Spaces:
Sleeping
Sleeping
File size: 7,575 Bytes
6116c39 2394e8b 6116c39 e1f6aec 6116c39 e1f6aec 6116c39 e1f6aec 6116c39 e1f6aec 6116c39 e1f6aec 6116c39 e1f6aec 6116c39 e1f6aec 6116c39 e1f6aec 6116c39 e1f6aec 6116c39 e1f6aec 6116c39 e1f6aec 6116c39 e1f6aec 6116c39 e1f6aec 6116c39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import os
import requests
import streamlit as st
# Get the Hugging Face API Token from environment variables
HF_API_TOKEN = os.getenv("HF_API_KEY")
if not HF_API_TOKEN:
raise ValueError("Hugging Face API Token is not set in the environment variables.")
# Hugging Face API URLs and headers for models
MISTRAL_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
MINICHAT_API_URL = "https://api-inference.huggingface.co/models/GeneZC/MiniChat-2-3B"
DIALOGPT_API_URL = "https://api-inference.huggingface.co/models/microsoft/DialoGPT-large"
PHI3_API_URL = "https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct"
GEMMA_API_URL = "https://api-inference.huggingface.co/models/google/gemma-1.1-7b-it"
GEMMA_2B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-1.1-2b-it"
META_LLAMA_70B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct"
META_LLAMA_8B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
GEMMA_27B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b"
GEMMA_27B_IT_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b-it"
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}
def query_model(api_url, payload):
response = requests.post(api_url, headers=HEADERS, json=payload)
return response.json()
def add_message_to_conversation(user_message, bot_message, model_name):
st.session_state.conversation.append((user_message, bot_message, model_name))
# Streamlit app
st.set_page_config(page_title="Multi-LLM Chatbot Interface", layout="wide")
st.title("Multi-LLM Chatbot Interface")
st.write("Multi LLM-Chatbot Interface")
# Initialize session state for conversation and model history
if "conversation" not in st.session_state:
st.session_state.conversation = []
if "model_history" not in st.session_state:
st.session_state.model_history = {model: [] for model in [
"Mistral-8x7B", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct",
"Gemma-1.1-7B", "Gemma-1.1-2B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct",
"Gemma-2-27B", "Gemma-2-27B-IT"
]}
# Dropdown for LLM selection
llm_selection = st.selectbox("Select Language Model", [
"Mistral-8x7B", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct",
"Gemma-1.1-7B", "Gemma-1.1-2B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct",
"Gemma-2-27B", "Gemma-2-27B-IT"
])
# User input for question
question = st.text_input("Question", placeholder="Enter your question here...")
# Handle user input and LLM response
if st.button("Send") and question:
try:
with st.spinner("Waiting for the model to respond..."):
chat_history = " ".join(st.session_state.model_history[llm_selection]) + f"User: {question}\n"
if llm_selection == "Mistral-8x7B":
response = query_model(MISTRAL_API_URL, {"inputs": chat_history})
answer = response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
elif llm_selection == "MiniChat-2-3B":
response = query_model(MINICHAT_API_URL, {"inputs": chat_history})
if "error" in response and "is currently loading" in response["error"]:
answer = f"Model is loading, please wait {response['estimated_time']} seconds."
else:
answer = response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
elif llm_selection == "DialoGPT (GPT-2-1.5B)":
response = query_model(DIALOGPT_API_URL, {"inputs": chat_history})
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
elif llm_selection == "Phi-3-mini-4k-instruct":
response = query_model(PHI3_API_URL, {"inputs": chat_history})
answer = response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
elif llm_selection == "Gemma-1.1-7B":
response = query_model(GEMMA_API_URL, {"inputs": chat_history})
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
elif llm_selection == "Gemma-1.1-2B":
response = query_model(GEMMA_2B_API_URL, {"inputs": chat_history})
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
elif llm_selection == "Meta-Llama-3-70B-Instruct":
response = query_model(META_LLAMA_70B_API_URL, {"inputs": chat_history})
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
elif llm_selection == "Meta-Llama-3-8B-Instruct":
response = query_model(META_LLAMA_8B_API_URL, {"inputs": chat_history})
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
elif llm_selection == "Gemma-2-27B":
response = query_model(GEMMA_27B_API_URL, {"inputs": chat_history})
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
elif llm_selection == "Gemma-2-27B-IT":
response = query_model(GEMMA_27B_IT_API_URL, {"inputs": chat_history})
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
add_message_to_conversation(question, answer, llm_selection)
st.session_state.model_history[llm_selection].append(f"User: {question}\n{llm_selection}: {answer}\n")
except ValueError as e:
st.error(str(e))
# Custom CSS for chat bubbles
st.markdown(
"""
<style>
.chat-bubble {
padding: 10px 14px;
border-radius: 14px;
margin-bottom: 10px;
display: inline-block;
max-width: 80%;
color: black;
}
.chat-bubble.user {
background-color: #dcf8c6;
align-self: flex-end;
}
.chat-bubble.bot {
background-color: #fff;
align-self: flex-start;
}
.chat-container {
display: flex;
flex-direction: column;
gap: 10px;
margin-top: 20px;
}
</style>
""",
unsafe_allow_html=True
)
# Display the conversation
st.write('<div class="chat-container">', unsafe_allow_html=True)
for user_message, bot_message, model_name in st.session_state.conversation:
st.write(f'<div class="chat-bubble user">You: {user_message}</div>', unsafe_allow_html=True)
st.write(f'<div class="chat-bubble bot">{model_name}: {bot_message}</div>', unsafe_allow_html=True)
st.write('</div>', unsafe_allow_html=True) |