File size: 7,575 Bytes
6116c39
 
 
 
 
2394e8b
6116c39
 
 
 
 
 
 
 
e1f6aec
 
6116c39
 
 
 
 
e1f6aec
6116c39
e1f6aec
 
6116c39
 
 
 
 
 
 
 
e1f6aec
6116c39
 
 
 
 
e1f6aec
 
 
 
 
6116c39
 
e1f6aec
 
 
 
 
6116c39
 
 
 
 
 
 
 
 
 
e1f6aec
 
6116c39
e1f6aec
 
 
6116c39
e1f6aec
6116c39
e1f6aec
 
6116c39
e1f6aec
 
 
 
 
 
 
 
 
 
 
 
 
 
6116c39
e1f6aec
 
6116c39
e1f6aec
 
 
 
 
6116c39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import requests
import streamlit as st

# Get the Hugging Face API Token from environment variables
HF_API_TOKEN = os.getenv("HF_API_KEY")
if not HF_API_TOKEN:
    raise ValueError("Hugging Face API Token is not set in the environment variables.")

# Hugging Face API URLs and headers for models
MISTRAL_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
MINICHAT_API_URL = "https://api-inference.huggingface.co/models/GeneZC/MiniChat-2-3B"
DIALOGPT_API_URL = "https://api-inference.huggingface.co/models/microsoft/DialoGPT-large"
PHI3_API_URL = "https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct"
GEMMA_API_URL = "https://api-inference.huggingface.co/models/google/gemma-1.1-7b-it"
GEMMA_2B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-1.1-2b-it"
META_LLAMA_70B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct"
META_LLAMA_8B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
GEMMA_27B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b"
GEMMA_27B_IT_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b-it"

HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}

def query_model(api_url, payload):
    response = requests.post(api_url, headers=HEADERS, json=payload)
    return response.json()

def add_message_to_conversation(user_message, bot_message, model_name):
    st.session_state.conversation.append((user_message, bot_message, model_name))

# Streamlit app
st.set_page_config(page_title="Multi-LLM Chatbot Interface", layout="wide")
st.title("Multi-LLM Chatbot Interface")
st.write("Multi LLM-Chatbot Interface")

# Initialize session state for conversation and model history
if "conversation" not in st.session_state:
    st.session_state.conversation = []
if "model_history" not in st.session_state:
    st.session_state.model_history = {model: [] for model in [
        "Mistral-8x7B", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct",
        "Gemma-1.1-7B", "Gemma-1.1-2B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct",
        "Gemma-2-27B", "Gemma-2-27B-IT"
    ]}

# Dropdown for LLM selection
llm_selection = st.selectbox("Select Language Model", [
    "Mistral-8x7B", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct",
    "Gemma-1.1-7B", "Gemma-1.1-2B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct",
    "Gemma-2-27B", "Gemma-2-27B-IT"
])

# User input for question
question = st.text_input("Question", placeholder="Enter your question here...")

# Handle user input and LLM response
if st.button("Send") and question:
    try:
        with st.spinner("Waiting for the model to respond..."):
            chat_history = " ".join(st.session_state.model_history[llm_selection]) + f"User: {question}\n"
            if llm_selection == "Mistral-8x7B":
                response = query_model(MISTRAL_API_URL, {"inputs": chat_history})
                answer = response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
            elif llm_selection == "MiniChat-2-3B":
                response = query_model(MINICHAT_API_URL, {"inputs": chat_history})
                if "error" in response and "is currently loading" in response["error"]:
                    answer = f"Model is loading, please wait {response['estimated_time']} seconds."
                else:
                    answer = response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
            elif llm_selection == "DialoGPT (GPT-2-1.5B)":
                response = query_model(DIALOGPT_API_URL, {"inputs": chat_history})
                answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
            elif llm_selection == "Phi-3-mini-4k-instruct":
                response = query_model(PHI3_API_URL, {"inputs": chat_history})
                answer = response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
            elif llm_selection == "Gemma-1.1-7B":
                response = query_model(GEMMA_API_URL, {"inputs": chat_history})
                answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
            elif llm_selection == "Gemma-1.1-2B":
                response = query_model(GEMMA_2B_API_URL, {"inputs": chat_history})
                answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
            elif llm_selection == "Meta-Llama-3-70B-Instruct":
                response = query_model(META_LLAMA_70B_API_URL, {"inputs": chat_history})
                answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
            elif llm_selection == "Meta-Llama-3-8B-Instruct":
                response = query_model(META_LLAMA_8B_API_URL, {"inputs": chat_history})
                answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
            elif llm_selection == "Gemma-2-27B":
                response = query_model(GEMMA_27B_API_URL, {"inputs": chat_history})
                answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"
            elif llm_selection == "Gemma-2-27B-IT":
                response = query_model(GEMMA_27B_IT_API_URL, {"inputs": chat_history})
                answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response"

            add_message_to_conversation(question, answer, llm_selection)
            st.session_state.model_history[llm_selection].append(f"User: {question}\n{llm_selection}: {answer}\n")
    except ValueError as e:
        st.error(str(e))

# Custom CSS for chat bubbles
st.markdown(
    """
    <style>
    .chat-bubble {
        padding: 10px 14px;
        border-radius: 14px;
        margin-bottom: 10px;
        display: inline-block;
        max-width: 80%;
        color: black;
    }
    .chat-bubble.user {
        background-color: #dcf8c6;
        align-self: flex-end;
    }
    .chat-bubble.bot {
        background-color: #fff;
        align-self: flex-start;
    }
    .chat-container {
        display: flex;
        flex-direction: column;
        gap: 10px;
        margin-top: 20px;
    }
    </style>
    """,
    unsafe_allow_html=True
)

# Display the conversation
st.write('<div class="chat-container">', unsafe_allow_html=True)
for user_message, bot_message, model_name in st.session_state.conversation:
    st.write(f'<div class="chat-bubble user">You: {user_message}</div>', unsafe_allow_html=True)
    st.write(f'<div class="chat-bubble bot">{model_name}: {bot_message}</div>', unsafe_allow_html=True)
st.write('</div>', unsafe_allow_html=True)