File size: 26,763 Bytes
2e1a3f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
from __future__ import absolute_import
import torch
from torch import nn
import torch.nn.functional as F
import math
from transformers import BertConfig
from transformers.modeling_outputs import BaseModelOutputWithPooling, BaseModelOutput
from BERT_explainability.modules.layers_lrp import *
from transformers import (
BertPreTrainedModel,
PreTrainedModel,
)
ACT2FN = {
"relu": ReLU,
"tanh": Tanh,
"gelu": GELU,
}
def get_activation(activation_string):
if activation_string in ACT2FN:
return ACT2FN[activation_string]
else:
raise KeyError("function {} not found in ACT2FN mapping {}".format(activation_string, list(ACT2FN.keys())))
def compute_rollout_attention(all_layer_matrices, start_layer=0):
# adding residual consideration
num_tokens = all_layer_matrices[0].shape[1]
batch_size = all_layer_matrices[0].shape[0]
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
for i in range(len(all_layer_matrices))]
joint_attention = all_layer_matrices[start_layer]
for i in range(start_layer+1, len(all_layer_matrices)):
joint_attention = all_layer_matrices[i].bmm(joint_attention)
return joint_attention
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.add1 = Add()
self.add2 = Add()
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
# embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.add1([token_type_embeddings, position_embeddings])
embeddings = self.add2([embeddings, inputs_embeds])
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def relprop(self, cam, **kwargs):
cam = self.dropout.relprop(cam, **kwargs)
cam = self.LayerNorm.relprop(cam, **kwargs)
# [inputs_embeds, position_embeddings, token_type_embeddings]
(cam) = self.add2.relprop(cam, **kwargs)
return cam
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=False,
):
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if getattr(self.config, "gradient_checkpointing", False):
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
def relprop(self, cam, **kwargs):
# assuming output_hidden_states is False
for layer_module in reversed(self.layer):
cam = layer_module.relprop(cam, **kwargs)
return cam
# not adding relprop since this is only pooling at the end of the network, does not impact tokens importance
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = Linear(config.hidden_size, config.hidden_size)
self.activation = Tanh()
self.pool = IndexSelect()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
self._seq_size = hidden_states.shape[1]
# first_token_tensor = hidden_states[:, 0]
first_token_tensor = self.pool(hidden_states, 1, torch.tensor(0, device=hidden_states.device))
first_token_tensor = first_token_tensor.squeeze(1)
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
def relprop(self, cam, **kwargs):
cam = self.activation.relprop(cam, **kwargs)
#print(cam.sum())
cam = self.dense.relprop(cam, **kwargs)
#print(cam.sum())
cam = cam.unsqueeze(1)
cam = self.pool.relprop(cam, **kwargs)
#print(cam.sum())
return cam
class BertAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
self.pruned_heads = set()
self.clone = Clone()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False,
):
h1, h2 = self.clone(hidden_states, 2)
self_outputs = self.self(
h1,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions,
)
attention_output = self.output(self_outputs[0], h2)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def relprop(self, cam, **kwargs):
# assuming that we don't ouput the attentions (outputs = (attention_output,)), self_outputs=(context_layer,)
(cam1, cam2) = self.output.relprop(cam, **kwargs)
#print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
cam1 = self.self.relprop(cam1, **kwargs)
#print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
return self.clone.relprop((cam1, cam2), **kwargs)
class BertSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = Linear(config.hidden_size, self.all_head_size)
self.key = Linear(config.hidden_size, self.all_head_size)
self.value = Linear(config.hidden_size, self.all_head_size)
self.dropout = Dropout(config.attention_probs_dropout_prob)
self.matmul1 = MatMul()
self.matmul2 = MatMul()
self.softmax = Softmax(dim=-1)
self.add = Add()
self.mul = Mul()
self.head_mask = None
self.attention_mask = None
self.clone = Clone()
self.attn_cam = None
self.attn = None
self.attn_gradients = None
def get_attn(self):
return self.attn
def save_attn(self, attn):
self.attn = attn
def save_attn_cam(self, cam):
self.attn_cam = cam
def get_attn_cam(self):
return self.attn_cam
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def transpose_for_scores_relprop(self, x):
return x.permute(0, 2, 1, 3).flatten(2)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False,
):
self.head_mask = head_mask
self.attention_mask = attention_mask
h1, h2, h3 = self.clone(hidden_states, 3)
mixed_query_layer = self.query(h1)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
if encoder_hidden_states is not None:
mixed_key_layer = self.key(encoder_hidden_states)
mixed_value_layer = self.value(encoder_hidden_states)
attention_mask = encoder_attention_mask
else:
mixed_key_layer = self.key(h2)
mixed_value_layer = self.value(h3)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = self.matmul1([query_layer, key_layer.transpose(-1, -2)])
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = self.add([attention_scores, attention_mask])
# Normalize the attention scores to probabilities.
attention_probs = self.softmax(attention_scores)
self.save_attn(attention_probs)
attention_probs.register_hook(self.save_attn_gradients)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = self.matmul2([attention_probs, value_layer])
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
def relprop(self, cam, **kwargs):
# Assume output_attentions == False
cam = self.transpose_for_scores(cam)
# [attention_probs, value_layer]
(cam1, cam2) = self.matmul2.relprop(cam, **kwargs)
cam1 /= 2
cam2 /= 2
if self.head_mask is not None:
# [attention_probs, head_mask]
(cam1, _)= self.mul.relprop(cam1, **kwargs)
self.save_attn_cam(cam1)
cam1 = self.dropout.relprop(cam1, **kwargs)
cam1 = self.softmax.relprop(cam1, **kwargs)
if self.attention_mask is not None:
# [attention_scores, attention_mask]
(cam1, _) = self.add.relprop(cam1, **kwargs)
# [query_layer, key_layer.transpose(-1, -2)]
(cam1_1, cam1_2) = self.matmul1.relprop(cam1, **kwargs)
cam1_1 /= 2
cam1_2 /= 2
# query
cam1_1 = self.transpose_for_scores_relprop(cam1_1)
cam1_1 = self.query.relprop(cam1_1, **kwargs)
# key
cam1_2 = self.transpose_for_scores_relprop(cam1_2.transpose(-1, -2))
cam1_2 = self.key.relprop(cam1_2, **kwargs)
# value
cam2 = self.transpose_for_scores_relprop(cam2)
cam2 = self.value.relprop(cam2, **kwargs)
cam = self.clone.relprop((cam1_1, cam1_2, cam2), **kwargs)
return cam
class BertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = Dropout(config.hidden_dropout_prob)
self.add = Add()
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
add = self.add([hidden_states, input_tensor])
hidden_states = self.LayerNorm(add)
return hidden_states
def relprop(self, cam, **kwargs):
cam = self.LayerNorm.relprop(cam, **kwargs)
# [hidden_states, input_tensor]
(cam1, cam2) = self.add.relprop(cam, **kwargs)
cam1 = self.dropout.relprop(cam1, **kwargs)
cam1 = self.dense.relprop(cam1, **kwargs)
return (cam1, cam2)
class BertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]()
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def relprop(self, cam, **kwargs):
cam = self.intermediate_act_fn.relprop(cam, **kwargs) # FIXME only ReLU
#print(cam.sum())
cam = self.dense.relprop(cam, **kwargs)
#print(cam.sum())
return cam
class BertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = Dropout(config.hidden_dropout_prob)
self.add = Add()
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
add = self.add([hidden_states, input_tensor])
hidden_states = self.LayerNorm(add)
return hidden_states
def relprop(self, cam, **kwargs):
# print("in", cam.sum())
cam = self.LayerNorm.relprop(cam, **kwargs)
#print(cam.sum())
# [hidden_states, input_tensor]
(cam1, cam2)= self.add.relprop(cam, **kwargs)
# print("add", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
cam1 = self.dropout.relprop(cam1, **kwargs)
#print(cam1.sum())
cam1 = self.dense.relprop(cam1, **kwargs)
# print("dense", cam1.sum())
# print("out", cam1.sum() + cam2.sum(), cam1.sum(), cam2.sum())
return (cam1, cam2)
class BertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = BertAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
self.clone = Clone()
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
ao1, ao2 = self.clone(attention_output, 2)
intermediate_output = self.intermediate(ao1)
layer_output = self.output(intermediate_output, ao2)
outputs = (layer_output,) + outputs
return outputs
def relprop(self, cam, **kwargs):
(cam1, cam2) = self.output.relprop(cam, **kwargs)
# print("output", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
cam1 = self.intermediate.relprop(cam1, **kwargs)
# print("intermediate", cam1.sum())
cam = self.clone.relprop((cam1, cam2), **kwargs)
# print("clone", cam.sum())
cam = self.attention.relprop(cam, **kwargs)
# print("attention", cam.sum())
return cam
class BertModel(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config)
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
is used in the cross-attention if the model is configured as a decoder.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def relprop(self, cam, **kwargs):
cam = self.pooler.relprop(cam, **kwargs)
# print("111111111111",cam.sum())
cam = self.encoder.relprop(cam, **kwargs)
# print("222222222222222", cam.sum())
# print("conservation: ", cam.sum())
return cam
if __name__ == '__main__':
class Config:
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.attention_probs_dropout_prob = attention_probs_dropout_prob
model = BertSelfAttention(Config(1024, 4, 0.1))
x = torch.rand(2, 20, 1024)
x.requires_grad_()
model.eval()
y = model.forward(x)
relprop = model.relprop(torch.rand(2, 20, 1024), (torch.rand(2, 20, 1024),))
print(relprop[1][0].shape)
|