Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import time
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
# Get the Hugging Face API Token from environment variables
|
7 |
+
HF_API_TOKEN = os.getenv("HF_API_KEY")
|
8 |
+
if not HF_API_TOKEN:
|
9 |
+
raise ValueError("Hugging Face API Token is not set in the environment variables.")
|
10 |
+
|
11 |
+
# Hugging Face API URLs and headers for models
|
12 |
+
MISTRAL_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
|
13 |
+
MINICHAT_API_URL = "https://api-inference.huggingface.co/models/GeneZC/MiniChat-2-3B"
|
14 |
+
DIALOGPT_API_URL = "https://api-inference.huggingface.co/models/microsoft/DialoGPT-large"
|
15 |
+
PHI3_API_URL = "https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct"
|
16 |
+
META_LLAMA_70B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct"
|
17 |
+
META_LLAMA_8B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
18 |
+
GEMMA_27B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b"
|
19 |
+
GEMMA_27B_IT_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b-it"
|
20 |
+
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
21 |
+
|
22 |
+
def query_mistral(payload):
|
23 |
+
response = requests.post(MISTRAL_API_URL, headers=HEADERS, json=payload)
|
24 |
+
st.write(f"Mistral API response: {response.json()}") # Debugging log
|
25 |
+
return response.json()
|
26 |
+
|
27 |
+
def query_minichat(payload):
|
28 |
+
response = requests.post(MINICHAT_API_URL, headers=HEADERS, json=payload)
|
29 |
+
return response.json()
|
30 |
+
|
31 |
+
def query_dialogpt(payload):
|
32 |
+
response = requests.post(DIALOGPT_API_URL, headers=HEADERS, json=payload)
|
33 |
+
return response.json()
|
34 |
+
|
35 |
+
def query_phi3(payload):
|
36 |
+
response = requests.post(PHI3_API_URL, headers=HEADERS, json=payload)
|
37 |
+
return response.json()
|
38 |
+
|
39 |
+
def query_meta_llama_70b(payload):
|
40 |
+
response = requests.post(META_LLAMA_70B_API_URL, headers=HEADERS, json=payload)
|
41 |
+
return response.json()
|
42 |
+
|
43 |
+
def query_meta_llama_8b(payload):
|
44 |
+
response = requests.post(META_LLAMA_8B_API_URL, headers=HEADERS, json=payload)
|
45 |
+
return response.json()
|
46 |
+
|
47 |
+
def query_gemma_27b(payload):
|
48 |
+
response = requests.post(GEMMA_27B_API_URL, headers=HEADERS, json=payload)
|
49 |
+
return response.json()
|
50 |
+
|
51 |
+
def query_gemma_27b_it(payload):
|
52 |
+
response = requests.post(GEMMA_27B_IT_API_URL, headers=HEADERS, json=payload)
|
53 |
+
return response.json()
|
54 |
+
|
55 |
+
def count_tokens(text):
|
56 |
+
return len(text.split())
|
57 |
+
|
58 |
+
# Token limit handling
|
59 |
+
MAX_TOKENS_PER_MINUTE = 1000
|
60 |
+
token_count = 0
|
61 |
+
start_time = time.time()
|
62 |
+
|
63 |
+
def handle_token_limit(text):
|
64 |
+
global token_count, start_time
|
65 |
+
current_time = time.time()
|
66 |
+
if current_time - start_time > 60:
|
67 |
+
token_count = 0
|
68 |
+
start_time = current_time
|
69 |
+
token_count += count_tokens(text)
|
70 |
+
if token_count > MAX_TOKENS_PER_MINUTE:
|
71 |
+
raise ValueError("Token limit exceeded. Please wait before sending more messages.")
|
72 |
+
|
73 |
+
def add_message_to_conversation(user_message, bot_message, model_name):
|
74 |
+
st.session_state.conversation.append((user_message, bot_message, model_name))
|
75 |
+
|
76 |
+
# Streamlit app
|
77 |
+
st.set_page_config(page_title="Multi-LLM Chatbot Interface", layout="wide")
|
78 |
+
st.title("Multi-LLM Chatbot Interface")
|
79 |
+
st.write("Multi LLM-Chatbot Interface by Thariq Arian")
|
80 |
+
|
81 |
+
# Initialize session state for conversation and model history
|
82 |
+
if "conversation" not in st.session_state:
|
83 |
+
st.session_state.conversation = []
|
84 |
+
if "model_history" not in st.session_state:
|
85 |
+
st.session_state.model_history = {model: [] for model in ["Mistral-8x7B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct", "Gemma-2-27B", "Gemma-2-27B-IT"]}
|
86 |
+
|
87 |
+
# Dropdown for LLM selection
|
88 |
+
llm_selection = st.selectbox("Select Language Model", ["Mistral-8x7B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct", "Gemma-2-27B", "Gemma-2-27B-IT"])
|
89 |
+
|
90 |
+
# User input for question
|
91 |
+
question = st.text_input("Question", placeholder="Enter your question here...")
|
92 |
+
|
93 |
+
# Handle user input and LLM response
|
94 |
+
if st.button("Send") and question:
|
95 |
+
try:
|
96 |
+
handle_token_limit(question)
|
97 |
+
with st.spinner("Waiting for the model to respond..."):
|
98 |
+
chat_history = " ".join(st.session_state.model_history[llm_selection]) + f"User: {question}\n"
|
99 |
+
if llm_selection == "Mistral-8x7B":
|
100 |
+
mistral_response = query_mistral({"inputs": chat_history})
|
101 |
+
if isinstance(mistral_response, list) and len(mistral_response) > 0:
|
102 |
+
mistral_answer = mistral_response[0].get("generated_text", "No response")
|
103 |
+
else:
|
104 |
+
mistral_answer = "No response"
|
105 |
+
add_message_to_conversation(question, mistral_answer, llm_selection)
|
106 |
+
st.session_state.model_history[llm_selection].append(f"User: {question}\nMistral-8x7B: {mistral_answer}\n")
|
107 |
+
elif llm_selection == "Meta-Llama-3-70B-Instruct":
|
108 |
+
meta_llama_70b_response = query_meta_llama_70b({"inputs": chat_history})
|
109 |
+
if isinstance(meta_llama_70b_response, dict) and "generated_text" in meta_llama_70b_response:
|
110 |
+
meta_llama_70b_answer = meta_llama_70b_response["generated_text"]
|
111 |
+
elif isinstance(meta_llama_70b_response, list) and len(meta_llama_70b_response) > 0:
|
112 |
+
meta_llama_70b_answer = meta_llama_70b_response[0].get("generated_text", "No response")
|
113 |
+
else:
|
114 |
+
meta_llama_70b_answer = "No response"
|
115 |
+
add_message_to_conversation(question, meta_llama_70b_answer, llm_selection)
|
116 |
+
st.session_state.model_history[llm_selection].append(f"User: {question}\nMeta-Llama-3-70B-Instruct: {meta_llama_70b_answer}\n")
|
117 |
+
elif llm_selection == "Meta-Llama-3-8B-Instruct":
|
118 |
+
meta_llama_8b_response = query_meta_llama_8b({"inputs": chat_history})
|
119 |
+
if isinstance(meta_llama_8b_response, dict) and "generated_text" in meta_llama_8b_response:
|
120 |
+
meta_llama_8b_answer = meta_llama_8b_response["generated_text"]
|
121 |
+
elif isinstance(meta_llama_8b_response, list) and len(meta_llama_8b_response) > 0:
|
122 |
+
meta_llama_8b_answer = meta_llama_8b_response[0].get("generated_text", "No response")
|
123 |
+
else:
|
124 |
+
meta_llama_8b_answer = "No response"
|
125 |
+
add_message_to_conversation(question, meta_llama_8b_answer, llm_selection)
|
126 |
+
st.session_state.model_history[llm_selection].append(f"User: {question}\nMeta-Llama-3-8B-Instruct: {meta_llama_8b_answer}\n")
|
127 |
+
elif llm_selection == "MiniChat-2-3B":
|
128 |
+
minichat_response = query_minichat({"inputs": chat_history})
|
129 |
+
if "error" in minichat_response and "is currently loading" in minichat_response["error"]:
|
130 |
+
minichat_answer = f"Model is loading, please wait {minichat_response['estimated_time']} seconds."
|
131 |
+
elif isinstance(minichat_response, list) and len(minichat_response) > 0:
|
132 |
+
minichat_answer = minichat_response[0].get("generated_text", "No response")
|
133 |
+
else:
|
134 |
+
minichat_answer = "No response"
|
135 |
+
add_message_to_conversation(question, minichat_answer, llm_selection)
|
136 |
+
st.session_state.model_history[llm_selection].append(f"User: {question}\nMiniChat-2-3B: {minichat_answer}\n")
|
137 |
+
elif llm_selection == "DialoGPT (GPT-2-1.5B)":
|
138 |
+
dialogpt_response = query_dialogpt({"inputs": chat_history})
|
139 |
+
if isinstance(dialogpt_response, dict) and "generated_text" in dialogpt_response:
|
140 |
+
dialogpt_answer = dialogpt_response["generated_text"]
|
141 |
+
elif isinstance(dialogpt_response, list) and len(dialogpt_response) > 0:
|
142 |
+
dialogpt_answer = dialogpt_response[0].get("generated_text", "No response")
|
143 |
+
else:
|
144 |
+
dialogpt_answer = "No response"
|
145 |
+
add_message_to_conversation(question, dialogpt_answer, llm_selection)
|
146 |
+
st.session_state.model_history[llm_selection].append(f"User: {question}\nDialoGPT (GPT-2-1.5B): {dialogpt_answer}\n")
|
147 |
+
elif llm_selection == "Phi-3-mini-4k-instruct":
|
148 |
+
phi3_response = query_phi3({"inputs": chat_history})
|
149 |
+
if isinstance(phi3_response, list) and len(phi3_response) > 0:
|
150 |
+
phi3_answer = phi3_response[0].get("generated_text", "No response")
|
151 |
+
else:
|
152 |
+
phi3_answer = "No response"
|
153 |
+
add_message_to_conversation(question, phi3_answer, llm_selection)
|
154 |
+
st.session_state.model_history[llm_selection].append(f"User: {question}\nPhi-3-mini-4k-instruct: {phi3_answer}\n")
|
155 |
+
elif llm_selection == "Gemma-2-27B":
|
156 |
+
gemma_response = query_gemma_27b({"inputs": chat_history})
|
157 |
+
if isinstance(gemma_response, dict) and "generated_text" in gemma_response:
|
158 |
+
gemma_answer = gemma_response["generated_text"]
|
159 |
+
elif isinstance(gemma_response, list) and len(gemma_response) > 0:
|
160 |
+
gemma_answer = gemma_response[0].get("generated_text", "No response")
|
161 |
+
else:
|
162 |
+
gemma_answer = "No response"
|
163 |
+
add_message_to_conversation(question, gemma_answer, llm_selection)
|
164 |
+
st.session_state.model_history[llm_selection].append(f"User: {question}\nGemma-2-27B: {gemma_answer}\n")
|
165 |
+
elif llm_selection == "Gemma-2-27B-IT":
|
166 |
+
gemma_27b_it_response = query_gemma_27b_it({"inputs": chat_history})
|
167 |
+
if isinstance(gemma_27b_it_response, dict) and "generated_text" in gemma_27b_it_response:
|
168 |
+
gemma_27b_it_answer = gemma_27b_it_response["generated_text"]
|
169 |
+
elif isinstance(gemma_27b_it_response, list) and len(gemma_27b_it_response) > 0:
|
170 |
+
gemma_27b_it_answer = gemma_27b_it_response[0].get("generated_text", "No response")
|
171 |
+
else:
|
172 |
+
gemma_27b_it_answer = "No response"
|
173 |
+
add_message_to_conversation(question, gemma_27b_it_answer, llm_selection)
|
174 |
+
st.session_state.model_history[llm_selection].append(f"User: {question}\nGemma-2-27B-IT: {gemma_27b_it_answer}\n")
|
175 |
+
except ValueError as e:
|
176 |
+
st.error(str(e))
|
177 |
+
|
178 |
+
# Custom CSS for chat bubbles
|
179 |
+
st.markdown(
|
180 |
+
"""
|
181 |
+
<style>
|
182 |
+
.chat-bubble {
|
183 |
+
padding: 10px 14px;
|
184 |
+
border-radius: 14px;
|
185 |
+
margin-bottom: 10px;
|
186 |
+
display: inline-block;
|
187 |
+
max-width: 80%;
|
188 |
+
color: black;
|
189 |
+
}
|
190 |
+
.chat-bubble.user {
|
191 |
+
background-color: #dcf8c6;
|
192 |
+
align-self: flex-end;
|
193 |
+
}
|
194 |
+
.chat-bubble.bot {
|
195 |
+
background-color: #fff;
|
196 |
+
align-self: flex-start;
|
197 |
+
}
|
198 |
+
.chat-container {
|
199 |
+
display: flex;
|
200 |
+
flex-direction: column;
|
201 |
+
gap: 10px;
|
202 |
+
margin-top: 20px;
|
203 |
+
}
|
204 |
+
</style>
|
205 |
+
""",
|
206 |
+
unsafe_allow_html=True
|
207 |
+
)
|
208 |
+
|
209 |
+
# Display the conversation
|
210 |
+
st.write('<div class="chat-container">', unsafe_allow_html=True)
|
211 |
+
for user_message, bot_message, model_name in st.session_state.conversation:
|
212 |
+
st.write(f'<div class="chat-bubble user">You: {user_message}</div>', unsafe_allow_html=True)
|
213 |
+
st.write(f'<div class="chat-bubble bot">{model_name}: {bot_message}</div>', unsafe_allow_html=True)
|
214 |
+
st.write('</div>', unsafe_allow_html=True)
|