File size: 15,168 Bytes
3bbc58b
 
 
 
 
 
 
227ab6a
 
 
 
 
 
3bbc58b
 
 
 
 
 
 
 
227ab6a
 
3bbc58b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
853145b
 
 
 
 
 
9e8ddda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import os
import uuid
import shutil
import logging
from typing import List, Optional, Dict, Any
from pathlib import Path


from langchain.schema import Document as LangchainDocument
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS

import fitz  # PyMuPDF
import markdown
from fastapi import FastAPI, File, UploadFile, HTTPException, Form, Depends, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from dotenv import load_dotenv

from openrouter_llm import OpenRouterFreeAdapter, OpenRouterFreeChain

# Load environment variables
load_dotenv()

# Import LangChain components for embedding

# Import our free-only OpenRouter adapter

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize FastAPI app
app = FastAPI(title="AskMyDocs API - Free LLM Edition")

# Add CORS middleware for frontend integration
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Set to specific domain in production
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Configuration
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")
HF_MODEL_NAME = os.getenv(
    "HF_MODEL_NAME", "sentence-transformers/all-mpnet-base-v2")
UPLOAD_DIR = os.getenv("UPLOAD_DIR", "./uploads")
DB_DIR = os.getenv("DB_DIR", "./vectordb")

print(HF_MODEL_NAME)
# Ensure directories exist
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(DB_DIR, exist_ok=True)

# Initialize OpenRouter adapter (singleton)
openrouter_adapter = None

# Pydantic models


class QueryRequest(BaseModel):
    query: str
    collection_id: str


class QueryResponse(BaseModel):
    answer: str
    sources: List[str]


class Document(BaseModel):
    id: str
    filename: str
    content_type: str


class DocumentList(BaseModel):
    documents: List[Document]


class LLMInfo(BaseModel):
    model: str
    is_free: bool = True
    provider: str = "openrouter"


class LLMModelsList(BaseModel):
    current_model: str
    free_models: List[Dict[str, Any]]


# Global variable to store vector databases (in memory for simplicity)
# In production, you would use persistent storage
vector_dbs = {}

# Helper functions


def get_embeddings():
    """Get HuggingFace embedding model."""
    return HuggingFaceEmbeddings(model_name=HF_MODEL_NAME)


def get_openrouter_adapter():
    """Get or initialize the OpenRouter adapter for free models."""
    global openrouter_adapter

    if openrouter_adapter is None:
        openrouter_adapter = OpenRouterFreeAdapter(api_key=OPENROUTER_API_KEY)

    return openrouter_adapter


def extract_text_from_pdf(file_path):
    """Extract text content from PDF files."""
    text = ""
    try:
        doc = fitz.open(file_path)
        for page in doc:
            text += page.get_text()
        return text
    except Exception as e:
        logger.error(f"Error extracting text from PDF: {e}")
        raise HTTPException(
            status_code=500, detail=f"Error processing PDF: {str(e)}")


def extract_text_from_markdown(file_path):
    """Convert Markdown to plain text."""
    try:
        with open(file_path, 'r', encoding='utf-8') as f:
            md_content = f.read()
        html = markdown.markdown(md_content)
        # Simple HTML to text conversion - in production use a more robust method
        text = html.replace('<p>', '\n\n').replace(
            '</p>', '').replace('<br>', '\n')
        text = text.replace('<h1>', '\n\n# ').replace('</h1>', '\n')
        text = text.replace('<h2>', '\n\n## ').replace('</h2>', '\n')
        text = text.replace('<h3>', '\n\n### ').replace('</h3>', '\n')
        # Remove other HTML tags
        import re
        text = re.sub('<[^<]+?>', '', text)
        return text
    except Exception as e:
        logger.error(f"Error processing Markdown: {e}")
        raise HTTPException(
            status_code=500, detail=f"Error processing Markdown: {str(e)}")


def extract_text_from_file(file_path, content_type):
    """Extract text based on file type."""
    if content_type == "application/pdf":
        return extract_text_from_pdf(file_path)
    elif content_type == "text/markdown":
        return extract_text_from_markdown(file_path)
    elif content_type == "text/plain":
        with open(file_path, 'r', encoding='utf-8') as f:
            return f.read()
    else:
        raise HTTPException(
            status_code=400, detail=f"Unsupported file type: {content_type}")


def process_documents(collection_id: str, file_paths: List[tuple]):
    """Process documents and create vector store."""
    try:
        # Create text splitter
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=100,
            length_function=len,
        )

        all_docs = []
        for file_path, content_type, filename in file_paths:
            text_content = extract_text_from_file(file_path, content_type)
            chunks = text_splitter.split_text(text_content)

            # Create Document objects with metadata
            docs = [
                LangchainDocument(
                    page_content=chunk,
                    metadata={"source": filename, "chunk": i}
                )
                for i, chunk in enumerate(chunks)
            ]
            all_docs.extend(docs)

        # Create vector store
        embeddings = get_embeddings()
        vector_db = FAISS.from_documents(all_docs, embeddings)

        # Save vector store
        collection_path = os.path.join(DB_DIR, collection_id)
        os.makedirs(collection_path, exist_ok=True)
        vector_db.save_local(collection_path)

        # Store in memory (would be replaced by database lookup in production)
        vector_dbs[collection_id] = vector_db

        logger.info(
            f"Successfully processed {len(all_docs)} chunks from {len(file_paths)} documents")
    except Exception as e:
        logger.error(f"Error processing documents: {e}")
        raise HTTPException(
            status_code=500, detail=f"Error processing documents: {str(e)}")


@app.get("/")
async def index():
    return {"message": "Welcome to ask my doc"}


@app.get("/health")
async def health_check():
    return {"status": "healthy"}


@app.post("/upload", response_model=Document)
async def upload_file(
    background_tasks: BackgroundTasks,
    collection_id: str = Form(...),
    file: UploadFile = File(...),
):
    """Upload a document and process it for querying."""
    try:
        # Generate a unique ID for the document
        doc_id = str(uuid.uuid4())

        # Create collection directory if it doesn't exist
        collection_dir = os.path.join(UPLOAD_DIR, collection_id)
        os.makedirs(collection_dir, exist_ok=True)

        # Define the file path
        file_path = os.path.join(collection_dir, file.filename)

        # Determine content type
        content_type = file.content_type
        if not content_type:
            if file.filename.endswith('.pdf'):
                content_type = "application/pdf"
            elif file.filename.endswith('.md'):
                content_type = "text/markdown"
            elif file.filename.endswith('.txt'):
                content_type = "text/plain"
            else:
                raise HTTPException(
                    status_code=400, detail="Unsupported file type")

        # Save the file
        with open(file_path, "wb") as f:
            shutil.copyfileobj(file.file, f)

        # Process the document in the background
        background_tasks.add_task(
            process_documents,
            collection_id,
            [(file_path, content_type, file.filename)]
        )

        return Document(
            id=doc_id,
            filename=file.filename,
            content_type=content_type
        )
    except Exception as e:
        logger.error(f"Error uploading file: {e}")
        raise HTTPException(
            status_code=500, detail=f"Error uploading file: {str(e)}")


@app.get("/collections/{collection_id}/documents", response_model=DocumentList)
async def list_documents(collection_id: str):
    """List all documents in a collection."""
    try:
        collection_dir = os.path.join(UPLOAD_DIR, collection_id)
        if not os.path.exists(collection_dir):
            return DocumentList(documents=[])

        documents = []
        for filename in os.listdir(collection_dir):
            file_path = os.path.join(collection_dir, filename)
            if os.path.isfile(file_path):
                content_type = "application/octet-stream"
                if filename.endswith('.pdf'):
                    content_type = "application/pdf"
                elif filename.endswith('.md'):
                    content_type = "text/markdown"
                elif filename.endswith('.txt'):
                    content_type = "text/plain"

                documents.append(Document(
                    # In production, store and retrieve actual IDs
                    id=str(uuid.uuid4()),
                    filename=filename,
                    content_type=content_type
                ))

        return DocumentList(documents=documents)
    except Exception as e:
        logger.error(f"Error listing documents: {e}")
        raise HTTPException(
            status_code=500, detail=f"Error listing documents: {str(e)}")


@app.post("/query", response_model=QueryResponse)
async def query_documents(request: QueryRequest):
    """Query documents using natural language."""
    try:
        collection_id = request.collection_id

        # Check if vector DB exists in memory
        if collection_id in vector_dbs:
            vector_db = vector_dbs[collection_id]
        else:
            # Load from disk
            collection_path = os.path.join(DB_DIR, collection_id)
            if not os.path.exists(collection_path):
                raise HTTPException(
                    status_code=404, detail=f"Collection {collection_id} not found")

            embeddings = get_embeddings()
            vector_db = FAISS.load_local(collection_path, embeddings)
            vector_dbs[collection_id] = vector_db

        # Get the retriever
        retriever = vector_db.as_retriever(search_kwargs={"k": 3})

        # Get relevant documents
        docs = retriever.get_relevant_documents(request.query)

        # Extract sources
        sources = []
        for doc in docs:
            if doc.metadata.get("source") not in sources:
                sources.append(doc.metadata.get("source"))

        # Get context from documents
        context = [doc.page_content for doc in docs]

        # Get OpenRouter adapter for free LLMs
        adapter = get_openrouter_adapter()
        chain = OpenRouterFreeChain(adapter)

        # Generate answer
        answer = chain.run(request.query, context)

        return QueryResponse(
            answer=answer,
            sources=sources
        )
    except Exception as e:
        logger.error(f"Error querying documents: {e}")
        raise HTTPException(
            status_code=500, detail=f"Error querying documents: {str(e)}")


@app.delete("/collections/{collection_id}/documents/{filename}")
async def delete_document(collection_id: str, filename: str):
    """Delete a document from a collection."""
    try:
        file_path = os.path.join(UPLOAD_DIR, collection_id, filename)
        if not os.path.exists(file_path):
            raise HTTPException(
                status_code=404, detail=f"Document {filename} not found")

        os.remove(file_path)

        # Rebuild vector store if needed
        collection_path = os.path.join(DB_DIR, collection_id)
        if os.path.exists(collection_path):
            # In production, you would selectively remove documents rather than rebuilding
            shutil.rmtree(collection_path)

            # If there are still documents, rebuild the vector store
            collection_dir = os.path.join(UPLOAD_DIR, collection_id)
            if os.path.exists(collection_dir) and os.listdir(collection_dir):
                file_paths = []
                for fname in os.listdir(collection_dir):
                    fpath = os.path.join(collection_dir, fname)
                    if os.path.isfile(fpath):
                        content_type = "application/octet-stream"
                        if fname.endswith('.pdf'):
                            content_type = "application/pdf"
                        elif fname.endswith('.md'):
                            content_type = "text/markdown"
                        elif fname.endswith('.txt'):
                            content_type = "text/plain"
                        file_paths.append((fpath, content_type, fname))

                if file_paths:
                    process_documents(collection_id, file_paths)

            # Remove from in-memory cache
            if collection_id in vector_dbs:
                del vector_dbs[collection_id]

        return JSONResponse(content={"message": f"Document {filename} deleted"})
    except Exception as e:
        logger.error(f"Error deleting document: {e}")
        raise HTTPException(
            status_code=500, detail=f"Error deleting document: {str(e)}")


@app.get("/llm/info", response_model=LLMInfo)
async def get_llm_info():
    """Get the current LLM information."""
    adapter = get_openrouter_adapter()

    return LLMInfo(
        model=adapter.model,
        is_free=True,
        provider="openrouter"
    )


@app.get("/llm/models", response_model=LLMModelsList)
async def list_free_models():
    """List all available free models."""
    adapter = get_openrouter_adapter()
    free_models = adapter.list_free_models()

    # Create a simplified list for the frontend
    model_list = []
    for model in free_models:
        model_info = {
            "id": model.get("id"),
            "name": model.get("name", model.get("id")),
            "context_length": model.get("context_length", 4096),
            "provider": model.get("id").split("/")[0] if "/" in model.get("id") else "unknown"
        }
        model_list.append(model_info)

    return LLMModelsList(
        current_model=adapter.model,
        free_models=model_list
    )


@app.post("/llm/change-model")
async def change_model(model_info: LLMInfo):
    """Change the LLM model (only to another free model)."""
    adapter = get_openrouter_adapter()

    # Make sure the model has the :free suffix if it doesn't already
    model_id = model_info.model
    if not model_id.endswith(":free") and ":free" not in model_id:
        model_id = f"{model_id}:free"

    # Set the new model
    adapter.model = model_id

    return JSONResponse(content={"message": f"Model changed to {model_id}"})

if __name__ == "__main__":
    import uvicorn
    # Check if we have an OpenRouter adapter and initialize it
    adapter = get_openrouter_adapter()
    logger.info(f"Starting AskMyDocs with free model: {adapter.model}")
    uvicorn.run(app, host="0.0.0.0", port=7860)