File size: 7,956 Bytes
a2dba58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import os
from pathlib import Path
import torch
from torch import autocast, Tensor
from torch.nn.functional import binary_cross_entropy_with_logits
from torch.cuda.amp import GradScaler
from tqdm import tqdm
from config import parser
from einops import rearrange, reduce, repeat
from dataloaders.JSRT import build_dataloaders
from models.unet_model import Unet
from trainers.train_baseline import validate, save
from trainers.utils import (TensorboardLogger, compare_configs, seed_everything, crop_batch)


def train(config, model, optimizer, train_dl, val_dl, logger, scaler, step):
    best_val_loss = float('inf')
    train_losses = []
    if config.dataset == "BRATS2D":
        train_losses_per_class = []
    elif config.shared_weights_over_timesteps and config.experiment == 'datasetDM':
        train_losses_per_timestep = []
        
    pbar = tqdm(total=config.val_freq, desc='Training')
    while True:
        for x, y in train_dl:
            if config.shared_weights_over_timesteps and config.experiment == 'datasetDM':
                y = repeat(y, 'b c h w -> (b step) c h w', step=len(model.steps))
            if config.augment_at_finetuning:
                x, y = crop_batch([x, y], config.img_size, config.batch_size)
                brightness = torch.rand((config.batch_size, 1, 1, 1), device=x.device)*.6 - .3        # random brightness adjustment between [-.3, .3]
                contrast = torch.rand((config.batch_size, 1, 1, 1), device=x.device)*.6 + .7          # random contrast adjustment between [.7, 1.3]
                x = (x + brightness) * contrast                                                # apply brightness and contrast

            x = x.to(config.device)
            y = y.to(config.device)

            optimizer.zero_grad()
            with autocast(device_type=config.device, enabled=config.mixed_precision):
                pred = model(x)
                # cross entropy loss
                #loss = - ((y * torch.log(torch.sigmoid(pred)) + (1 - y) * torch.log(1 - torch.sigmoid(pred)))).mean()
                if config.dataset == "BRATS2D":
                    weights = repeat(torch.Tensor(config.loss_weights).to(config.device), 'c -> b c h w', b=y.shape[0], h=y.shape[2], w=y.shape[3])
                else:
                    weights = None
                expanded_loss = reduce(binary_cross_entropy_with_logits(pred, y, weight=weights, reduction='none'), 'b c h w -> b c', 'mean') 
                loss = expanded_loss.mean()
            scaler.scale(loss).backward()
            optimizer.step()

            train_losses.append(loss.item())
            if config.dataset == "BRATS2D":
                loss_per_class = expanded_loss.mean(0)
                train_losses_per_class.append(loss_per_class.detach().cpu())
                pbar.set_description(f'Training loss: {loss.item():.4f} - {loss_per_class[0].item():.4f} - {loss_per_class[1].item():.4f} - {loss_per_class[2].item():.4f} - {loss_per_class[3].item():.4f}')
            else:
                pbar.set_description(f'Training loss: {loss.item():.4f}')

            pbar.update(1)
            step += 1
            
            if config.unfreeze_weights_at_step == step:
                for name, param in model.named_parameters():
                    if name.startswith('downs') or name.startswith('init_conv') or name.startswith('mid_'):
                        param.requires_grad = True

            if step % config.log_freq == 0 or config.debug:
                avg_train_loss = sum(train_losses) / len(train_losses)
                print(f'Step {step} - Train loss: {avg_train_loss:.4f}')
                logger.log({'train/loss': avg_train_loss}, step=step)
                if config.dataset == "BRATS2D":
                    avg_train_loss_per_class = torch.stack(train_losses_per_class).mean(0)
                    logger.log({'train_loss/0':avg_train_loss_per_class[0].item()}, step=step)
                    logger.log({'train_loss/1':avg_train_loss_per_class[1].item()}, step=step)
                    logger.log({'train_loss/2':avg_train_loss_per_class[2].item()}, step=step)
                    logger.log({'train_loss/3':avg_train_loss_per_class[3].item()}, step=step)
                if config.shared_weights_over_timesteps and config.experiment == 'datasetDM':
                    avg_train_loss_per_timestep = torch.stack(train_losses_per_timestep).mean(0)
                    for i, model_step in enumerate(model.steps):
                        logger.log({'train_loss/step_' + str(model_step): avg_train_loss_per_timestep[i].item()}, step=step)

            if step % config.val_freq == 0 or config.debug:
                val_results = validate(config, model, val_dl)
                logger.log(val_results, step=step)

                if val_results['val/loss'] < best_val_loss and not config.debug:
                    print(f'Step {step} - New best validation loss: '
                          f'{val_results["val/loss"]:.4f}, saving model '
                          f'in {config.log_dir}')
                    best_val_loss = val_results['val/loss']
                    save(
                        model,
                        optimizer,
                        config,
                        config.log_dir / 'best_model.pt',
                        step
                    )
                elif val_results['val/loss'] > best_val_loss * 1.5 and config.early_stop:
                    print(f'Step {step} - Validation loss increased by more than 50%')
                    return model

            if step >= config.max_steps or config.debug:
                return model




def load(config, path):
    raise NotImplementedError

def main(config):

    os.makedirs(config.log_dir, exist_ok=True)
    
    # save config namespace into logdir
    with open(config.log_dir / 'config.txt', 'w') as f:
        for k, v in vars(config).items():
            if type(v) not in [str, int, float, bool]:
                f.write(f'{k}: {str(v)}\n')
            else:
                f.write(f'{k}: {v}\n')

    # Random seed
    seed_everything(config.seed)

    # Init model and optimizer
    if config.resume_path is not None:
        print('Loading model from', config.resume_path)
        model, optimizer, step = load(config, config.resume_path)
    else:
        model = Unet(
            img_size=config.img_size,
            dim=config.dim,
            dim_mults=config.dim_mults,
            channels=config.channels,
            out_dim=config.out_channels)
        state_dict = torch.load(config.glob_loc_model_path, map_location='cpu')['model_state_dict']
        out = model.load_state_dict(state_dict=state_dict, strict=False)
        print("Loaded state dict. \n\tMissing keys: {}\n\tUnexpected keys: {}".format(out.missing_keys, out.unexpected_keys))
        print('Note that although the state dict of the decoder is loaded, its values are random.')
        if config.unfreeze_weights_at_step !=0:
            for name, param in model.named_parameters():
                if name.startswith('downs') or name.startswith('init_conv') or name.startswith('mid_'):
                    param.requires_grad = False

        optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)  # , betas=config.adam_betas)
        
        step = 0
    model.to(config.device)
    model.train()

    scaler = GradScaler()

    # Load data
    dataloaders = build_dataloaders(
        config.data_dir,
        config.img_size,
        config.batch_size,
        config.num_workers,
        n_labelled_images=config.n_labelled_images,
    )
    train_dl = dataloaders['train']
    val_dl = dataloaders['val']
    print('Train dataset size:', len(train_dl.dataset))
    print('Validation dataset size:', len(val_dl.dataset))

    # Logger
    logger = TensorboardLogger(config.log_dir, enabled=not config.debug)

    train(config, model, optimizer, train_dl, val_dl, logger, scaler, step)