume_from,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
max_length=max_length,
)
logger.warning(f'Missing keys: {missing}')
logger.warning(f'Unexpected keys: {unexpected}')
# Prepare everything
# There is no specific order to remember, you just need to unpack the
# objects in the same order you gave them to the prepare method.
model = accelerator.prepare(model)
optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler)
train()
|