Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openrouter_llm import OpenRouterFreeAdapter, OpenRouterFreeChain
|
2 |
+
from langchain.schema import Document as LangchainDocument
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
import os
|
7 |
+
import uuid
|
8 |
+
import shutil
|
9 |
+
import logging
|
10 |
+
from typing import List, Optional, Dict, Any
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
import fitz # PyMuPDF
|
14 |
+
import markdown
|
15 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException, Form, Depends, BackgroundTasks
|
16 |
+
from fastapi.middleware.cors import CORSMiddleware
|
17 |
+
from fastapi.responses import JSONResponse
|
18 |
+
from pydantic import BaseModel
|
19 |
+
from dotenv import load_dotenv
|
20 |
+
|
21 |
+
# Load environment variables
|
22 |
+
load_dotenv()
|
23 |
+
|
24 |
+
# Import LangChain components for embedding
|
25 |
+
|
26 |
+
# Import our free-only OpenRouter adapter
|
27 |
+
|
28 |
+
# Configure logging
|
29 |
+
logging.basicConfig(level=logging.INFO)
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
# Initialize FastAPI app
|
33 |
+
app = FastAPI(title="AskMyDocs API - Free LLM Edition")
|
34 |
+
|
35 |
+
# Add CORS middleware for frontend integration
|
36 |
+
app.add_middleware(
|
37 |
+
CORSMiddleware,
|
38 |
+
allow_origins=["*"], # Set to specific domain in production
|
39 |
+
allow_credentials=True,
|
40 |
+
allow_methods=["*"],
|
41 |
+
allow_headers=["*"],
|
42 |
+
)
|
43 |
+
|
44 |
+
# Configuration
|
45 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")
|
46 |
+
HF_MODEL_NAME = os.getenv(
|
47 |
+
"HF_MODEL_NAME", "sentence-transformers/all-mpnet-base-v2")
|
48 |
+
UPLOAD_DIR = os.getenv("UPLOAD_DIR", "./uploads")
|
49 |
+
DB_DIR = os.getenv("DB_DIR", "./vectordb")
|
50 |
+
|
51 |
+
print(HF_MODEL_NAME)
|
52 |
+
# Ensure directories exist
|
53 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
54 |
+
os.makedirs(DB_DIR, exist_ok=True)
|
55 |
+
|
56 |
+
# Initialize OpenRouter adapter (singleton)
|
57 |
+
openrouter_adapter = None
|
58 |
+
|
59 |
+
# Pydantic models
|
60 |
+
|
61 |
+
|
62 |
+
class QueryRequest(BaseModel):
|
63 |
+
query: str
|
64 |
+
collection_id: str
|
65 |
+
|
66 |
+
|
67 |
+
class QueryResponse(BaseModel):
|
68 |
+
answer: str
|
69 |
+
sources: List[str]
|
70 |
+
|
71 |
+
|
72 |
+
class Document(BaseModel):
|
73 |
+
id: str
|
74 |
+
filename: str
|
75 |
+
content_type: str
|
76 |
+
|
77 |
+
|
78 |
+
class DocumentList(BaseModel):
|
79 |
+
documents: List[Document]
|
80 |
+
|
81 |
+
|
82 |
+
class LLMInfo(BaseModel):
|
83 |
+
model: str
|
84 |
+
is_free: bool = True
|
85 |
+
provider: str = "openrouter"
|
86 |
+
|
87 |
+
|
88 |
+
class LLMModelsList(BaseModel):
|
89 |
+
current_model: str
|
90 |
+
free_models: List[Dict[str, Any]]
|
91 |
+
|
92 |
+
|
93 |
+
# Global variable to store vector databases (in memory for simplicity)
|
94 |
+
# In production, you would use persistent storage
|
95 |
+
vector_dbs = {}
|
96 |
+
|
97 |
+
# Helper functions
|
98 |
+
|
99 |
+
|
100 |
+
def get_embeddings():
|
101 |
+
"""Get HuggingFace embedding model."""
|
102 |
+
return HuggingFaceEmbeddings(model_name=HF_MODEL_NAME)
|
103 |
+
|
104 |
+
|
105 |
+
def get_openrouter_adapter():
|
106 |
+
"""Get or initialize the OpenRouter adapter for free models."""
|
107 |
+
global openrouter_adapter
|
108 |
+
|
109 |
+
if openrouter_adapter is None:
|
110 |
+
openrouter_adapter = OpenRouterFreeAdapter(api_key=OPENROUTER_API_KEY)
|
111 |
+
|
112 |
+
return openrouter_adapter
|
113 |
+
|
114 |
+
|
115 |
+
def extract_text_from_pdf(file_path):
|
116 |
+
"""Extract text content from PDF files."""
|
117 |
+
text = ""
|
118 |
+
try:
|
119 |
+
doc = fitz.open(file_path)
|
120 |
+
for page in doc:
|
121 |
+
text += page.get_text()
|
122 |
+
return text
|
123 |
+
except Exception as e:
|
124 |
+
logger.error(f"Error extracting text from PDF: {e}")
|
125 |
+
raise HTTPException(
|
126 |
+
status_code=500, detail=f"Error processing PDF: {str(e)}")
|
127 |
+
|
128 |
+
|
129 |
+
def extract_text_from_markdown(file_path):
|
130 |
+
"""Convert Markdown to plain text."""
|
131 |
+
try:
|
132 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
133 |
+
md_content = f.read()
|
134 |
+
html = markdown.markdown(md_content)
|
135 |
+
# Simple HTML to text conversion - in production use a more robust method
|
136 |
+
text = html.replace('<p>', '\n\n').replace(
|
137 |
+
'</p>', '').replace('<br>', '\n')
|
138 |
+
text = text.replace('<h1>', '\n\n# ').replace('</h1>', '\n')
|
139 |
+
text = text.replace('<h2>', '\n\n## ').replace('</h2>', '\n')
|
140 |
+
text = text.replace('<h3>', '\n\n### ').replace('</h3>', '\n')
|
141 |
+
# Remove other HTML tags
|
142 |
+
import re
|
143 |
+
text = re.sub('<[^<]+?>', '', text)
|
144 |
+
return text
|
145 |
+
except Exception as e:
|
146 |
+
logger.error(f"Error processing Markdown: {e}")
|
147 |
+
raise HTTPException(
|
148 |
+
status_code=500, detail=f"Error processing Markdown: {str(e)}")
|
149 |
+
|
150 |
+
|
151 |
+
def extract_text_from_file(file_path, content_type):
|
152 |
+
"""Extract text based on file type."""
|
153 |
+
if content_type == "application/pdf":
|
154 |
+
return extract_text_from_pdf(file_path)
|
155 |
+
elif content_type == "text/markdown":
|
156 |
+
return extract_text_from_markdown(file_path)
|
157 |
+
elif content_type == "text/plain":
|
158 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
159 |
+
return f.read()
|
160 |
+
else:
|
161 |
+
raise HTTPException(
|
162 |
+
status_code=400, detail=f"Unsupported file type: {content_type}")
|
163 |
+
|
164 |
+
|
165 |
+
def process_documents(collection_id: str, file_paths: List[tuple]):
|
166 |
+
"""Process documents and create vector store."""
|
167 |
+
try:
|
168 |
+
# Create text splitter
|
169 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
170 |
+
chunk_size=1000,
|
171 |
+
chunk_overlap=100,
|
172 |
+
length_function=len,
|
173 |
+
)
|
174 |
+
|
175 |
+
all_docs = []
|
176 |
+
for file_path, content_type, filename in file_paths:
|
177 |
+
text_content = extract_text_from_file(file_path, content_type)
|
178 |
+
chunks = text_splitter.split_text(text_content)
|
179 |
+
|
180 |
+
# Create Document objects with metadata
|
181 |
+
docs = [
|
182 |
+
LangchainDocument(
|
183 |
+
page_content=chunk,
|
184 |
+
metadata={"source": filename, "chunk": i}
|
185 |
+
)
|
186 |
+
for i, chunk in enumerate(chunks)
|
187 |
+
]
|
188 |
+
all_docs.extend(docs)
|
189 |
+
|
190 |
+
# Create vector store
|
191 |
+
embeddings = get_embeddings()
|
192 |
+
vector_db = FAISS.from_documents(all_docs, embeddings)
|
193 |
+
|
194 |
+
# Save vector store
|
195 |
+
collection_path = os.path.join(DB_DIR, collection_id)
|
196 |
+
os.makedirs(collection_path, exist_ok=True)
|
197 |
+
vector_db.save_local(collection_path)
|
198 |
+
|
199 |
+
# Store in memory (would be replaced by database lookup in production)
|
200 |
+
vector_dbs[collection_id] = vector_db
|
201 |
+
|
202 |
+
logger.info(
|
203 |
+
f"Successfully processed {len(all_docs)} chunks from {len(file_paths)} documents")
|
204 |
+
except Exception as e:
|
205 |
+
logger.error(f"Error processing documents: {e}")
|
206 |
+
raise HTTPException(
|
207 |
+
status_code=500, detail=f"Error processing documents: {str(e)}")
|
208 |
+
|
209 |
+
|
210 |
+
@app.get("/")
|
211 |
+
async def index():
|
212 |
+
return {"message": "Welcome to ask my doc"}
|
213 |
+
|
214 |
+
|
215 |
+
@app.get("/health")
|
216 |
+
async def health_check():
|
217 |
+
return {"status": "healthy"}
|
218 |
+
|
219 |
+
|
220 |
+
@app.post("/upload", response_model=Document)
|
221 |
+
async def upload_file(
|
222 |
+
background_tasks: BackgroundTasks,
|
223 |
+
collection_id: str = Form(...),
|
224 |
+
file: UploadFile = File(...),
|
225 |
+
):
|
226 |
+
"""Upload a document and process it for querying."""
|
227 |
+
try:
|
228 |
+
# Generate a unique ID for the document
|
229 |
+
doc_id = str(uuid.uuid4())
|
230 |
+
|
231 |
+
# Create collection directory if it doesn't exist
|
232 |
+
collection_dir = os.path.join(UPLOAD_DIR, collection_id)
|
233 |
+
os.makedirs(collection_dir, exist_ok=True)
|
234 |
+
|
235 |
+
# Define the file path
|
236 |
+
file_path = os.path.join(collection_dir, file.filename)
|
237 |
+
|
238 |
+
# Determine content type
|
239 |
+
content_type = file.content_type
|
240 |
+
if not content_type:
|
241 |
+
if file.filename.endswith('.pdf'):
|
242 |
+
content_type = "application/pdf"
|
243 |
+
elif file.filename.endswith('.md'):
|
244 |
+
content_type = "text/markdown"
|
245 |
+
elif file.filename.endswith('.txt'):
|
246 |
+
content_type = "text/plain"
|
247 |
+
else:
|
248 |
+
raise HTTPException(
|
249 |
+
status_code=400, detail="Unsupported file type")
|
250 |
+
|
251 |
+
# Save the file
|
252 |
+
with open(file_path, "wb") as f:
|
253 |
+
shutil.copyfileobj(file.file, f)
|
254 |
+
|
255 |
+
# Process the document in the background
|
256 |
+
background_tasks.add_task(
|
257 |
+
process_documents,
|
258 |
+
collection_id,
|
259 |
+
[(file_path, content_type, file.filename)]
|
260 |
+
)
|
261 |
+
|
262 |
+
return Document(
|
263 |
+
id=doc_id,
|
264 |
+
filename=file.filename,
|
265 |
+
content_type=content_type
|
266 |
+
)
|
267 |
+
except Exception as e:
|
268 |
+
logger.error(f"Error uploading file: {e}")
|
269 |
+
raise HTTPException(
|
270 |
+
status_code=500, detail=f"Error uploading file: {str(e)}")
|
271 |
+
|
272 |
+
|
273 |
+
@app.get("/collections/{collection_id}/documents", response_model=DocumentList)
|
274 |
+
async def list_documents(collection_id: str):
|
275 |
+
"""List all documents in a collection."""
|
276 |
+
try:
|
277 |
+
collection_dir = os.path.join(UPLOAD_DIR, collection_id)
|
278 |
+
if not os.path.exists(collection_dir):
|
279 |
+
return DocumentList(documents=[])
|
280 |
+
|
281 |
+
documents = []
|
282 |
+
for filename in os.listdir(collection_dir):
|
283 |
+
file_path = os.path.join(collection_dir, filename)
|
284 |
+
if os.path.isfile(file_path):
|
285 |
+
content_type = "application/octet-stream"
|
286 |
+
if filename.endswith('.pdf'):
|
287 |
+
content_type = "application/pdf"
|
288 |
+
elif filename.endswith('.md'):
|
289 |
+
content_type = "text/markdown"
|
290 |
+
elif filename.endswith('.txt'):
|
291 |
+
content_type = "text/plain"
|
292 |
+
|
293 |
+
documents.append(Document(
|
294 |
+
# In production, store and retrieve actual IDs
|
295 |
+
id=str(uuid.uuid4()),
|
296 |
+
filename=filename,
|
297 |
+
content_type=content_type
|
298 |
+
))
|
299 |
+
|
300 |
+
return DocumentList(documents=documents)
|
301 |
+
except Exception as e:
|
302 |
+
logger.error(f"Error listing documents: {e}")
|
303 |
+
raise HTTPException(
|
304 |
+
status_code=500, detail=f"Error listing documents: {str(e)}")
|
305 |
+
|
306 |
+
|
307 |
+
@app.post("/query", response_model=QueryResponse)
|
308 |
+
async def query_documents(request: QueryRequest):
|
309 |
+
"""Query documents using natural language."""
|
310 |
+
try:
|
311 |
+
collection_id = request.collection_id
|
312 |
+
|
313 |
+
# Check if vector DB exists in memory
|
314 |
+
if collection_id in vector_dbs:
|
315 |
+
vector_db = vector_dbs[collection_id]
|
316 |
+
else:
|
317 |
+
# Load from disk
|
318 |
+
collection_path = os.path.join(DB_DIR, collection_id)
|
319 |
+
if not os.path.exists(collection_path):
|
320 |
+
raise HTTPException(
|
321 |
+
status_code=404, detail=f"Collection {collection_id} not found")
|
322 |
+
|
323 |
+
embeddings = get_embeddings()
|
324 |
+
vector_db = FAISS.load_local(collection_path, embeddings)
|
325 |
+
vector_dbs[collection_id] = vector_db
|
326 |
+
|
327 |
+
# Get the retriever
|
328 |
+
retriever = vector_db.as_retriever(search_kwargs={"k": 3})
|
329 |
+
|
330 |
+
# Get relevant documents
|
331 |
+
docs = retriever.get_relevant_documents(request.query)
|
332 |
+
|
333 |
+
# Extract sources
|
334 |
+
sources = []
|
335 |
+
for doc in docs:
|
336 |
+
if doc.metadata.get("source") not in sources:
|
337 |
+
sources.append(doc.metadata.get("source"))
|
338 |
+
|
339 |
+
# Get context from documents
|
340 |
+
context = [doc.page_content for doc in docs]
|
341 |
+
|
342 |
+
# Get OpenRouter adapter for free LLMs
|
343 |
+
adapter = get_openrouter_adapter()
|
344 |
+
chain = OpenRouterFreeChain(adapter)
|
345 |
+
|
346 |
+
# Generate answer
|
347 |
+
answer = chain.run(request.query, context)
|
348 |
+
|
349 |
+
return QueryResponse(
|
350 |
+
answer=answer,
|
351 |
+
sources=sources
|
352 |
+
)
|
353 |
+
except Exception as e:
|
354 |
+
logger.error(f"Error querying documents: {e}")
|
355 |
+
raise HTTPException(
|
356 |
+
status_code=500, detail=f"Error querying documents: {str(e)}")
|
357 |
+
|
358 |
+
|
359 |
+
@app.delete("/collections/{collection_id}/documents/{filename}")
|
360 |
+
async def delete_document(collection_id: str, filename: str):
|
361 |
+
"""Delete a document from a collection."""
|
362 |
+
try:
|
363 |
+
file_path = os.path.join(UPLOAD_DIR, collection_id, filename)
|
364 |
+
if not os.path.exists(file_path):
|
365 |
+
raise HTTPException(
|
366 |
+
status_code=404, detail=f"Document {filename} not found")
|
367 |
+
|
368 |
+
os.remove(file_path)
|
369 |
+
|
370 |
+
# Rebuild vector store if needed
|
371 |
+
collection_path = os.path.join(DB_DIR, collection_id)
|
372 |
+
if os.path.exists(collection_path):
|
373 |
+
# In production, you would selectively remove documents rather than rebuilding
|
374 |
+
shutil.rmtree(collection_path)
|
375 |
+
|
376 |
+
# If there are still documents, rebuild the vector store
|
377 |
+
collection_dir = os.path.join(UPLOAD_DIR, collection_id)
|
378 |
+
if os.path.exists(collection_dir) and os.listdir(collection_dir):
|
379 |
+
file_paths = []
|
380 |
+
for fname in os.listdir(collection_dir):
|
381 |
+
fpath = os.path.join(collection_dir, fname)
|
382 |
+
if os.path.isfile(fpath):
|
383 |
+
content_type = "application/octet-stream"
|
384 |
+
if fname.endswith('.pdf'):
|
385 |
+
content_type = "application/pdf"
|
386 |
+
elif fname.endswith('.md'):
|
387 |
+
content_type = "text/markdown"
|
388 |
+
elif fname.endswith('.txt'):
|
389 |
+
content_type = "text/plain"
|
390 |
+
file_paths.append((fpath, content_type, fname))
|
391 |
+
|
392 |
+
if file_paths:
|
393 |
+
process_documents(collection_id, file_paths)
|
394 |
+
|
395 |
+
# Remove from in-memory cache
|
396 |
+
if collection_id in vector_dbs:
|
397 |
+
del vector_dbs[collection_id]
|
398 |
+
|
399 |
+
return JSONResponse(content={"message": f"Document {filename} deleted"})
|
400 |
+
except Exception as e:
|
401 |
+
logger.error(f"Error deleting document: {e}")
|
402 |
+
raise HTTPException(
|
403 |
+
status_code=500, detail=f"Error deleting document: {str(e)}")
|
404 |
+
|
405 |
+
|
406 |
+
@app.get("/llm/info", response_model=LLMInfo)
|
407 |
+
async def get_llm_info():
|
408 |
+
"""Get the current LLM information."""
|
409 |
+
adapter = get_openrouter_adapter()
|
410 |
+
|
411 |
+
return LLMInfo(
|
412 |
+
model=adapter.model,
|
413 |
+
is_free=True,
|
414 |
+
provider="openrouter"
|
415 |
+
)
|
416 |
+
|
417 |
+
|
418 |
+
@app.get("/llm/models", response_model=LLMModelsList)
|
419 |
+
async def list_free_models():
|
420 |
+
"""List all available free models."""
|
421 |
+
adapter = get_openrouter_adapter()
|
422 |
+
free_models = adapter.list_free_models()
|
423 |
+
|
424 |
+
# Create a simplified list for the frontend
|
425 |
+
model_list = []
|
426 |
+
for model in free_models:
|
427 |
+
model_info = {
|
428 |
+
"id": model.get("id"),
|
429 |
+
"name": model.get("name", model.get("id")),
|
430 |
+
"context_length": model.get("context_length", 4096),
|
431 |
+
"provider": model.get("id").split("/")[0] if "/" in model.get("id") else "unknown"
|
432 |
+
}
|
433 |
+
model_list.append(model_info)
|
434 |
+
|
435 |
+
return LLMModelsList(
|
436 |
+
current_model=adapter.model,
|
437 |
+
free_models=model_list
|
438 |
+
)
|
439 |
+
|
440 |
+
|
441 |
+
@app.post("/llm/change-model")
|
442 |
+
async def change_model(model_info: LLMInfo):
|
443 |
+
"""Change the LLM model (only to another free model)."""
|
444 |
+
adapter = get_openrouter_adapter()
|
445 |
+
|
446 |
+
# Make sure the model has the :free suffix if it doesn't already
|
447 |
+
model_id = model_info.model
|
448 |
+
if not model_id.endswith(":free") and ":free" not in model_id:
|
449 |
+
model_id = f"{model_id}:free"
|
450 |
+
|
451 |
+
# Set the new model
|
452 |
+
adapter.model = model_id
|
453 |
+
|
454 |
+
return JSONResponse(content={"message": f"Model changed to {model_id}"})
|