File size: 11,497 Bytes
a2dba58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""Adapted from https://github.com/lucidrains/denoising-diffusion-pytorch"""
import math
from collections import namedtuple
from functools import partial
from typing import List, Optional

import torch
import torch.nn.functional as F
from einops import rearrange
from torch import einsum, nn, Tensor

from trainers.utils import default, exists

# constants

ModelPrediction = namedtuple('ModelPrediction', ['pred_noise', 'pred_x_start'])

# helpers functions


def l2norm(t: Tensor) -> Tensor:
    """L2 normalize along last dimension"""
    return F.normalize(t, dim=-1)


# small helper modules


class Residual(nn.Module):
    """Residual of any Module -> x' = f(x) + x"""
    def __init__(self, fn: nn.Module):
        super().__init__()
        self.fn = fn

    def forward(self, x, *args, **kwargs):
        return self.fn(x, *args, **kwargs) + x


def Upsample(dim: int, dim_out: Optional[int] = None) -> nn.Sequential:
    """UpsampleConv with factor 2"""
    return nn.Sequential(
        nn.Upsample(scale_factor=2, mode='nearest'),
        nn.Conv2d(dim, default(dim_out, dim), 3, padding=1)
    )


def Downsample(dim: int, dim_out: Optional[int] = None) -> nn.Conv2d:
    """Strided Conv2d for downsampling"""
    return nn.Conv2d(dim, default(dim_out, dim), 4, 2, 1)


class LayerNorm(nn.Module):
    def __init__(self, dim: int):
        super().__init__()
        self.g = nn.Parameter(torch.ones(1, dim, 1, 1))

    def forward(self, x: Tensor) -> Tensor:
        eps = 1e-5 if x.dtype == torch.float32 else 1e-3
        var = torch.var(x, dim=1, unbiased=False, keepdim=True)
        mean = torch.mean(x, dim=1, keepdim=True)
        return (x - mean) * (var + eps).rsqrt() * self.g


class PreNorm(nn.Module):
    """Apply LayerNorm before any Module"""
    def __init__(self, dim: int, fn: nn.Module):
        super().__init__()
        self.fn = fn
        self.norm = LayerNorm(dim)

    def forward(self, x: Tensor) -> Tensor:
        x = self.norm(x)
        return self.fn(x)


class SinusoidalPosEmb(nn.Module):
    """Classical sinosoidal embedding"""
    def __init__(self, dim: int):
        super().__init__()
        self.dim = dim

    def forward(self, t: Tensor) -> Tensor:
        """
        :param t: Batch of time steps (b,)
        :return emb: Sinusoidal time embedding (b, dim)
        """
        device = t.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = t[:, None] * emb[None, :]
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb


class LearnedSinusoidalPosEmb(nn.Module):
    """ following @crowsonkb 's lead with learned sinusoidal pos emb """
    """ https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """
    def __init__(self, dim: int):
        super().__init__()
        assert (dim % 2) == 0
        half_dim = dim // 2
        self.weights = nn.Parameter(torch.randn(half_dim))

    def forward(self, t: Tensor) -> Tensor:
        """
        :param t: Batch of time steps (b,)
        :return fouriered: Concatenation of t and time embedding (b, dim + 1)
        """
        t = rearrange(t, 'b -> b 1')
        freqs = t * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi
        fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
        fouriered = torch.cat((t, fouriered), dim=-1)
        return fouriered

# building block modules


class Block(nn.Module):
    def __init__(self, dim: int, dim_out: int, groups: int = 8):
        super().__init__()
        self.proj = nn.Conv2d(dim, dim_out, 3, padding=1)
        self.norm = nn.GroupNorm(groups, dim_out)
        self.act = nn.SiLU()

    def forward(self, x: Tensor, scale_shift: Optional[Tensor] = None) -> Tensor:
        x = self.proj(x)
        x = self.norm(x)

        if exists(scale_shift):
            scale, shift = scale_shift
            x = x * (scale + 1) + shift

        x = self.act(x)
        return x


class ResnetBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        dim_out: int,
        *,
        time_emb_dim: Optional[int] = None,
        groups: int = 8
    ):
        super().__init__()

        self.time_mlp = nn.Sequential(
            nn.SiLU(),
            nn.Linear(time_emb_dim, dim_out * 2)
        ) if exists(time_emb_dim) else None

        self.block1 = Block(dim, dim_out, groups=groups)
        self.block2 = Block(dim_out, dim_out, groups=groups)
        if dim != dim_out:
            self.res_conv = nn.Conv2d(dim, dim_out, 1)
        else:
            self.res_conv = nn.Identity()

    def forward(self, x: Tensor, time_emb: Optional[Tensor] = None) -> Tensor:
        """
        :param x: Batch of input images (b, c, h, w)
        :param time_emb: Batch of time embeddings (b, c)
        """
        scale_shift = None

        if exists(self.time_mlp) and exists(time_emb):
            time_emb = self.time_mlp(time_emb)
            time_emb = rearrange(time_emb, 'b c -> b c 1 1')
            scale_shift = time_emb.chunk(2, dim=1)

        h = self.block1(x, scale_shift=scale_shift)
        h = self.block2(h)
        return h + self.res_conv(x)


class LinearAttention(nn.Module):
    """Attention with linear to_qtv"""
    def __init__(self, dim: int, heads: int = 4, dim_head: int = 32):
        super().__init__()
        self.scale = dim_head ** -0.5
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)

        self.to_out = nn.Sequential(
            nn.Conv2d(hidden_dim, dim, 1),
            LayerNorm(dim)
        )

    def forward(self, x: Tensor) -> Tensor:
        """
        :param x: Batch of input images (b, c, h, w)
        """
        b, c, h, w = x.shape
        qkv = self.to_qkv(x).chunk(3, dim=1)
        q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h=self.heads), qkv)

        q = q.softmax(dim=-2)
        k = k.softmax(dim=-1)

        q = q * self.scale
        v = v / (h * w)

        context = torch.einsum('b h d n, b h e n -> b h d e', k, v)

        out = torch.einsum('b h d e, b h d n -> b h e n', context, q)
        out = rearrange(out, 'b h c (x y) -> b (h c) x y', h=self.heads, x=h, y=w)
        return self.to_out(out)


class Attention(nn.Module):
    """Attention with convolutional to_qtv"""
    def __init__(
        self,
        dim: int,
        heads: int = 4,
        dim_head: int = 32,
        scale: int = 16
    ):
        super().__init__()
        self.scale = scale
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x: Tensor) -> Tensor:
        b, c, h, w = x.shape
        qkv = self.to_qkv(x).chunk(3, dim=1)
        q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h=self.heads), qkv)

        q, k = map(l2norm, (q, k))

        sim = einsum('b h d i, b h d j -> b h i j', q, k) * self.scale
        attn = sim.softmax(dim=-1)

        out = einsum('b h i j, b h d j -> b h i d', attn, v)
        out = rearrange(out, 'b h (x y) d -> b (h d) x y', x=h, y=w)
        return self.to_out(out)

# model


class Unet(nn.Module):
    def __init__(
        self,
        dim: int = 64,
        init_dim: Optional[int] = None,
        out_dim: Optional[int] = None,
        dim_mults: List[int] = [1, 2, 4, 8],
        channels: int = 1,
        resnet_block_groups: int = 8,
        learned_variance: bool = False,
        learned_sinusoidal_cond: bool = False,
        learned_sinusoidal_dim: int = 16,
        **kwargs
    ):
        super().__init__()

        # determine dimensions

        self.channels = channels

        init_dim = default(init_dim, dim)
        self.init_conv = nn.Conv2d(channels, init_dim, 7, padding=3)

        dims = [init_dim, *map(lambda m: dim * m, dim_mults)]
        in_out = list(zip(dims[:-1], dims[1:]))

        block_class = partial(ResnetBlock, groups=resnet_block_groups)

        # time embeddings

        time_dim = dim * 4

        self.learned_sinusoidal_cond = learned_sinusoidal_cond

        if learned_sinusoidal_cond:
            sinu_pos_emb = LearnedSinusoidalPosEmb(learned_sinusoidal_dim)
            fourier_dim = learned_sinusoidal_dim + 1
        else:
            sinu_pos_emb = SinusoidalPosEmb(dim)
            fourier_dim = dim

        self.time_mlp = nn.Sequential(
            sinu_pos_emb,
            nn.Linear(fourier_dim, time_dim),
            nn.GELU(),
            nn.Linear(time_dim, time_dim)
        )

        # layers

        self.downs = nn.ModuleList([])
        self.ups = nn.ModuleList([])
        num_resolutions = len(in_out)

        for ind, (dim_in, dim_out) in enumerate(in_out):
            is_last = ind >= (num_resolutions - 1)

            self.downs.append(nn.ModuleList([
                block_class(dim_in, dim_in, time_emb_dim=time_dim),
                block_class(dim_in, dim_in, time_emb_dim=time_dim),
                Residual(PreNorm(dim_in, LinearAttention(dim_in))),
                Downsample(dim_in, dim_out) if not is_last else nn.Conv2d(
                    dim_in, dim_out, 3, padding=1)
            ]))

        mid_dim = dims[-1]
        self.mid_block1 = block_class(mid_dim, mid_dim, time_emb_dim=time_dim)
        self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim)))
        self.mid_block2 = block_class(mid_dim, mid_dim, time_emb_dim=time_dim)

        for ind, (dim_in, dim_out) in enumerate(reversed(in_out)):
            is_last = ind == (len(in_out) - 1)

            self.ups.append(nn.ModuleList([
                block_class(dim_out + dim_in, dim_out, time_emb_dim=time_dim),
                block_class(dim_out + dim_in, dim_out, time_emb_dim=time_dim),
                Residual(PreNorm(dim_out, LinearAttention(dim_out))),
                Upsample(dim_out, dim_in) if not is_last else nn.Conv2d(
                    dim_out, dim_in, 3, padding=1)
            ]))

        default_out_dim = channels * (1 if not learned_variance else 2)
        self.out_dim = default(out_dim, default_out_dim)

        self.final_res_block = block_class(dim * 2, dim, time_emb_dim=time_dim)
        self.final_conv = nn.Conv2d(dim, self.out_dim, 1)

    def forward(self, x: Tensor, timestep: Optional[Tensor]=None, cond: Optional[Tensor]=None) -> Tensor:
        x = self.init_conv(x)
        r = x.clone()

        t = self.time_mlp(timestep) if timestep is not None else None

        h = []

        for block1, block2, attn, downsample in self.downs:
            x = block1(x, t)
            h.append(x)

            x = block2(x, t)
            x = attn(x)
            h.append(x)

            x = downsample(x)

        x = self.mid_block1(x, t)
        x = self.mid_attn(x)
        x = self.mid_block2(x, t)

        for block1, block2, attn, upsample in self.ups:
            x = torch.cat((x, h.pop()), dim=1)
            x = block1(x, t)

            x = torch.cat((x, h.pop()), dim=1)
            x = block2(x, t)
            x = attn(x)

            x = upsample(x)

        x = torch.cat((x, r), dim=1)

        x = self.final_res_block(x, t)
        return self.final_conv(x)


if __name__ == '__main__':
    model = Unet(channels=1)
    x = torch.randn(1, 1, 128, 128)
    y = model(x, timestep=torch.tensor([100]))
    print(y.shape)