Martijn van Beers
commited on
Commit
·
2e1a3f8
1
Parent(s):
e8c51f1
try to make it work quick and dirty
Browse files- BERT_explainability/BERT.py +671 -0
- BERT_explainability/BERT_cls_lrp.py +202 -0
- BERT_explainability/BERT_orig_lrp.py +671 -0
- BERT_explainability/BERTalt.py +551 -0
- BERT_explainability/BertForSequenceClassification.py +204 -0
- BERT_explainability/ExplanationGenerator.py +165 -0
- BERT_explainability/NewExplanationGenerator.py +145 -0
- BERT_explainability/RobertaForSequenceClassification.py +204 -0
- BERT_explainability/roberta2.py +1596 -0
- BERT_explainability/roberta2.py.rej +63 -0
- app.py +190 -3
- requirements.txt +4 -0
BERT_explainability/BERT.py
ADDED
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import math
|
7 |
+
from transformers import BertConfig
|
8 |
+
from transformers.modeling_outputs import BaseModelOutputWithPooling, BaseModelOutput
|
9 |
+
from BERT_explainability.modules.layers_ours import *
|
10 |
+
from transformers import (
|
11 |
+
BertPreTrainedModel,
|
12 |
+
PreTrainedModel,
|
13 |
+
)
|
14 |
+
|
15 |
+
ACT2FN = {
|
16 |
+
"relu": ReLU,
|
17 |
+
"tanh": Tanh,
|
18 |
+
"gelu": GELU,
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def get_activation(activation_string):
|
23 |
+
if activation_string in ACT2FN:
|
24 |
+
return ACT2FN[activation_string]
|
25 |
+
else:
|
26 |
+
raise KeyError("function {} not found in ACT2FN mapping {}".format(activation_string, list(ACT2FN.keys())))
|
27 |
+
|
28 |
+
def compute_rollout_attention(all_layer_matrices, start_layer=0):
|
29 |
+
# adding residual consideration
|
30 |
+
num_tokens = all_layer_matrices[0].shape[1]
|
31 |
+
batch_size = all_layer_matrices[0].shape[0]
|
32 |
+
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
|
33 |
+
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
|
34 |
+
all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
|
35 |
+
for i in range(len(all_layer_matrices))]
|
36 |
+
joint_attention = all_layer_matrices[start_layer]
|
37 |
+
for i in range(start_layer+1, len(all_layer_matrices)):
|
38 |
+
joint_attention = all_layer_matrices[i].bmm(joint_attention)
|
39 |
+
return joint_attention
|
40 |
+
|
41 |
+
class BertEmbeddings(nn.Module):
|
42 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
43 |
+
|
44 |
+
def __init__(self, config):
|
45 |
+
super().__init__()
|
46 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
47 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
48 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
49 |
+
|
50 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
51 |
+
# any TensorFlow checkpoint file
|
52 |
+
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
53 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
54 |
+
|
55 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
56 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
57 |
+
|
58 |
+
self.add1 = Add()
|
59 |
+
self.add2 = Add()
|
60 |
+
|
61 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
|
62 |
+
if input_ids is not None:
|
63 |
+
input_shape = input_ids.size()
|
64 |
+
else:
|
65 |
+
input_shape = inputs_embeds.size()[:-1]
|
66 |
+
|
67 |
+
seq_length = input_shape[1]
|
68 |
+
|
69 |
+
if position_ids is None:
|
70 |
+
position_ids = self.position_ids[:, :seq_length]
|
71 |
+
|
72 |
+
if token_type_ids is None:
|
73 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
74 |
+
|
75 |
+
if inputs_embeds is None:
|
76 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
77 |
+
position_embeddings = self.position_embeddings(position_ids)
|
78 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
79 |
+
|
80 |
+
# embeddings = inputs_embeds + position_embeddings + token_type_embeddings
|
81 |
+
embeddings = self.add1([token_type_embeddings, position_embeddings])
|
82 |
+
embeddings = self.add2([embeddings, inputs_embeds])
|
83 |
+
embeddings = self.LayerNorm(embeddings)
|
84 |
+
embeddings = self.dropout(embeddings)
|
85 |
+
return embeddings
|
86 |
+
|
87 |
+
def relprop(self, cam, **kwargs):
|
88 |
+
cam = self.dropout.relprop(cam, **kwargs)
|
89 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
90 |
+
|
91 |
+
# [inputs_embeds, position_embeddings, token_type_embeddings]
|
92 |
+
(cam) = self.add2.relprop(cam, **kwargs)
|
93 |
+
|
94 |
+
return cam
|
95 |
+
|
96 |
+
class BertEncoder(nn.Module):
|
97 |
+
def __init__(self, config):
|
98 |
+
super().__init__()
|
99 |
+
self.config = config
|
100 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
101 |
+
|
102 |
+
def forward(
|
103 |
+
self,
|
104 |
+
hidden_states,
|
105 |
+
attention_mask=None,
|
106 |
+
head_mask=None,
|
107 |
+
encoder_hidden_states=None,
|
108 |
+
encoder_attention_mask=None,
|
109 |
+
output_attentions=False,
|
110 |
+
output_hidden_states=False,
|
111 |
+
return_dict=False,
|
112 |
+
):
|
113 |
+
all_hidden_states = () if output_hidden_states else None
|
114 |
+
all_attentions = () if output_attentions else None
|
115 |
+
for i, layer_module in enumerate(self.layer):
|
116 |
+
if output_hidden_states:
|
117 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
118 |
+
|
119 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
120 |
+
|
121 |
+
if getattr(self.config, "gradient_checkpointing", False):
|
122 |
+
|
123 |
+
def create_custom_forward(module):
|
124 |
+
def custom_forward(*inputs):
|
125 |
+
return module(*inputs, output_attentions)
|
126 |
+
|
127 |
+
return custom_forward
|
128 |
+
|
129 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
130 |
+
create_custom_forward(layer_module),
|
131 |
+
hidden_states,
|
132 |
+
attention_mask,
|
133 |
+
layer_head_mask,
|
134 |
+
)
|
135 |
+
else:
|
136 |
+
layer_outputs = layer_module(
|
137 |
+
hidden_states,
|
138 |
+
attention_mask,
|
139 |
+
layer_head_mask,
|
140 |
+
output_attentions,
|
141 |
+
)
|
142 |
+
hidden_states = layer_outputs[0]
|
143 |
+
if output_attentions:
|
144 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
145 |
+
|
146 |
+
if output_hidden_states:
|
147 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
148 |
+
|
149 |
+
if not return_dict:
|
150 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
151 |
+
return BaseModelOutput(
|
152 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
153 |
+
)
|
154 |
+
|
155 |
+
def relprop(self, cam, **kwargs):
|
156 |
+
# assuming output_hidden_states is False
|
157 |
+
for layer_module in reversed(self.layer):
|
158 |
+
cam = layer_module.relprop(cam, **kwargs)
|
159 |
+
return cam
|
160 |
+
|
161 |
+
# not adding relprop since this is only pooling at the end of the network, does not impact tokens importance
|
162 |
+
class BertPooler(nn.Module):
|
163 |
+
def __init__(self, config):
|
164 |
+
super().__init__()
|
165 |
+
self.dense = Linear(config.hidden_size, config.hidden_size)
|
166 |
+
self.activation = Tanh()
|
167 |
+
self.pool = IndexSelect()
|
168 |
+
|
169 |
+
def forward(self, hidden_states):
|
170 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
171 |
+
# to the first token.
|
172 |
+
self._seq_size = hidden_states.shape[1]
|
173 |
+
|
174 |
+
# first_token_tensor = hidden_states[:, 0]
|
175 |
+
first_token_tensor = self.pool(hidden_states, 1, torch.tensor(0, device=hidden_states.device))
|
176 |
+
first_token_tensor = first_token_tensor.squeeze(1)
|
177 |
+
pooled_output = self.dense(first_token_tensor)
|
178 |
+
pooled_output = self.activation(pooled_output)
|
179 |
+
return pooled_output
|
180 |
+
|
181 |
+
def relprop(self, cam, **kwargs):
|
182 |
+
cam = self.activation.relprop(cam, **kwargs)
|
183 |
+
#print(cam.sum())
|
184 |
+
cam = self.dense.relprop(cam, **kwargs)
|
185 |
+
#print(cam.sum())
|
186 |
+
cam = cam.unsqueeze(1)
|
187 |
+
cam = self.pool.relprop(cam, **kwargs)
|
188 |
+
#print(cam.sum())
|
189 |
+
|
190 |
+
return cam
|
191 |
+
|
192 |
+
class BertAttention(nn.Module):
|
193 |
+
def __init__(self, config):
|
194 |
+
super().__init__()
|
195 |
+
self.self = BertSelfAttention(config)
|
196 |
+
self.output = BertSelfOutput(config)
|
197 |
+
self.pruned_heads = set()
|
198 |
+
self.clone = Clone()
|
199 |
+
|
200 |
+
def prune_heads(self, heads):
|
201 |
+
if len(heads) == 0:
|
202 |
+
return
|
203 |
+
heads, index = find_pruneable_heads_and_indices(
|
204 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
205 |
+
)
|
206 |
+
|
207 |
+
# Prune linear layers
|
208 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
209 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
210 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
211 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
212 |
+
|
213 |
+
# Update hyper params and store pruned heads
|
214 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
215 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
216 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
217 |
+
|
218 |
+
def forward(
|
219 |
+
self,
|
220 |
+
hidden_states,
|
221 |
+
attention_mask=None,
|
222 |
+
head_mask=None,
|
223 |
+
encoder_hidden_states=None,
|
224 |
+
encoder_attention_mask=None,
|
225 |
+
output_attentions=False,
|
226 |
+
):
|
227 |
+
h1, h2 = self.clone(hidden_states, 2)
|
228 |
+
self_outputs = self.self(
|
229 |
+
h1,
|
230 |
+
attention_mask,
|
231 |
+
head_mask,
|
232 |
+
encoder_hidden_states,
|
233 |
+
encoder_attention_mask,
|
234 |
+
output_attentions,
|
235 |
+
)
|
236 |
+
attention_output = self.output(self_outputs[0], h2)
|
237 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
238 |
+
return outputs
|
239 |
+
|
240 |
+
def relprop(self, cam, **kwargs):
|
241 |
+
# assuming that we don't ouput the attentions (outputs = (attention_output,)), self_outputs=(context_layer,)
|
242 |
+
(cam1, cam2) = self.output.relprop(cam, **kwargs)
|
243 |
+
#print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
|
244 |
+
cam1 = self.self.relprop(cam1, **kwargs)
|
245 |
+
#print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
|
246 |
+
|
247 |
+
return self.clone.relprop((cam1, cam2), **kwargs)
|
248 |
+
|
249 |
+
class BertSelfAttention(nn.Module):
|
250 |
+
def __init__(self, config):
|
251 |
+
super().__init__()
|
252 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
253 |
+
raise ValueError(
|
254 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
255 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
256 |
+
)
|
257 |
+
|
258 |
+
self.num_attention_heads = config.num_attention_heads
|
259 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
260 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
261 |
+
|
262 |
+
self.query = Linear(config.hidden_size, self.all_head_size)
|
263 |
+
self.key = Linear(config.hidden_size, self.all_head_size)
|
264 |
+
self.value = Linear(config.hidden_size, self.all_head_size)
|
265 |
+
|
266 |
+
self.dropout = Dropout(config.attention_probs_dropout_prob)
|
267 |
+
|
268 |
+
self.matmul1 = MatMul()
|
269 |
+
self.matmul2 = MatMul()
|
270 |
+
self.softmax = Softmax(dim=-1)
|
271 |
+
self.add = Add()
|
272 |
+
self.mul = Mul()
|
273 |
+
self.head_mask = None
|
274 |
+
self.attention_mask = None
|
275 |
+
self.clone = Clone()
|
276 |
+
|
277 |
+
self.attn_cam = None
|
278 |
+
self.attn = None
|
279 |
+
self.attn_gradients = None
|
280 |
+
|
281 |
+
def get_attn(self):
|
282 |
+
return self.attn
|
283 |
+
|
284 |
+
def save_attn(self, attn):
|
285 |
+
self.attn = attn
|
286 |
+
|
287 |
+
def save_attn_cam(self, cam):
|
288 |
+
self.attn_cam = cam
|
289 |
+
|
290 |
+
def get_attn_cam(self):
|
291 |
+
return self.attn_cam
|
292 |
+
|
293 |
+
def save_attn_gradients(self, attn_gradients):
|
294 |
+
self.attn_gradients = attn_gradients
|
295 |
+
|
296 |
+
def get_attn_gradients(self):
|
297 |
+
return self.attn_gradients
|
298 |
+
|
299 |
+
def transpose_for_scores(self, x):
|
300 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
301 |
+
x = x.view(*new_x_shape)
|
302 |
+
return x.permute(0, 2, 1, 3)
|
303 |
+
|
304 |
+
def transpose_for_scores_relprop(self, x):
|
305 |
+
return x.permute(0, 2, 1, 3).flatten(2)
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self,
|
309 |
+
hidden_states,
|
310 |
+
attention_mask=None,
|
311 |
+
head_mask=None,
|
312 |
+
encoder_hidden_states=None,
|
313 |
+
encoder_attention_mask=None,
|
314 |
+
output_attentions=False,
|
315 |
+
):
|
316 |
+
self.head_mask = head_mask
|
317 |
+
self.attention_mask = attention_mask
|
318 |
+
|
319 |
+
h1, h2, h3 = self.clone(hidden_states, 3)
|
320 |
+
mixed_query_layer = self.query(h1)
|
321 |
+
|
322 |
+
# If this is instantiated as a cross-attention module, the keys
|
323 |
+
# and values come from an encoder; the attention mask needs to be
|
324 |
+
# such that the encoder's padding tokens are not attended to.
|
325 |
+
if encoder_hidden_states is not None:
|
326 |
+
mixed_key_layer = self.key(encoder_hidden_states)
|
327 |
+
mixed_value_layer = self.value(encoder_hidden_states)
|
328 |
+
attention_mask = encoder_attention_mask
|
329 |
+
else:
|
330 |
+
mixed_key_layer = self.key(h2)
|
331 |
+
mixed_value_layer = self.value(h3)
|
332 |
+
|
333 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
334 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
335 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
336 |
+
|
337 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
338 |
+
attention_scores = self.matmul1([query_layer, key_layer.transpose(-1, -2)])
|
339 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
340 |
+
if attention_mask is not None:
|
341 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
342 |
+
attention_scores = self.add([attention_scores, attention_mask])
|
343 |
+
|
344 |
+
# Normalize the attention scores to probabilities.
|
345 |
+
attention_probs = self.softmax(attention_scores)
|
346 |
+
|
347 |
+
self.save_attn(attention_probs)
|
348 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
349 |
+
|
350 |
+
# This is actually dropping out entire tokens to attend to, which might
|
351 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
352 |
+
attention_probs = self.dropout(attention_probs)
|
353 |
+
|
354 |
+
# Mask heads if we want to
|
355 |
+
if head_mask is not None:
|
356 |
+
attention_probs = attention_probs * head_mask
|
357 |
+
|
358 |
+
context_layer = self.matmul2([attention_probs, value_layer])
|
359 |
+
|
360 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
361 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
362 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
363 |
+
|
364 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
365 |
+
return outputs
|
366 |
+
|
367 |
+
def relprop(self, cam, **kwargs):
|
368 |
+
# Assume output_attentions == False
|
369 |
+
cam = self.transpose_for_scores(cam)
|
370 |
+
|
371 |
+
# [attention_probs, value_layer]
|
372 |
+
(cam1, cam2) = self.matmul2.relprop(cam, **kwargs)
|
373 |
+
cam1 /= 2
|
374 |
+
cam2 /= 2
|
375 |
+
if self.head_mask is not None:
|
376 |
+
# [attention_probs, head_mask]
|
377 |
+
(cam1, _)= self.mul.relprop(cam1, **kwargs)
|
378 |
+
|
379 |
+
|
380 |
+
self.save_attn_cam(cam1)
|
381 |
+
|
382 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
383 |
+
|
384 |
+
cam1 = self.softmax.relprop(cam1, **kwargs)
|
385 |
+
|
386 |
+
if self.attention_mask is not None:
|
387 |
+
# [attention_scores, attention_mask]
|
388 |
+
(cam1, _) = self.add.relprop(cam1, **kwargs)
|
389 |
+
|
390 |
+
# [query_layer, key_layer.transpose(-1, -2)]
|
391 |
+
(cam1_1, cam1_2) = self.matmul1.relprop(cam1, **kwargs)
|
392 |
+
cam1_1 /= 2
|
393 |
+
cam1_2 /= 2
|
394 |
+
|
395 |
+
# query
|
396 |
+
cam1_1 = self.transpose_for_scores_relprop(cam1_1)
|
397 |
+
cam1_1 = self.query.relprop(cam1_1, **kwargs)
|
398 |
+
|
399 |
+
# key
|
400 |
+
cam1_2 = self.transpose_for_scores_relprop(cam1_2.transpose(-1, -2))
|
401 |
+
cam1_2 = self.key.relprop(cam1_2, **kwargs)
|
402 |
+
|
403 |
+
# value
|
404 |
+
cam2 = self.transpose_for_scores_relprop(cam2)
|
405 |
+
cam2 = self.value.relprop(cam2, **kwargs)
|
406 |
+
|
407 |
+
cam = self.clone.relprop((cam1_1, cam1_2, cam2), **kwargs)
|
408 |
+
|
409 |
+
return cam
|
410 |
+
|
411 |
+
|
412 |
+
class BertSelfOutput(nn.Module):
|
413 |
+
def __init__(self, config):
|
414 |
+
super().__init__()
|
415 |
+
self.dense = Linear(config.hidden_size, config.hidden_size)
|
416 |
+
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
417 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
418 |
+
self.add = Add()
|
419 |
+
|
420 |
+
def forward(self, hidden_states, input_tensor):
|
421 |
+
hidden_states = self.dense(hidden_states)
|
422 |
+
hidden_states = self.dropout(hidden_states)
|
423 |
+
add = self.add([hidden_states, input_tensor])
|
424 |
+
hidden_states = self.LayerNorm(add)
|
425 |
+
return hidden_states
|
426 |
+
|
427 |
+
def relprop(self, cam, **kwargs):
|
428 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
429 |
+
# [hidden_states, input_tensor]
|
430 |
+
(cam1, cam2) = self.add.relprop(cam, **kwargs)
|
431 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
432 |
+
cam1 = self.dense.relprop(cam1, **kwargs)
|
433 |
+
|
434 |
+
return (cam1, cam2)
|
435 |
+
|
436 |
+
|
437 |
+
class BertIntermediate(nn.Module):
|
438 |
+
def __init__(self, config):
|
439 |
+
super().__init__()
|
440 |
+
self.dense = Linear(config.hidden_size, config.intermediate_size)
|
441 |
+
if isinstance(config.hidden_act, str):
|
442 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]()
|
443 |
+
else:
|
444 |
+
self.intermediate_act_fn = config.hidden_act
|
445 |
+
|
446 |
+
def forward(self, hidden_states):
|
447 |
+
hidden_states = self.dense(hidden_states)
|
448 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
449 |
+
return hidden_states
|
450 |
+
|
451 |
+
def relprop(self, cam, **kwargs):
|
452 |
+
cam = self.intermediate_act_fn.relprop(cam, **kwargs) # FIXME only ReLU
|
453 |
+
#print(cam.sum())
|
454 |
+
cam = self.dense.relprop(cam, **kwargs)
|
455 |
+
#print(cam.sum())
|
456 |
+
return cam
|
457 |
+
|
458 |
+
|
459 |
+
class BertOutput(nn.Module):
|
460 |
+
def __init__(self, config):
|
461 |
+
super().__init__()
|
462 |
+
self.dense = Linear(config.intermediate_size, config.hidden_size)
|
463 |
+
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
464 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
465 |
+
self.add = Add()
|
466 |
+
|
467 |
+
def forward(self, hidden_states, input_tensor):
|
468 |
+
hidden_states = self.dense(hidden_states)
|
469 |
+
hidden_states = self.dropout(hidden_states)
|
470 |
+
add = self.add([hidden_states, input_tensor])
|
471 |
+
hidden_states = self.LayerNorm(add)
|
472 |
+
return hidden_states
|
473 |
+
|
474 |
+
def relprop(self, cam, **kwargs):
|
475 |
+
# print("in", cam.sum())
|
476 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
477 |
+
#print(cam.sum())
|
478 |
+
# [hidden_states, input_tensor]
|
479 |
+
(cam1, cam2)= self.add.relprop(cam, **kwargs)
|
480 |
+
# print("add", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
|
481 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
482 |
+
#print(cam1.sum())
|
483 |
+
cam1 = self.dense.relprop(cam1, **kwargs)
|
484 |
+
# print("dense", cam1.sum())
|
485 |
+
|
486 |
+
# print("out", cam1.sum() + cam2.sum(), cam1.sum(), cam2.sum())
|
487 |
+
return (cam1, cam2)
|
488 |
+
|
489 |
+
|
490 |
+
class BertLayer(nn.Module):
|
491 |
+
def __init__(self, config):
|
492 |
+
super().__init__()
|
493 |
+
self.attention = BertAttention(config)
|
494 |
+
self.intermediate = BertIntermediate(config)
|
495 |
+
self.output = BertOutput(config)
|
496 |
+
self.clone = Clone()
|
497 |
+
|
498 |
+
def forward(
|
499 |
+
self,
|
500 |
+
hidden_states,
|
501 |
+
attention_mask=None,
|
502 |
+
head_mask=None,
|
503 |
+
output_attentions=False,
|
504 |
+
):
|
505 |
+
self_attention_outputs = self.attention(
|
506 |
+
hidden_states,
|
507 |
+
attention_mask,
|
508 |
+
head_mask,
|
509 |
+
output_attentions=output_attentions,
|
510 |
+
)
|
511 |
+
attention_output = self_attention_outputs[0]
|
512 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
513 |
+
|
514 |
+
ao1, ao2 = self.clone(attention_output, 2)
|
515 |
+
intermediate_output = self.intermediate(ao1)
|
516 |
+
layer_output = self.output(intermediate_output, ao2)
|
517 |
+
|
518 |
+
outputs = (layer_output,) + outputs
|
519 |
+
return outputs
|
520 |
+
|
521 |
+
def relprop(self, cam, **kwargs):
|
522 |
+
(cam1, cam2) = self.output.relprop(cam, **kwargs)
|
523 |
+
# print("output", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
|
524 |
+
cam1 = self.intermediate.relprop(cam1, **kwargs)
|
525 |
+
# print("intermediate", cam1.sum())
|
526 |
+
cam = self.clone.relprop((cam1, cam2), **kwargs)
|
527 |
+
# print("clone", cam.sum())
|
528 |
+
cam = self.attention.relprop(cam, **kwargs)
|
529 |
+
# print("attention", cam.sum())
|
530 |
+
return cam
|
531 |
+
|
532 |
+
|
533 |
+
class BertModel(BertPreTrainedModel):
|
534 |
+
def __init__(self, config):
|
535 |
+
super().__init__(config)
|
536 |
+
self.config = config
|
537 |
+
|
538 |
+
self.embeddings = BertEmbeddings(config)
|
539 |
+
self.encoder = BertEncoder(config)
|
540 |
+
self.pooler = BertPooler(config)
|
541 |
+
|
542 |
+
self.init_weights()
|
543 |
+
|
544 |
+
def get_input_embeddings(self):
|
545 |
+
return self.embeddings.word_embeddings
|
546 |
+
|
547 |
+
def set_input_embeddings(self, value):
|
548 |
+
self.embeddings.word_embeddings = value
|
549 |
+
|
550 |
+
def forward(
|
551 |
+
self,
|
552 |
+
input_ids=None,
|
553 |
+
attention_mask=None,
|
554 |
+
token_type_ids=None,
|
555 |
+
position_ids=None,
|
556 |
+
head_mask=None,
|
557 |
+
inputs_embeds=None,
|
558 |
+
encoder_hidden_states=None,
|
559 |
+
encoder_attention_mask=None,
|
560 |
+
output_attentions=None,
|
561 |
+
output_hidden_states=None,
|
562 |
+
return_dict=None,
|
563 |
+
):
|
564 |
+
r"""
|
565 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
566 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
567 |
+
if the model is configured as a decoder.
|
568 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
569 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
|
570 |
+
is used in the cross-attention if the model is configured as a decoder.
|
571 |
+
Mask values selected in ``[0, 1]``:
|
572 |
+
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
573 |
+
"""
|
574 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
575 |
+
output_hidden_states = (
|
576 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
577 |
+
)
|
578 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
579 |
+
|
580 |
+
if input_ids is not None and inputs_embeds is not None:
|
581 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
582 |
+
elif input_ids is not None:
|
583 |
+
input_shape = input_ids.size()
|
584 |
+
elif inputs_embeds is not None:
|
585 |
+
input_shape = inputs_embeds.size()[:-1]
|
586 |
+
else:
|
587 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
588 |
+
|
589 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
590 |
+
|
591 |
+
if attention_mask is None:
|
592 |
+
attention_mask = torch.ones(input_shape, device=device)
|
593 |
+
if token_type_ids is None:
|
594 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
595 |
+
|
596 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
597 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
598 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
599 |
+
|
600 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
601 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
602 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
603 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
604 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
605 |
+
if encoder_attention_mask is None:
|
606 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
607 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
608 |
+
else:
|
609 |
+
encoder_extended_attention_mask = None
|
610 |
+
|
611 |
+
# Prepare head mask if needed
|
612 |
+
# 1.0 in head_mask indicate we keep the head
|
613 |
+
# attention_probs has shape bsz x n_heads x N x N
|
614 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
615 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
616 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
617 |
+
|
618 |
+
embedding_output = self.embeddings(
|
619 |
+
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
620 |
+
)
|
621 |
+
|
622 |
+
encoder_outputs = self.encoder(
|
623 |
+
embedding_output,
|
624 |
+
attention_mask=extended_attention_mask,
|
625 |
+
head_mask=head_mask,
|
626 |
+
encoder_hidden_states=encoder_hidden_states,
|
627 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
628 |
+
output_attentions=output_attentions,
|
629 |
+
output_hidden_states=output_hidden_states,
|
630 |
+
return_dict=return_dict,
|
631 |
+
)
|
632 |
+
sequence_output = encoder_outputs[0]
|
633 |
+
pooled_output = self.pooler(sequence_output)
|
634 |
+
|
635 |
+
if not return_dict:
|
636 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
637 |
+
|
638 |
+
return BaseModelOutputWithPooling(
|
639 |
+
last_hidden_state=sequence_output,
|
640 |
+
pooler_output=pooled_output,
|
641 |
+
hidden_states=encoder_outputs.hidden_states,
|
642 |
+
attentions=encoder_outputs.attentions,
|
643 |
+
)
|
644 |
+
|
645 |
+
def relprop(self, cam, **kwargs):
|
646 |
+
cam = self.pooler.relprop(cam, **kwargs)
|
647 |
+
# print("111111111111",cam.sum())
|
648 |
+
cam = self.encoder.relprop(cam, **kwargs)
|
649 |
+
# print("222222222222222", cam.sum())
|
650 |
+
# print("conservation: ", cam.sum())
|
651 |
+
return cam
|
652 |
+
|
653 |
+
|
654 |
+
if __name__ == '__main__':
|
655 |
+
class Config:
|
656 |
+
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
|
657 |
+
self.hidden_size = hidden_size
|
658 |
+
self.num_attention_heads = num_attention_heads
|
659 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
660 |
+
|
661 |
+
model = BertSelfAttention(Config(1024, 4, 0.1))
|
662 |
+
x = torch.rand(2, 20, 1024)
|
663 |
+
x.requires_grad_()
|
664 |
+
|
665 |
+
model.eval()
|
666 |
+
|
667 |
+
y = model.forward(x)
|
668 |
+
|
669 |
+
relprop = model.relprop(torch.rand(2, 20, 1024), (torch.rand(2, 20, 1024),))
|
670 |
+
|
671 |
+
print(relprop[1][0].shape)
|
BERT_explainability/BERT_cls_lrp.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertPreTrainedModel
|
2 |
+
from transformers.utils import logging
|
3 |
+
from BERT_explainability.modules.layers_lrp import *
|
4 |
+
from BERT_explainability.modules.BERT.BERT_orig_lrp import BertModel
|
5 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
6 |
+
import torch.nn as nn
|
7 |
+
from typing import List, Any
|
8 |
+
import torch
|
9 |
+
from BERT_rationale_benchmark.models.model_utils import PaddedSequence
|
10 |
+
|
11 |
+
|
12 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__(config)
|
15 |
+
self.num_labels = config.num_labels
|
16 |
+
|
17 |
+
self.bert = BertModel(config)
|
18 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
19 |
+
self.classifier = Linear(config.hidden_size, config.num_labels)
|
20 |
+
|
21 |
+
self.init_weights()
|
22 |
+
|
23 |
+
def forward(
|
24 |
+
self,
|
25 |
+
input_ids=None,
|
26 |
+
attention_mask=None,
|
27 |
+
token_type_ids=None,
|
28 |
+
position_ids=None,
|
29 |
+
head_mask=None,
|
30 |
+
inputs_embeds=None,
|
31 |
+
labels=None,
|
32 |
+
output_attentions=None,
|
33 |
+
output_hidden_states=None,
|
34 |
+
return_dict=None,
|
35 |
+
):
|
36 |
+
r"""
|
37 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
38 |
+
Labels for computing the sequence classification/regression loss.
|
39 |
+
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
|
40 |
+
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
41 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
42 |
+
"""
|
43 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
44 |
+
|
45 |
+
outputs = self.bert(
|
46 |
+
input_ids,
|
47 |
+
attention_mask=attention_mask,
|
48 |
+
token_type_ids=token_type_ids,
|
49 |
+
position_ids=position_ids,
|
50 |
+
head_mask=head_mask,
|
51 |
+
inputs_embeds=inputs_embeds,
|
52 |
+
output_attentions=output_attentions,
|
53 |
+
output_hidden_states=output_hidden_states,
|
54 |
+
return_dict=return_dict,
|
55 |
+
)
|
56 |
+
|
57 |
+
pooled_output = outputs[1]
|
58 |
+
|
59 |
+
pooled_output = self.dropout(pooled_output)
|
60 |
+
logits = self.classifier(pooled_output)
|
61 |
+
|
62 |
+
loss = None
|
63 |
+
if labels is not None:
|
64 |
+
if self.num_labels == 1:
|
65 |
+
# We are doing regression
|
66 |
+
loss_fct = MSELoss()
|
67 |
+
loss = loss_fct(logits.view(-1), labels.view(-1))
|
68 |
+
else:
|
69 |
+
loss_fct = CrossEntropyLoss()
|
70 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
71 |
+
|
72 |
+
if not return_dict:
|
73 |
+
output = (logits,) + outputs[2:]
|
74 |
+
return ((loss,) + output) if loss is not None else output
|
75 |
+
|
76 |
+
return SequenceClassifierOutput(
|
77 |
+
loss=loss,
|
78 |
+
logits=logits,
|
79 |
+
hidden_states=outputs.hidden_states,
|
80 |
+
attentions=outputs.attentions,
|
81 |
+
)
|
82 |
+
|
83 |
+
def relprop(self, cam=None, **kwargs):
|
84 |
+
cam = self.classifier.relprop(cam, **kwargs)
|
85 |
+
cam = self.dropout.relprop(cam, **kwargs)
|
86 |
+
cam = self.bert.relprop(cam, **kwargs)
|
87 |
+
return cam
|
88 |
+
|
89 |
+
|
90 |
+
# this is the actual classifier we will be using
|
91 |
+
class BertClassifier(nn.Module):
|
92 |
+
"""Thin wrapper around BertForSequenceClassification"""
|
93 |
+
|
94 |
+
def __init__(self,
|
95 |
+
bert_dir: str,
|
96 |
+
pad_token_id: int,
|
97 |
+
cls_token_id: int,
|
98 |
+
sep_token_id: int,
|
99 |
+
num_labels: int,
|
100 |
+
max_length: int = 512,
|
101 |
+
use_half_precision=True):
|
102 |
+
super(BertClassifier, self).__init__()
|
103 |
+
bert = BertForSequenceClassification.from_pretrained(bert_dir, num_labels=num_labels)
|
104 |
+
if use_half_precision:
|
105 |
+
import apex
|
106 |
+
bert = bert.half()
|
107 |
+
self.bert = bert
|
108 |
+
self.pad_token_id = pad_token_id
|
109 |
+
self.cls_token_id = cls_token_id
|
110 |
+
self.sep_token_id = sep_token_id
|
111 |
+
self.max_length = max_length
|
112 |
+
|
113 |
+
def forward(self,
|
114 |
+
query: List[torch.tensor],
|
115 |
+
docids: List[Any],
|
116 |
+
document_batch: List[torch.tensor]):
|
117 |
+
assert len(query) == len(document_batch)
|
118 |
+
print(query)
|
119 |
+
# note about device management:
|
120 |
+
# since distributed training is enabled, the inputs to this module can be on *any* device (preferably cpu, since we wrap and unwrap the module)
|
121 |
+
# we want to keep these params on the input device (assuming CPU) for as long as possible for cheap memory access
|
122 |
+
target_device = next(self.parameters()).device
|
123 |
+
cls_token = torch.tensor([self.cls_token_id]).to(device=document_batch[0].device)
|
124 |
+
sep_token = torch.tensor([self.sep_token_id]).to(device=document_batch[0].device)
|
125 |
+
input_tensors = []
|
126 |
+
position_ids = []
|
127 |
+
for q, d in zip(query, document_batch):
|
128 |
+
if len(q) + len(d) + 2 > self.max_length:
|
129 |
+
d = d[:(self.max_length - len(q) - 2)]
|
130 |
+
input_tensors.append(torch.cat([cls_token, q, sep_token, d]))
|
131 |
+
position_ids.append(torch.tensor(list(range(0, len(q) + 1)) + list(range(0, len(d) + 1))))
|
132 |
+
bert_input = PaddedSequence.autopad(input_tensors, batch_first=True, padding_value=self.pad_token_id,
|
133 |
+
device=target_device)
|
134 |
+
positions = PaddedSequence.autopad(position_ids, batch_first=True, padding_value=0, device=target_device)
|
135 |
+
(classes,) = self.bert(bert_input.data,
|
136 |
+
attention_mask=bert_input.mask(on=0.0, off=float('-inf'), device=target_device),
|
137 |
+
position_ids=positions.data)
|
138 |
+
assert torch.all(classes == classes) # for nans
|
139 |
+
|
140 |
+
print(input_tensors[0])
|
141 |
+
print(self.relprop()[0])
|
142 |
+
|
143 |
+
return classes
|
144 |
+
|
145 |
+
def relprop(self, cam=None, **kwargs):
|
146 |
+
return self.bert.relprop(cam, **kwargs)
|
147 |
+
|
148 |
+
|
149 |
+
if __name__ == '__main__':
|
150 |
+
from transformers import BertTokenizer
|
151 |
+
import os
|
152 |
+
|
153 |
+
class Config:
|
154 |
+
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, num_labels,
|
155 |
+
hidden_dropout_prob):
|
156 |
+
self.hidden_size = hidden_size
|
157 |
+
self.num_attention_heads = num_attention_heads
|
158 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
159 |
+
self.num_labels = num_labels
|
160 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
161 |
+
|
162 |
+
|
163 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
164 |
+
x = tokenizer.encode_plus("In this movie the acting is great. The movie is perfect! [sep]",
|
165 |
+
add_special_tokens=True,
|
166 |
+
max_length=512,
|
167 |
+
return_token_type_ids=False,
|
168 |
+
return_attention_mask=True,
|
169 |
+
pad_to_max_length=True,
|
170 |
+
return_tensors='pt',
|
171 |
+
truncation=True)
|
172 |
+
|
173 |
+
print(x['input_ids'])
|
174 |
+
|
175 |
+
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
176 |
+
model_save_file = os.path.join('./BERT_explainability/output_bert/movies/classifier/', 'classifier.pt')
|
177 |
+
model.load_state_dict(torch.load(model_save_file))
|
178 |
+
|
179 |
+
# x = torch.randint(100, (2, 20))
|
180 |
+
# x = torch.tensor([[101, 2054, 2003, 1996, 15792, 1997, 2023, 3319, 1029, 102,
|
181 |
+
# 101, 4079, 102, 101, 6732, 102, 101, 2643, 102, 101,
|
182 |
+
# 2038, 102, 101, 1037, 102, 101, 2933, 102, 101, 2005,
|
183 |
+
# 102, 101, 2032, 102, 101, 1010, 102, 101, 1037, 102,
|
184 |
+
# 101, 3800, 102, 101, 2005, 102, 101, 2010, 102, 101,
|
185 |
+
# 2166, 102, 101, 1010, 102, 101, 1998, 102, 101, 2010,
|
186 |
+
# 102, 101, 4650, 102, 101, 1010, 102, 101, 2002, 102,
|
187 |
+
# 101, 2074, 102, 101, 2515, 102, 101, 1050, 102, 101,
|
188 |
+
# 1005, 102, 101, 1056, 102, 101, 2113, 102, 101, 2054,
|
189 |
+
# 102, 101, 1012, 102]])
|
190 |
+
# x.requires_grad_()
|
191 |
+
|
192 |
+
model.eval()
|
193 |
+
|
194 |
+
y = model(x['input_ids'], x['attention_mask'])
|
195 |
+
print(y)
|
196 |
+
|
197 |
+
cam, _ = model.relprop()
|
198 |
+
|
199 |
+
#print(cam.shape)
|
200 |
+
|
201 |
+
cam = cam.sum(-1)
|
202 |
+
#print(cam)
|
BERT_explainability/BERT_orig_lrp.py
ADDED
@@ -0,0 +1,671 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import math
|
7 |
+
from transformers import BertConfig
|
8 |
+
from transformers.modeling_outputs import BaseModelOutputWithPooling, BaseModelOutput
|
9 |
+
from BERT_explainability.modules.layers_lrp import *
|
10 |
+
from transformers import (
|
11 |
+
BertPreTrainedModel,
|
12 |
+
PreTrainedModel,
|
13 |
+
)
|
14 |
+
|
15 |
+
ACT2FN = {
|
16 |
+
"relu": ReLU,
|
17 |
+
"tanh": Tanh,
|
18 |
+
"gelu": GELU,
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def get_activation(activation_string):
|
23 |
+
if activation_string in ACT2FN:
|
24 |
+
return ACT2FN[activation_string]
|
25 |
+
else:
|
26 |
+
raise KeyError("function {} not found in ACT2FN mapping {}".format(activation_string, list(ACT2FN.keys())))
|
27 |
+
|
28 |
+
def compute_rollout_attention(all_layer_matrices, start_layer=0):
|
29 |
+
# adding residual consideration
|
30 |
+
num_tokens = all_layer_matrices[0].shape[1]
|
31 |
+
batch_size = all_layer_matrices[0].shape[0]
|
32 |
+
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
|
33 |
+
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
|
34 |
+
all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
|
35 |
+
for i in range(len(all_layer_matrices))]
|
36 |
+
joint_attention = all_layer_matrices[start_layer]
|
37 |
+
for i in range(start_layer+1, len(all_layer_matrices)):
|
38 |
+
joint_attention = all_layer_matrices[i].bmm(joint_attention)
|
39 |
+
return joint_attention
|
40 |
+
|
41 |
+
class BertEmbeddings(nn.Module):
|
42 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
43 |
+
|
44 |
+
def __init__(self, config):
|
45 |
+
super().__init__()
|
46 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
47 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
48 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
49 |
+
|
50 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
51 |
+
# any TensorFlow checkpoint file
|
52 |
+
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
53 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
54 |
+
|
55 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
56 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
57 |
+
|
58 |
+
self.add1 = Add()
|
59 |
+
self.add2 = Add()
|
60 |
+
|
61 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
|
62 |
+
if input_ids is not None:
|
63 |
+
input_shape = input_ids.size()
|
64 |
+
else:
|
65 |
+
input_shape = inputs_embeds.size()[:-1]
|
66 |
+
|
67 |
+
seq_length = input_shape[1]
|
68 |
+
|
69 |
+
if position_ids is None:
|
70 |
+
position_ids = self.position_ids[:, :seq_length]
|
71 |
+
|
72 |
+
if token_type_ids is None:
|
73 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
74 |
+
|
75 |
+
if inputs_embeds is None:
|
76 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
77 |
+
position_embeddings = self.position_embeddings(position_ids)
|
78 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
79 |
+
|
80 |
+
# embeddings = inputs_embeds + position_embeddings + token_type_embeddings
|
81 |
+
embeddings = self.add1([token_type_embeddings, position_embeddings])
|
82 |
+
embeddings = self.add2([embeddings, inputs_embeds])
|
83 |
+
embeddings = self.LayerNorm(embeddings)
|
84 |
+
embeddings = self.dropout(embeddings)
|
85 |
+
return embeddings
|
86 |
+
|
87 |
+
def relprop(self, cam, **kwargs):
|
88 |
+
cam = self.dropout.relprop(cam, **kwargs)
|
89 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
90 |
+
|
91 |
+
# [inputs_embeds, position_embeddings, token_type_embeddings]
|
92 |
+
(cam) = self.add2.relprop(cam, **kwargs)
|
93 |
+
|
94 |
+
return cam
|
95 |
+
|
96 |
+
class BertEncoder(nn.Module):
|
97 |
+
def __init__(self, config):
|
98 |
+
super().__init__()
|
99 |
+
self.config = config
|
100 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
101 |
+
|
102 |
+
def forward(
|
103 |
+
self,
|
104 |
+
hidden_states,
|
105 |
+
attention_mask=None,
|
106 |
+
head_mask=None,
|
107 |
+
encoder_hidden_states=None,
|
108 |
+
encoder_attention_mask=None,
|
109 |
+
output_attentions=False,
|
110 |
+
output_hidden_states=False,
|
111 |
+
return_dict=False,
|
112 |
+
):
|
113 |
+
all_hidden_states = () if output_hidden_states else None
|
114 |
+
all_attentions = () if output_attentions else None
|
115 |
+
for i, layer_module in enumerate(self.layer):
|
116 |
+
if output_hidden_states:
|
117 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
118 |
+
|
119 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
120 |
+
|
121 |
+
if getattr(self.config, "gradient_checkpointing", False):
|
122 |
+
|
123 |
+
def create_custom_forward(module):
|
124 |
+
def custom_forward(*inputs):
|
125 |
+
return module(*inputs, output_attentions)
|
126 |
+
|
127 |
+
return custom_forward
|
128 |
+
|
129 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
130 |
+
create_custom_forward(layer_module),
|
131 |
+
hidden_states,
|
132 |
+
attention_mask,
|
133 |
+
layer_head_mask,
|
134 |
+
)
|
135 |
+
else:
|
136 |
+
layer_outputs = layer_module(
|
137 |
+
hidden_states,
|
138 |
+
attention_mask,
|
139 |
+
layer_head_mask,
|
140 |
+
output_attentions,
|
141 |
+
)
|
142 |
+
hidden_states = layer_outputs[0]
|
143 |
+
if output_attentions:
|
144 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
145 |
+
|
146 |
+
if output_hidden_states:
|
147 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
148 |
+
|
149 |
+
if not return_dict:
|
150 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
151 |
+
return BaseModelOutput(
|
152 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
153 |
+
)
|
154 |
+
|
155 |
+
def relprop(self, cam, **kwargs):
|
156 |
+
# assuming output_hidden_states is False
|
157 |
+
for layer_module in reversed(self.layer):
|
158 |
+
cam = layer_module.relprop(cam, **kwargs)
|
159 |
+
return cam
|
160 |
+
|
161 |
+
# not adding relprop since this is only pooling at the end of the network, does not impact tokens importance
|
162 |
+
class BertPooler(nn.Module):
|
163 |
+
def __init__(self, config):
|
164 |
+
super().__init__()
|
165 |
+
self.dense = Linear(config.hidden_size, config.hidden_size)
|
166 |
+
self.activation = Tanh()
|
167 |
+
self.pool = IndexSelect()
|
168 |
+
|
169 |
+
def forward(self, hidden_states):
|
170 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
171 |
+
# to the first token.
|
172 |
+
self._seq_size = hidden_states.shape[1]
|
173 |
+
|
174 |
+
# first_token_tensor = hidden_states[:, 0]
|
175 |
+
first_token_tensor = self.pool(hidden_states, 1, torch.tensor(0, device=hidden_states.device))
|
176 |
+
first_token_tensor = first_token_tensor.squeeze(1)
|
177 |
+
pooled_output = self.dense(first_token_tensor)
|
178 |
+
pooled_output = self.activation(pooled_output)
|
179 |
+
return pooled_output
|
180 |
+
|
181 |
+
def relprop(self, cam, **kwargs):
|
182 |
+
cam = self.activation.relprop(cam, **kwargs)
|
183 |
+
#print(cam.sum())
|
184 |
+
cam = self.dense.relprop(cam, **kwargs)
|
185 |
+
#print(cam.sum())
|
186 |
+
cam = cam.unsqueeze(1)
|
187 |
+
cam = self.pool.relprop(cam, **kwargs)
|
188 |
+
#print(cam.sum())
|
189 |
+
|
190 |
+
return cam
|
191 |
+
|
192 |
+
class BertAttention(nn.Module):
|
193 |
+
def __init__(self, config):
|
194 |
+
super().__init__()
|
195 |
+
self.self = BertSelfAttention(config)
|
196 |
+
self.output = BertSelfOutput(config)
|
197 |
+
self.pruned_heads = set()
|
198 |
+
self.clone = Clone()
|
199 |
+
|
200 |
+
def prune_heads(self, heads):
|
201 |
+
if len(heads) == 0:
|
202 |
+
return
|
203 |
+
heads, index = find_pruneable_heads_and_indices(
|
204 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
205 |
+
)
|
206 |
+
|
207 |
+
# Prune linear layers
|
208 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
209 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
210 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
211 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
212 |
+
|
213 |
+
# Update hyper params and store pruned heads
|
214 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
215 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
216 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
217 |
+
|
218 |
+
def forward(
|
219 |
+
self,
|
220 |
+
hidden_states,
|
221 |
+
attention_mask=None,
|
222 |
+
head_mask=None,
|
223 |
+
encoder_hidden_states=None,
|
224 |
+
encoder_attention_mask=None,
|
225 |
+
output_attentions=False,
|
226 |
+
):
|
227 |
+
h1, h2 = self.clone(hidden_states, 2)
|
228 |
+
self_outputs = self.self(
|
229 |
+
h1,
|
230 |
+
attention_mask,
|
231 |
+
head_mask,
|
232 |
+
encoder_hidden_states,
|
233 |
+
encoder_attention_mask,
|
234 |
+
output_attentions,
|
235 |
+
)
|
236 |
+
attention_output = self.output(self_outputs[0], h2)
|
237 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
238 |
+
return outputs
|
239 |
+
|
240 |
+
def relprop(self, cam, **kwargs):
|
241 |
+
# assuming that we don't ouput the attentions (outputs = (attention_output,)), self_outputs=(context_layer,)
|
242 |
+
(cam1, cam2) = self.output.relprop(cam, **kwargs)
|
243 |
+
#print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
|
244 |
+
cam1 = self.self.relprop(cam1, **kwargs)
|
245 |
+
#print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
|
246 |
+
|
247 |
+
return self.clone.relprop((cam1, cam2), **kwargs)
|
248 |
+
|
249 |
+
class BertSelfAttention(nn.Module):
|
250 |
+
def __init__(self, config):
|
251 |
+
super().__init__()
|
252 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
253 |
+
raise ValueError(
|
254 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
255 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
|
256 |
+
)
|
257 |
+
|
258 |
+
self.num_attention_heads = config.num_attention_heads
|
259 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
260 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
261 |
+
|
262 |
+
self.query = Linear(config.hidden_size, self.all_head_size)
|
263 |
+
self.key = Linear(config.hidden_size, self.all_head_size)
|
264 |
+
self.value = Linear(config.hidden_size, self.all_head_size)
|
265 |
+
|
266 |
+
self.dropout = Dropout(config.attention_probs_dropout_prob)
|
267 |
+
|
268 |
+
self.matmul1 = MatMul()
|
269 |
+
self.matmul2 = MatMul()
|
270 |
+
self.softmax = Softmax(dim=-1)
|
271 |
+
self.add = Add()
|
272 |
+
self.mul = Mul()
|
273 |
+
self.head_mask = None
|
274 |
+
self.attention_mask = None
|
275 |
+
self.clone = Clone()
|
276 |
+
|
277 |
+
self.attn_cam = None
|
278 |
+
self.attn = None
|
279 |
+
self.attn_gradients = None
|
280 |
+
|
281 |
+
def get_attn(self):
|
282 |
+
return self.attn
|
283 |
+
|
284 |
+
def save_attn(self, attn):
|
285 |
+
self.attn = attn
|
286 |
+
|
287 |
+
def save_attn_cam(self, cam):
|
288 |
+
self.attn_cam = cam
|
289 |
+
|
290 |
+
def get_attn_cam(self):
|
291 |
+
return self.attn_cam
|
292 |
+
|
293 |
+
def save_attn_gradients(self, attn_gradients):
|
294 |
+
self.attn_gradients = attn_gradients
|
295 |
+
|
296 |
+
def get_attn_gradients(self):
|
297 |
+
return self.attn_gradients
|
298 |
+
|
299 |
+
def transpose_for_scores(self, x):
|
300 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
301 |
+
x = x.view(*new_x_shape)
|
302 |
+
return x.permute(0, 2, 1, 3)
|
303 |
+
|
304 |
+
def transpose_for_scores_relprop(self, x):
|
305 |
+
return x.permute(0, 2, 1, 3).flatten(2)
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self,
|
309 |
+
hidden_states,
|
310 |
+
attention_mask=None,
|
311 |
+
head_mask=None,
|
312 |
+
encoder_hidden_states=None,
|
313 |
+
encoder_attention_mask=None,
|
314 |
+
output_attentions=False,
|
315 |
+
):
|
316 |
+
self.head_mask = head_mask
|
317 |
+
self.attention_mask = attention_mask
|
318 |
+
|
319 |
+
h1, h2, h3 = self.clone(hidden_states, 3)
|
320 |
+
mixed_query_layer = self.query(h1)
|
321 |
+
|
322 |
+
# If this is instantiated as a cross-attention module, the keys
|
323 |
+
# and values come from an encoder; the attention mask needs to be
|
324 |
+
# such that the encoder's padding tokens are not attended to.
|
325 |
+
if encoder_hidden_states is not None:
|
326 |
+
mixed_key_layer = self.key(encoder_hidden_states)
|
327 |
+
mixed_value_layer = self.value(encoder_hidden_states)
|
328 |
+
attention_mask = encoder_attention_mask
|
329 |
+
else:
|
330 |
+
mixed_key_layer = self.key(h2)
|
331 |
+
mixed_value_layer = self.value(h3)
|
332 |
+
|
333 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
334 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
335 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
336 |
+
|
337 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
338 |
+
attention_scores = self.matmul1([query_layer, key_layer.transpose(-1, -2)])
|
339 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
340 |
+
if attention_mask is not None:
|
341 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
342 |
+
attention_scores = self.add([attention_scores, attention_mask])
|
343 |
+
|
344 |
+
# Normalize the attention scores to probabilities.
|
345 |
+
attention_probs = self.softmax(attention_scores)
|
346 |
+
|
347 |
+
self.save_attn(attention_probs)
|
348 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
349 |
+
|
350 |
+
# This is actually dropping out entire tokens to attend to, which might
|
351 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
352 |
+
attention_probs = self.dropout(attention_probs)
|
353 |
+
|
354 |
+
# Mask heads if we want to
|
355 |
+
if head_mask is not None:
|
356 |
+
attention_probs = attention_probs * head_mask
|
357 |
+
|
358 |
+
context_layer = self.matmul2([attention_probs, value_layer])
|
359 |
+
|
360 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
361 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
362 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
363 |
+
|
364 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
365 |
+
return outputs
|
366 |
+
|
367 |
+
def relprop(self, cam, **kwargs):
|
368 |
+
# Assume output_attentions == False
|
369 |
+
cam = self.transpose_for_scores(cam)
|
370 |
+
|
371 |
+
# [attention_probs, value_layer]
|
372 |
+
(cam1, cam2) = self.matmul2.relprop(cam, **kwargs)
|
373 |
+
cam1 /= 2
|
374 |
+
cam2 /= 2
|
375 |
+
if self.head_mask is not None:
|
376 |
+
# [attention_probs, head_mask]
|
377 |
+
(cam1, _)= self.mul.relprop(cam1, **kwargs)
|
378 |
+
|
379 |
+
|
380 |
+
self.save_attn_cam(cam1)
|
381 |
+
|
382 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
383 |
+
|
384 |
+
cam1 = self.softmax.relprop(cam1, **kwargs)
|
385 |
+
|
386 |
+
if self.attention_mask is not None:
|
387 |
+
# [attention_scores, attention_mask]
|
388 |
+
(cam1, _) = self.add.relprop(cam1, **kwargs)
|
389 |
+
|
390 |
+
# [query_layer, key_layer.transpose(-1, -2)]
|
391 |
+
(cam1_1, cam1_2) = self.matmul1.relprop(cam1, **kwargs)
|
392 |
+
cam1_1 /= 2
|
393 |
+
cam1_2 /= 2
|
394 |
+
|
395 |
+
# query
|
396 |
+
cam1_1 = self.transpose_for_scores_relprop(cam1_1)
|
397 |
+
cam1_1 = self.query.relprop(cam1_1, **kwargs)
|
398 |
+
|
399 |
+
# key
|
400 |
+
cam1_2 = self.transpose_for_scores_relprop(cam1_2.transpose(-1, -2))
|
401 |
+
cam1_2 = self.key.relprop(cam1_2, **kwargs)
|
402 |
+
|
403 |
+
# value
|
404 |
+
cam2 = self.transpose_for_scores_relprop(cam2)
|
405 |
+
cam2 = self.value.relprop(cam2, **kwargs)
|
406 |
+
|
407 |
+
cam = self.clone.relprop((cam1_1, cam1_2, cam2), **kwargs)
|
408 |
+
|
409 |
+
return cam
|
410 |
+
|
411 |
+
|
412 |
+
class BertSelfOutput(nn.Module):
|
413 |
+
def __init__(self, config):
|
414 |
+
super().__init__()
|
415 |
+
self.dense = Linear(config.hidden_size, config.hidden_size)
|
416 |
+
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
417 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
418 |
+
self.add = Add()
|
419 |
+
|
420 |
+
def forward(self, hidden_states, input_tensor):
|
421 |
+
hidden_states = self.dense(hidden_states)
|
422 |
+
hidden_states = self.dropout(hidden_states)
|
423 |
+
add = self.add([hidden_states, input_tensor])
|
424 |
+
hidden_states = self.LayerNorm(add)
|
425 |
+
return hidden_states
|
426 |
+
|
427 |
+
def relprop(self, cam, **kwargs):
|
428 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
429 |
+
# [hidden_states, input_tensor]
|
430 |
+
(cam1, cam2) = self.add.relprop(cam, **kwargs)
|
431 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
432 |
+
cam1 = self.dense.relprop(cam1, **kwargs)
|
433 |
+
|
434 |
+
return (cam1, cam2)
|
435 |
+
|
436 |
+
|
437 |
+
class BertIntermediate(nn.Module):
|
438 |
+
def __init__(self, config):
|
439 |
+
super().__init__()
|
440 |
+
self.dense = Linear(config.hidden_size, config.intermediate_size)
|
441 |
+
if isinstance(config.hidden_act, str):
|
442 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]()
|
443 |
+
else:
|
444 |
+
self.intermediate_act_fn = config.hidden_act
|
445 |
+
|
446 |
+
def forward(self, hidden_states):
|
447 |
+
hidden_states = self.dense(hidden_states)
|
448 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
449 |
+
return hidden_states
|
450 |
+
|
451 |
+
def relprop(self, cam, **kwargs):
|
452 |
+
cam = self.intermediate_act_fn.relprop(cam, **kwargs) # FIXME only ReLU
|
453 |
+
#print(cam.sum())
|
454 |
+
cam = self.dense.relprop(cam, **kwargs)
|
455 |
+
#print(cam.sum())
|
456 |
+
return cam
|
457 |
+
|
458 |
+
|
459 |
+
class BertOutput(nn.Module):
|
460 |
+
def __init__(self, config):
|
461 |
+
super().__init__()
|
462 |
+
self.dense = Linear(config.intermediate_size, config.hidden_size)
|
463 |
+
self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
464 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
465 |
+
self.add = Add()
|
466 |
+
|
467 |
+
def forward(self, hidden_states, input_tensor):
|
468 |
+
hidden_states = self.dense(hidden_states)
|
469 |
+
hidden_states = self.dropout(hidden_states)
|
470 |
+
add = self.add([hidden_states, input_tensor])
|
471 |
+
hidden_states = self.LayerNorm(add)
|
472 |
+
return hidden_states
|
473 |
+
|
474 |
+
def relprop(self, cam, **kwargs):
|
475 |
+
# print("in", cam.sum())
|
476 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
477 |
+
#print(cam.sum())
|
478 |
+
# [hidden_states, input_tensor]
|
479 |
+
(cam1, cam2)= self.add.relprop(cam, **kwargs)
|
480 |
+
# print("add", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
|
481 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
482 |
+
#print(cam1.sum())
|
483 |
+
cam1 = self.dense.relprop(cam1, **kwargs)
|
484 |
+
# print("dense", cam1.sum())
|
485 |
+
|
486 |
+
# print("out", cam1.sum() + cam2.sum(), cam1.sum(), cam2.sum())
|
487 |
+
return (cam1, cam2)
|
488 |
+
|
489 |
+
|
490 |
+
class BertLayer(nn.Module):
|
491 |
+
def __init__(self, config):
|
492 |
+
super().__init__()
|
493 |
+
self.attention = BertAttention(config)
|
494 |
+
self.intermediate = BertIntermediate(config)
|
495 |
+
self.output = BertOutput(config)
|
496 |
+
self.clone = Clone()
|
497 |
+
|
498 |
+
def forward(
|
499 |
+
self,
|
500 |
+
hidden_states,
|
501 |
+
attention_mask=None,
|
502 |
+
head_mask=None,
|
503 |
+
output_attentions=False,
|
504 |
+
):
|
505 |
+
self_attention_outputs = self.attention(
|
506 |
+
hidden_states,
|
507 |
+
attention_mask,
|
508 |
+
head_mask,
|
509 |
+
output_attentions=output_attentions,
|
510 |
+
)
|
511 |
+
attention_output = self_attention_outputs[0]
|
512 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
513 |
+
|
514 |
+
ao1, ao2 = self.clone(attention_output, 2)
|
515 |
+
intermediate_output = self.intermediate(ao1)
|
516 |
+
layer_output = self.output(intermediate_output, ao2)
|
517 |
+
|
518 |
+
outputs = (layer_output,) + outputs
|
519 |
+
return outputs
|
520 |
+
|
521 |
+
def relprop(self, cam, **kwargs):
|
522 |
+
(cam1, cam2) = self.output.relprop(cam, **kwargs)
|
523 |
+
# print("output", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
|
524 |
+
cam1 = self.intermediate.relprop(cam1, **kwargs)
|
525 |
+
# print("intermediate", cam1.sum())
|
526 |
+
cam = self.clone.relprop((cam1, cam2), **kwargs)
|
527 |
+
# print("clone", cam.sum())
|
528 |
+
cam = self.attention.relprop(cam, **kwargs)
|
529 |
+
# print("attention", cam.sum())
|
530 |
+
return cam
|
531 |
+
|
532 |
+
|
533 |
+
class BertModel(BertPreTrainedModel):
|
534 |
+
def __init__(self, config):
|
535 |
+
super().__init__(config)
|
536 |
+
self.config = config
|
537 |
+
|
538 |
+
self.embeddings = BertEmbeddings(config)
|
539 |
+
self.encoder = BertEncoder(config)
|
540 |
+
self.pooler = BertPooler(config)
|
541 |
+
|
542 |
+
self.init_weights()
|
543 |
+
|
544 |
+
def get_input_embeddings(self):
|
545 |
+
return self.embeddings.word_embeddings
|
546 |
+
|
547 |
+
def set_input_embeddings(self, value):
|
548 |
+
self.embeddings.word_embeddings = value
|
549 |
+
|
550 |
+
def forward(
|
551 |
+
self,
|
552 |
+
input_ids=None,
|
553 |
+
attention_mask=None,
|
554 |
+
token_type_ids=None,
|
555 |
+
position_ids=None,
|
556 |
+
head_mask=None,
|
557 |
+
inputs_embeds=None,
|
558 |
+
encoder_hidden_states=None,
|
559 |
+
encoder_attention_mask=None,
|
560 |
+
output_attentions=None,
|
561 |
+
output_hidden_states=None,
|
562 |
+
return_dict=None,
|
563 |
+
):
|
564 |
+
r"""
|
565 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
566 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
567 |
+
if the model is configured as a decoder.
|
568 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
569 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
|
570 |
+
is used in the cross-attention if the model is configured as a decoder.
|
571 |
+
Mask values selected in ``[0, 1]``:
|
572 |
+
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
573 |
+
"""
|
574 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
575 |
+
output_hidden_states = (
|
576 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
577 |
+
)
|
578 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
579 |
+
|
580 |
+
if input_ids is not None and inputs_embeds is not None:
|
581 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
582 |
+
elif input_ids is not None:
|
583 |
+
input_shape = input_ids.size()
|
584 |
+
elif inputs_embeds is not None:
|
585 |
+
input_shape = inputs_embeds.size()[:-1]
|
586 |
+
else:
|
587 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
588 |
+
|
589 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
590 |
+
|
591 |
+
if attention_mask is None:
|
592 |
+
attention_mask = torch.ones(input_shape, device=device)
|
593 |
+
if token_type_ids is None:
|
594 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
595 |
+
|
596 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
597 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
598 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
599 |
+
|
600 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
601 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
602 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
603 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
604 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
605 |
+
if encoder_attention_mask is None:
|
606 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
607 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
608 |
+
else:
|
609 |
+
encoder_extended_attention_mask = None
|
610 |
+
|
611 |
+
# Prepare head mask if needed
|
612 |
+
# 1.0 in head_mask indicate we keep the head
|
613 |
+
# attention_probs has shape bsz x n_heads x N x N
|
614 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
615 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
616 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
617 |
+
|
618 |
+
embedding_output = self.embeddings(
|
619 |
+
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
620 |
+
)
|
621 |
+
|
622 |
+
encoder_outputs = self.encoder(
|
623 |
+
embedding_output,
|
624 |
+
attention_mask=extended_attention_mask,
|
625 |
+
head_mask=head_mask,
|
626 |
+
encoder_hidden_states=encoder_hidden_states,
|
627 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
628 |
+
output_attentions=output_attentions,
|
629 |
+
output_hidden_states=output_hidden_states,
|
630 |
+
return_dict=return_dict,
|
631 |
+
)
|
632 |
+
sequence_output = encoder_outputs[0]
|
633 |
+
pooled_output = self.pooler(sequence_output)
|
634 |
+
|
635 |
+
if not return_dict:
|
636 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
637 |
+
|
638 |
+
return BaseModelOutputWithPooling(
|
639 |
+
last_hidden_state=sequence_output,
|
640 |
+
pooler_output=pooled_output,
|
641 |
+
hidden_states=encoder_outputs.hidden_states,
|
642 |
+
attentions=encoder_outputs.attentions,
|
643 |
+
)
|
644 |
+
|
645 |
+
def relprop(self, cam, **kwargs):
|
646 |
+
cam = self.pooler.relprop(cam, **kwargs)
|
647 |
+
# print("111111111111",cam.sum())
|
648 |
+
cam = self.encoder.relprop(cam, **kwargs)
|
649 |
+
# print("222222222222222", cam.sum())
|
650 |
+
# print("conservation: ", cam.sum())
|
651 |
+
return cam
|
652 |
+
|
653 |
+
|
654 |
+
if __name__ == '__main__':
|
655 |
+
class Config:
|
656 |
+
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
|
657 |
+
self.hidden_size = hidden_size
|
658 |
+
self.num_attention_heads = num_attention_heads
|
659 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
660 |
+
|
661 |
+
model = BertSelfAttention(Config(1024, 4, 0.1))
|
662 |
+
x = torch.rand(2, 20, 1024)
|
663 |
+
x.requires_grad_()
|
664 |
+
|
665 |
+
model.eval()
|
666 |
+
|
667 |
+
y = model.forward(x)
|
668 |
+
|
669 |
+
relprop = model.relprop(torch.rand(2, 20, 1024), (torch.rand(2, 20, 1024),))
|
670 |
+
|
671 |
+
print(relprop[1][0].shape)
|
BERT_explainability/BERTalt.py
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import math
|
7 |
+
from BERT_explainability.modules.layers_ours import *
|
8 |
+
|
9 |
+
import transformers
|
10 |
+
|
11 |
+
from transformers import BertConfig
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPooling, BaseModelOutput
|
13 |
+
from transformers import (
|
14 |
+
BertPreTrainedModel,
|
15 |
+
PreTrainedModel,
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
ACT2FN = {
|
20 |
+
"relu": ReLU,
|
21 |
+
"tanh": Tanh,
|
22 |
+
"gelu": GELU,
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
def get_activation(activation_string):
|
27 |
+
if activation_string in ACT2FN:
|
28 |
+
return ACT2FN[activation_string]
|
29 |
+
else:
|
30 |
+
raise KeyError("function {} not found in ACT2FN mapping {}".format(activation_string, list(ACT2FN.keys())))
|
31 |
+
|
32 |
+
def compute_rollout_attention(all_layer_matrices, start_layer=0):
|
33 |
+
# adding residual consideration
|
34 |
+
num_tokens = all_layer_matrices[0].shape[1]
|
35 |
+
batch_size = all_layer_matrices[0].shape[0]
|
36 |
+
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
|
37 |
+
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
|
38 |
+
all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
|
39 |
+
for i in range(len(all_layer_matrices))]
|
40 |
+
joint_attention = all_layer_matrices[start_layer]
|
41 |
+
for i in range(start_layer+1, len(all_layer_matrices)):
|
42 |
+
joint_attention = all_layer_matrices[i].bmm(joint_attention)
|
43 |
+
return joint_attention
|
44 |
+
|
45 |
+
class RPBertEmbeddings(BertEmbeddings):
|
46 |
+
def __init__(self, config):
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
self.add1 = Add()
|
50 |
+
self.add2 = Add()
|
51 |
+
|
52 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
|
53 |
+
if input_ids is not None:
|
54 |
+
input_shape = input_ids.size()
|
55 |
+
else:
|
56 |
+
input_shape = inputs_embeds.size()[:-1]
|
57 |
+
|
58 |
+
seq_length = input_shape[1]
|
59 |
+
|
60 |
+
if position_ids is None:
|
61 |
+
position_ids = self.position_ids[:, :seq_length]
|
62 |
+
|
63 |
+
if token_type_ids is None:
|
64 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
65 |
+
|
66 |
+
if inputs_embeds is None:
|
67 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
68 |
+
position_embeddings = self.position_embeddings(position_ids)
|
69 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
70 |
+
|
71 |
+
# embeddings = inputs_embeds + position_embeddings + token_type_embeddings
|
72 |
+
embeddings = self.add1([token_type_embeddings, position_embeddings])
|
73 |
+
embeddings = self.add2([embeddings, inputs_embeds])
|
74 |
+
embeddings = self.LayerNorm(embeddings)
|
75 |
+
embeddings = self.dropout(embeddings)
|
76 |
+
return embeddings
|
77 |
+
|
78 |
+
def relprop(self, cam, **kwargs):
|
79 |
+
cam = self.dropout.relprop(cam, **kwargs)
|
80 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
81 |
+
|
82 |
+
# [inputs_embeds, position_embeddings, token_type_embeddings]
|
83 |
+
(cam) = self.add2.relprop(cam, **kwargs)
|
84 |
+
|
85 |
+
return cam
|
86 |
+
|
87 |
+
class RPBertEncoder(transformers.modeling_bert.BertEncoder):
|
88 |
+
def __init__(self, config):
|
89 |
+
super().__init__()
|
90 |
+
self.config = config
|
91 |
+
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
|
92 |
+
|
93 |
+
def relprop(self, cam, **kwargs):
|
94 |
+
# assuming output_hidden_states is False
|
95 |
+
for layer_module in reversed(self.layer):
|
96 |
+
cam = layer_module.relprop(cam, **kwargs)
|
97 |
+
return cam
|
98 |
+
|
99 |
+
|
100 |
+
# not adding relprop since this is only pooling at the end of the network, does not impact tokens importance
|
101 |
+
class RPBertPooler(transformers.modeling_bert.BertPooler):
|
102 |
+
def __init__(self, config):
|
103 |
+
super().__init__()
|
104 |
+
self.pool = IndexSelect()
|
105 |
+
|
106 |
+
def forward(self, hidden_states):
|
107 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
108 |
+
# to the first token.
|
109 |
+
self._seq_size = hidden_states.shape[1]
|
110 |
+
|
111 |
+
# first_token_tensor = hidden_states[:, 0]
|
112 |
+
first_token_tensor = self.pool(hidden_states, 1, torch.tensor(0, device=hidden_states.device))
|
113 |
+
first_token_tensor = first_token_tensor.squeeze(1)
|
114 |
+
pooled_output = self.dense(first_token_tensor)
|
115 |
+
pooled_output = self.activation(pooled_output)
|
116 |
+
return pooled_output
|
117 |
+
|
118 |
+
def relprop(self, cam, **kwargs):
|
119 |
+
cam = self.activation.relprop(cam, **kwargs)
|
120 |
+
#print(cam.sum())
|
121 |
+
cam = self.dense.relprop(cam, **kwargs)
|
122 |
+
#print(cam.sum())
|
123 |
+
cam = cam.unsqueeze(1)
|
124 |
+
cam = self.pool.relprop(cam, **kwargs)
|
125 |
+
#print(cam.sum())
|
126 |
+
|
127 |
+
return cam
|
128 |
+
|
129 |
+
class BertAttention(transformers.modeling_bert.BertAttention):
|
130 |
+
def __init__(self, config):
|
131 |
+
super().__init__()
|
132 |
+
self.clone = Clone()
|
133 |
+
|
134 |
+
def forward(
|
135 |
+
self,
|
136 |
+
hidden_states,
|
137 |
+
attention_mask=None,
|
138 |
+
head_mask=None,
|
139 |
+
encoder_hidden_states=None,
|
140 |
+
encoder_attention_mask=None,
|
141 |
+
output_attentions=False,
|
142 |
+
):
|
143 |
+
h1, h2 = self.clone(hidden_states, 2)
|
144 |
+
self_outputs = self.self(
|
145 |
+
h1,
|
146 |
+
attention_mask,
|
147 |
+
head_mask,
|
148 |
+
encoder_hidden_states,
|
149 |
+
encoder_attention_mask,
|
150 |
+
output_attentions,
|
151 |
+
)
|
152 |
+
attention_output = self.output(self_outputs[0], h2)
|
153 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
154 |
+
return outputs
|
155 |
+
|
156 |
+
def relprop(self, cam, **kwargs):
|
157 |
+
# assuming that we don't ouput the attentions (outputs = (attention_output,)), self_outputs=(context_layer,)
|
158 |
+
(cam1, cam2) = self.output.relprop(cam, **kwargs)
|
159 |
+
#print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
|
160 |
+
cam1 = self.self.relprop(cam1, **kwargs)
|
161 |
+
#print(cam1.sum(), cam2.sum(), (cam1 + cam2).sum())
|
162 |
+
|
163 |
+
return self.clone.relprop((cam1, cam2), **kwargs)
|
164 |
+
|
165 |
+
class BertSelfAttention(transformers.modeling_bert.BertSelfAttention):
|
166 |
+
def __init__(self, config):
|
167 |
+
super().__init__()
|
168 |
+
|
169 |
+
self.matmul1 = MatMul()
|
170 |
+
self.matmul2 = MatMul()
|
171 |
+
self.softmax = Softmax(dim=-1)
|
172 |
+
self.add = Add()
|
173 |
+
self.mul = Mul()
|
174 |
+
self.head_mask = None
|
175 |
+
self.attention_mask = None
|
176 |
+
self.clone = Clone()
|
177 |
+
|
178 |
+
self.attn_cam = None
|
179 |
+
self.attn = None
|
180 |
+
self.attn_gradients = None
|
181 |
+
|
182 |
+
def get_attn(self):
|
183 |
+
return self.attn
|
184 |
+
|
185 |
+
def save_attn(self, attn):
|
186 |
+
self.attn = attn
|
187 |
+
|
188 |
+
def save_attn_cam(self, cam):
|
189 |
+
self.attn_cam = cam
|
190 |
+
|
191 |
+
def get_attn_cam(self):
|
192 |
+
return self.attn_cam
|
193 |
+
|
194 |
+
def save_attn_gradients(self, attn_gradients):
|
195 |
+
self.attn_gradients = attn_gradients
|
196 |
+
|
197 |
+
def get_attn_gradients(self):
|
198 |
+
return self.attn_gradients
|
199 |
+
|
200 |
+
def transpose_for_scores_relprop(self, x):
|
201 |
+
return x.permute(0, 2, 1, 3).flatten(2)
|
202 |
+
|
203 |
+
def forward(
|
204 |
+
self,
|
205 |
+
hidden_states,
|
206 |
+
attention_mask=None,
|
207 |
+
head_mask=None,
|
208 |
+
encoder_hidden_states=None,
|
209 |
+
encoder_attention_mask=None,
|
210 |
+
output_attentions=False,
|
211 |
+
):
|
212 |
+
self.head_mask = head_mask
|
213 |
+
self.attention_mask = attention_mask
|
214 |
+
|
215 |
+
h1, h2, h3 = self.clone(hidden_states, 3)
|
216 |
+
mixed_query_layer = self.query(h1)
|
217 |
+
|
218 |
+
# If this is instantiated as a cross-attention module, the keys
|
219 |
+
# and values come from an encoder; the attention mask needs to be
|
220 |
+
# such that the encoder's padding tokens are not attended to.
|
221 |
+
if encoder_hidden_states is not None:
|
222 |
+
mixed_key_layer = self.key(encoder_hidden_states)
|
223 |
+
mixed_value_layer = self.value(encoder_hidden_states)
|
224 |
+
attention_mask = encoder_attention_mask
|
225 |
+
else:
|
226 |
+
mixed_key_layer = self.key(h2)
|
227 |
+
mixed_value_layer = self.value(h3)
|
228 |
+
|
229 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
230 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
231 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
232 |
+
|
233 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
234 |
+
attention_scores = self.matmul1([query_layer, key_layer.transpose(-1, -2)])
|
235 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
236 |
+
if attention_mask is not None:
|
237 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
238 |
+
attention_scores = self.add([attention_scores, attention_mask])
|
239 |
+
|
240 |
+
# Normalize the attention scores to probabilities.
|
241 |
+
attention_probs = self.softmax(attention_scores)
|
242 |
+
|
243 |
+
self.save_attn(attention_probs)
|
244 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
245 |
+
|
246 |
+
# This is actually dropping out entire tokens to attend to, which might
|
247 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
248 |
+
attention_probs = self.dropout(attention_probs)
|
249 |
+
|
250 |
+
# Mask heads if we want to
|
251 |
+
if head_mask is not None:
|
252 |
+
attention_probs = attention_probs * head_mask
|
253 |
+
|
254 |
+
context_layer = self.matmul2([attention_probs, value_layer])
|
255 |
+
|
256 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
257 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
258 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
259 |
+
|
260 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
261 |
+
return outputs
|
262 |
+
|
263 |
+
def relprop(self, cam, **kwargs):
|
264 |
+
# Assume output_attentions == False
|
265 |
+
cam = self.transpose_for_scores(cam)
|
266 |
+
|
267 |
+
# [attention_probs, value_layer]
|
268 |
+
(cam1, cam2) = self.matmul2.relprop(cam, **kwargs)
|
269 |
+
cam1 /= 2
|
270 |
+
cam2 /= 2
|
271 |
+
if self.head_mask is not None:
|
272 |
+
# [attention_probs, head_mask]
|
273 |
+
(cam1, _)= self.mul.relprop(cam1, **kwargs)
|
274 |
+
|
275 |
+
|
276 |
+
self.save_attn_cam(cam1)
|
277 |
+
|
278 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
279 |
+
|
280 |
+
cam1 = self.softmax.relprop(cam1, **kwargs)
|
281 |
+
|
282 |
+
if self.attention_mask is not None:
|
283 |
+
# [attention_scores, attention_mask]
|
284 |
+
(cam1, _) = self.add.relprop(cam1, **kwargs)
|
285 |
+
|
286 |
+
# [query_layer, key_layer.transpose(-1, -2)]
|
287 |
+
(cam1_1, cam1_2) = self.matmul1.relprop(cam1, **kwargs)
|
288 |
+
cam1_1 /= 2
|
289 |
+
cam1_2 /= 2
|
290 |
+
|
291 |
+
# query
|
292 |
+
cam1_1 = self.transpose_for_scores_relprop(cam1_1)
|
293 |
+
cam1_1 = self.query.relprop(cam1_1, **kwargs)
|
294 |
+
|
295 |
+
# key
|
296 |
+
cam1_2 = self.transpose_for_scores_relprop(cam1_2.transpose(-1, -2))
|
297 |
+
cam1_2 = self.key.relprop(cam1_2, **kwargs)
|
298 |
+
|
299 |
+
# value
|
300 |
+
cam2 = self.transpose_for_scores_relprop(cam2)
|
301 |
+
cam2 = self.value.relprop(cam2, **kwargs)
|
302 |
+
|
303 |
+
cam = self.clone.relprop((cam1_1, cam1_2, cam2), **kwargs)
|
304 |
+
|
305 |
+
return cam
|
306 |
+
|
307 |
+
|
308 |
+
class BertSelfOutput(transformers.modeling_bert.BertSelfOutput):
|
309 |
+
def __init__(self, config):
|
310 |
+
super().__init__()
|
311 |
+
self.add = Add()
|
312 |
+
|
313 |
+
def forward(self, hidden_states, input_tensor):
|
314 |
+
hidden_states = self.dense(hidden_states)
|
315 |
+
hidden_states = self.dropout(hidden_states)
|
316 |
+
add = self.add([hidden_states, input_tensor])
|
317 |
+
hidden_states = self.LayerNorm(add)
|
318 |
+
return hidden_states
|
319 |
+
|
320 |
+
def relprop(self, cam, **kwargs):
|
321 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
322 |
+
# [hidden_states, input_tensor]
|
323 |
+
(cam1, cam2) = self.add.relprop(cam, **kwargs)
|
324 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
325 |
+
cam1 = self.dense.relprop(cam1, **kwargs)
|
326 |
+
|
327 |
+
return (cam1, cam2)
|
328 |
+
|
329 |
+
|
330 |
+
class BertIntermediate(transformers.modeling_bert.BertIntermediate):
|
331 |
+
def relprop(self, cam, **kwargs):
|
332 |
+
cam = self.intermediate_act_fn.relprop(cam, **kwargs) # FIXME only ReLU
|
333 |
+
#print(cam.sum())
|
334 |
+
cam = self.dense.relprop(cam, **kwargs)
|
335 |
+
#print(cam.sum())
|
336 |
+
return cam
|
337 |
+
|
338 |
+
|
339 |
+
class BertOutput(transformers.modeling_bert.BertOutput):
|
340 |
+
def __init__(self, config):
|
341 |
+
super().__init__()
|
342 |
+
self.add = Add()
|
343 |
+
|
344 |
+
def forward(self, hidden_states, input_tensor):
|
345 |
+
hidden_states = self.dense(hidden_states)
|
346 |
+
hidden_states = self.dropout(hidden_states)
|
347 |
+
add = self.add([hidden_states, input_tensor])
|
348 |
+
hidden_states = self.LayerNorm(add)
|
349 |
+
return hidden_states
|
350 |
+
|
351 |
+
def relprop(self, cam, **kwargs):
|
352 |
+
# print("in", cam.sum())
|
353 |
+
cam = self.LayerNorm.relprop(cam, **kwargs)
|
354 |
+
#print(cam.sum())
|
355 |
+
# [hidden_states, input_tensor]
|
356 |
+
(cam1, cam2)= self.add.relprop(cam, **kwargs)
|
357 |
+
# print("add", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
|
358 |
+
cam1 = self.dropout.relprop(cam1, **kwargs)
|
359 |
+
#print(cam1.sum())
|
360 |
+
cam1 = self.dense.relprop(cam1, **kwargs)
|
361 |
+
# print("dense", cam1.sum())
|
362 |
+
|
363 |
+
# print("out", cam1.sum() + cam2.sum(), cam1.sum(), cam2.sum())
|
364 |
+
return (cam1, cam2)
|
365 |
+
|
366 |
+
|
367 |
+
class RPBertLayer(nn.Module):
|
368 |
+
def __init__(self, config):
|
369 |
+
super().__init__()
|
370 |
+
self.attention = BertAttention(config)
|
371 |
+
self.intermediate = BertIntermediate(config)
|
372 |
+
self.output = BertOutput(config)
|
373 |
+
self.clone = Clone()
|
374 |
+
|
375 |
+
def forward(
|
376 |
+
self,
|
377 |
+
hidden_states,
|
378 |
+
attention_mask=None,
|
379 |
+
head_mask=None,
|
380 |
+
output_attentions=False,
|
381 |
+
):
|
382 |
+
self_attention_outputs = self.attention(
|
383 |
+
hidden_states,
|
384 |
+
attention_mask,
|
385 |
+
head_mask,
|
386 |
+
output_attentions=output_attentions,
|
387 |
+
)
|
388 |
+
attention_output = self_attention_outputs[0]
|
389 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
390 |
+
|
391 |
+
ao1, ao2 = self.clone(attention_output, 2)
|
392 |
+
intermediate_output = self.intermediate(ao1)
|
393 |
+
layer_output = self.output(intermediate_output, ao2)
|
394 |
+
|
395 |
+
outputs = (layer_output,) + outputs
|
396 |
+
return outputs
|
397 |
+
|
398 |
+
def relprop(self, cam, **kwargs):
|
399 |
+
(cam1, cam2) = self.output.relprop(cam, **kwargs)
|
400 |
+
# print("output", cam1.sum(), cam2.sum(), cam1.sum() + cam2.sum())
|
401 |
+
cam1 = self.intermediate.relprop(cam1, **kwargs)
|
402 |
+
# print("intermediate", cam1.sum())
|
403 |
+
cam = self.clone.relprop((cam1, cam2), **kwargs)
|
404 |
+
# print("clone", cam.sum())
|
405 |
+
cam = self.attention.relprop(cam, **kwargs)
|
406 |
+
# print("attention", cam.sum())
|
407 |
+
return cam
|
408 |
+
|
409 |
+
|
410 |
+
class BertModel(BertPreTrainedModel):
|
411 |
+
def __init__(self, config):
|
412 |
+
super().__init__(config)
|
413 |
+
self.config = config
|
414 |
+
|
415 |
+
self.embeddings = BertEmbeddings(config)
|
416 |
+
self.encoder = BertEncoder(config)
|
417 |
+
self.pooler = BertPooler(config)
|
418 |
+
|
419 |
+
self.init_weights()
|
420 |
+
|
421 |
+
def get_input_embeddings(self):
|
422 |
+
return self.embeddings.word_embeddings
|
423 |
+
|
424 |
+
def set_input_embeddings(self, value):
|
425 |
+
self.embeddings.word_embeddings = value
|
426 |
+
|
427 |
+
def forward(
|
428 |
+
self,
|
429 |
+
input_ids=None,
|
430 |
+
attention_mask=None,
|
431 |
+
token_type_ids=None,
|
432 |
+
position_ids=None,
|
433 |
+
head_mask=None,
|
434 |
+
inputs_embeds=None,
|
435 |
+
encoder_hidden_states=None,
|
436 |
+
encoder_attention_mask=None,
|
437 |
+
output_attentions=None,
|
438 |
+
output_hidden_states=None,
|
439 |
+
return_dict=None,
|
440 |
+
):
|
441 |
+
r"""
|
442 |
+
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
443 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
444 |
+
if the model is configured as a decoder.
|
445 |
+
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
|
446 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
|
447 |
+
is used in the cross-attention if the model is configured as a decoder.
|
448 |
+
Mask values selected in ``[0, 1]``:
|
449 |
+
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
450 |
+
"""
|
451 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
452 |
+
output_hidden_states = (
|
453 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
454 |
+
)
|
455 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
456 |
+
|
457 |
+
if input_ids is not None and inputs_embeds is not None:
|
458 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
459 |
+
elif input_ids is not None:
|
460 |
+
input_shape = input_ids.size()
|
461 |
+
elif inputs_embeds is not None:
|
462 |
+
input_shape = inputs_embeds.size()[:-1]
|
463 |
+
else:
|
464 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
465 |
+
|
466 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
467 |
+
|
468 |
+
if attention_mask is None:
|
469 |
+
attention_mask = torch.ones(input_shape, device=device)
|
470 |
+
if token_type_ids is None:
|
471 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
472 |
+
|
473 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
474 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
475 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
476 |
+
|
477 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
478 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
479 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
480 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
481 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
482 |
+
if encoder_attention_mask is None:
|
483 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
484 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
485 |
+
else:
|
486 |
+
encoder_extended_attention_mask = None
|
487 |
+
|
488 |
+
# Prepare head mask if needed
|
489 |
+
# 1.0 in head_mask indicate we keep the head
|
490 |
+
# attention_probs has shape bsz x n_heads x N x N
|
491 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
492 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
493 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
494 |
+
|
495 |
+
embedding_output = self.embeddings(
|
496 |
+
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
497 |
+
)
|
498 |
+
|
499 |
+
encoder_outputs = self.encoder(
|
500 |
+
embedding_output,
|
501 |
+
attention_mask=extended_attention_mask,
|
502 |
+
head_mask=head_mask,
|
503 |
+
encoder_hidden_states=encoder_hidden_states,
|
504 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
505 |
+
output_attentions=output_attentions,
|
506 |
+
output_hidden_states=output_hidden_states,
|
507 |
+
return_dict=return_dict,
|
508 |
+
)
|
509 |
+
sequence_output = encoder_outputs[0]
|
510 |
+
pooled_output = self.pooler(sequence_output)
|
511 |
+
|
512 |
+
if not return_dict:
|
513 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
514 |
+
|
515 |
+
return BaseModelOutputWithPooling(
|
516 |
+
last_hidden_state=sequence_output,
|
517 |
+
pooler_output=pooled_output,
|
518 |
+
hidden_states=encoder_outputs.hidden_states,
|
519 |
+
attentions=encoder_outputs.attentions,
|
520 |
+
)
|
521 |
+
|
522 |
+
def relprop(self, cam, **kwargs):
|
523 |
+
cam = self.pooler.relprop(cam, **kwargs)
|
524 |
+
# print("111111111111",cam.sum())
|
525 |
+
cam = self.encoder.relprop(cam, **kwargs)
|
526 |
+
# print("222222222222222", cam.sum())
|
527 |
+
# print("conservation: ", cam.sum())
|
528 |
+
return cam
|
529 |
+
|
530 |
+
|
531 |
+
transformers.modeling_bert.BertEmbeddings = RPBertEmbeddings
|
532 |
+
transformers.modeling_bert.BertEncoder = RPBertEncoder
|
533 |
+
|
534 |
+
if __name__ == '__main__':
|
535 |
+
class Config:
|
536 |
+
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
|
537 |
+
self.hidden_size = hidden_size
|
538 |
+
self.num_attention_heads = num_attention_heads
|
539 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
540 |
+
|
541 |
+
model = BertSelfAttention(Config(1024, 4, 0.1))
|
542 |
+
x = torch.rand(2, 20, 1024)
|
543 |
+
x.requires_grad_()
|
544 |
+
|
545 |
+
model.eval()
|
546 |
+
|
547 |
+
y = model.forward(x)
|
548 |
+
|
549 |
+
relprop = model.relprop(torch.rand(2, 20, 1024), (torch.rand(2, 20, 1024),))
|
550 |
+
|
551 |
+
print(relprop[1][0].shape)
|
BERT_explainability/BertForSequenceClassification.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertPreTrainedModel
|
2 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
3 |
+
from transformers.utils import logging
|
4 |
+
from BERT_explainability.modules.layers_ours import *
|
5 |
+
from BERT_explainability.modules.BERT.BERT import BertModel
|
6 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
7 |
+
import torch.nn as nn
|
8 |
+
from typing import List, Any
|
9 |
+
import torch
|
10 |
+
from BERT_rationale_benchmark.models.model_utils import PaddedSequence
|
11 |
+
|
12 |
+
|
13 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__(config)
|
16 |
+
self.num_labels = config.num_labels
|
17 |
+
|
18 |
+
self.bert = BertModel(config)
|
19 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
20 |
+
self.classifier = Linear(config.hidden_size, config.num_labels)
|
21 |
+
|
22 |
+
self.init_weights()
|
23 |
+
|
24 |
+
def forward(
|
25 |
+
self,
|
26 |
+
input_ids=None,
|
27 |
+
attention_mask=None,
|
28 |
+
token_type_ids=None,
|
29 |
+
position_ids=None,
|
30 |
+
head_mask=None,
|
31 |
+
inputs_embeds=None,
|
32 |
+
labels=None,
|
33 |
+
output_attentions=None,
|
34 |
+
output_hidden_states=None,
|
35 |
+
return_dict=None,
|
36 |
+
):
|
37 |
+
r"""
|
38 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
39 |
+
Labels for computing the sequence classification/regression loss.
|
40 |
+
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
|
41 |
+
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
42 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
43 |
+
"""
|
44 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
45 |
+
|
46 |
+
outputs = self.bert(
|
47 |
+
input_ids,
|
48 |
+
attention_mask=attention_mask,
|
49 |
+
token_type_ids=token_type_ids,
|
50 |
+
position_ids=position_ids,
|
51 |
+
head_mask=head_mask,
|
52 |
+
inputs_embeds=inputs_embeds,
|
53 |
+
output_attentions=output_attentions,
|
54 |
+
output_hidden_states=output_hidden_states,
|
55 |
+
return_dict=return_dict,
|
56 |
+
)
|
57 |
+
|
58 |
+
pooled_output = outputs[1]
|
59 |
+
|
60 |
+
pooled_output = self.dropout(pooled_output)
|
61 |
+
logits = self.classifier(pooled_output)
|
62 |
+
|
63 |
+
loss = None
|
64 |
+
if labels is not None:
|
65 |
+
if self.num_labels == 1:
|
66 |
+
# We are doing regression
|
67 |
+
loss_fct = MSELoss()
|
68 |
+
loss = loss_fct(logits.view(-1), labels.view(-1))
|
69 |
+
else:
|
70 |
+
loss_fct = CrossEntropyLoss()
|
71 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
72 |
+
|
73 |
+
if not return_dict:
|
74 |
+
output = (logits,) + outputs[2:]
|
75 |
+
return ((loss,) + output) if loss is not None else output
|
76 |
+
|
77 |
+
return SequenceClassifierOutput(
|
78 |
+
loss=loss,
|
79 |
+
logits=logits,
|
80 |
+
hidden_states=outputs.hidden_states,
|
81 |
+
attentions=outputs.attentions,
|
82 |
+
)
|
83 |
+
|
84 |
+
def relprop(self, cam=None, **kwargs):
|
85 |
+
cam = self.classifier.relprop(cam, **kwargs)
|
86 |
+
cam = self.dropout.relprop(cam, **kwargs)
|
87 |
+
cam = self.bert.relprop(cam, **kwargs)
|
88 |
+
# print("conservation: ", cam.sum())
|
89 |
+
return cam
|
90 |
+
|
91 |
+
|
92 |
+
# this is the actual classifier we will be using
|
93 |
+
class BertClassifier(nn.Module):
|
94 |
+
"""Thin wrapper around BertForSequenceClassification"""
|
95 |
+
|
96 |
+
def __init__(self,
|
97 |
+
bert_dir: str,
|
98 |
+
pad_token_id: int,
|
99 |
+
cls_token_id: int,
|
100 |
+
sep_token_id: int,
|
101 |
+
num_labels: int,
|
102 |
+
max_length: int = 512,
|
103 |
+
use_half_precision=True):
|
104 |
+
super(BertClassifier, self).__init__()
|
105 |
+
bert = BertForSequenceClassification.from_pretrained(bert_dir, num_labels=num_labels)
|
106 |
+
if use_half_precision:
|
107 |
+
import apex
|
108 |
+
bert = bert.half()
|
109 |
+
self.bert = bert
|
110 |
+
self.pad_token_id = pad_token_id
|
111 |
+
self.cls_token_id = cls_token_id
|
112 |
+
self.sep_token_id = sep_token_id
|
113 |
+
self.max_length = max_length
|
114 |
+
|
115 |
+
def forward(self,
|
116 |
+
query: List[torch.tensor],
|
117 |
+
docids: List[Any],
|
118 |
+
document_batch: List[torch.tensor]):
|
119 |
+
assert len(query) == len(document_batch)
|
120 |
+
print(query)
|
121 |
+
# note about device management:
|
122 |
+
# since distributed training is enabled, the inputs to this module can be on *any* device (preferably cpu, since we wrap and unwrap the module)
|
123 |
+
# we want to keep these params on the input device (assuming CPU) for as long as possible for cheap memory access
|
124 |
+
target_device = next(self.parameters()).device
|
125 |
+
cls_token = torch.tensor([self.cls_token_id]).to(device=document_batch[0].device)
|
126 |
+
sep_token = torch.tensor([self.sep_token_id]).to(device=document_batch[0].device)
|
127 |
+
input_tensors = []
|
128 |
+
position_ids = []
|
129 |
+
for q, d in zip(query, document_batch):
|
130 |
+
if len(q) + len(d) + 2 > self.max_length:
|
131 |
+
d = d[:(self.max_length - len(q) - 2)]
|
132 |
+
input_tensors.append(torch.cat([cls_token, q, sep_token, d]))
|
133 |
+
position_ids.append(torch.tensor(list(range(0, len(q) + 1)) + list(range(0, len(d) + 1))))
|
134 |
+
bert_input = PaddedSequence.autopad(input_tensors, batch_first=True, padding_value=self.pad_token_id,
|
135 |
+
device=target_device)
|
136 |
+
positions = PaddedSequence.autopad(position_ids, batch_first=True, padding_value=0, device=target_device)
|
137 |
+
(classes,) = self.bert(bert_input.data,
|
138 |
+
attention_mask=bert_input.mask(on=0.0, off=float('-inf'), device=target_device),
|
139 |
+
position_ids=positions.data)
|
140 |
+
assert torch.all(classes == classes) # for nans
|
141 |
+
|
142 |
+
print(input_tensors[0])
|
143 |
+
print(self.relprop()[0])
|
144 |
+
|
145 |
+
return classes
|
146 |
+
|
147 |
+
def relprop(self, cam=None, **kwargs):
|
148 |
+
return self.bert.relprop(cam, **kwargs)
|
149 |
+
|
150 |
+
|
151 |
+
if __name__ == '__main__':
|
152 |
+
from transformers import BertTokenizer
|
153 |
+
import os
|
154 |
+
|
155 |
+
class Config:
|
156 |
+
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, num_labels,
|
157 |
+
hidden_dropout_prob):
|
158 |
+
self.hidden_size = hidden_size
|
159 |
+
self.num_attention_heads = num_attention_heads
|
160 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
161 |
+
self.num_labels = num_labels
|
162 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
163 |
+
|
164 |
+
|
165 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
166 |
+
x = tokenizer.encode_plus("In this movie the acting is great. The movie is perfect! [sep]",
|
167 |
+
add_special_tokens=True,
|
168 |
+
max_length=512,
|
169 |
+
return_token_type_ids=False,
|
170 |
+
return_attention_mask=True,
|
171 |
+
pad_to_max_length=True,
|
172 |
+
return_tensors='pt',
|
173 |
+
truncation=True)
|
174 |
+
|
175 |
+
print(x['input_ids'])
|
176 |
+
|
177 |
+
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
178 |
+
model_save_file = os.path.join('./BERT_explainability/output_bert/movies/classifier/', 'classifier.pt')
|
179 |
+
model.load_state_dict(torch.load(model_save_file))
|
180 |
+
|
181 |
+
# x = torch.randint(100, (2, 20))
|
182 |
+
# x = torch.tensor([[101, 2054, 2003, 1996, 15792, 1997, 2023, 3319, 1029, 102,
|
183 |
+
# 101, 4079, 102, 101, 6732, 102, 101, 2643, 102, 101,
|
184 |
+
# 2038, 102, 101, 1037, 102, 101, 2933, 102, 101, 2005,
|
185 |
+
# 102, 101, 2032, 102, 101, 1010, 102, 101, 1037, 102,
|
186 |
+
# 101, 3800, 102, 101, 2005, 102, 101, 2010, 102, 101,
|
187 |
+
# 2166, 102, 101, 1010, 102, 101, 1998, 102, 101, 2010,
|
188 |
+
# 102, 101, 4650, 102, 101, 1010, 102, 101, 2002, 102,
|
189 |
+
# 101, 2074, 102, 101, 2515, 102, 101, 1050, 102, 101,
|
190 |
+
# 1005, 102, 101, 1056, 102, 101, 2113, 102, 101, 2054,
|
191 |
+
# 102, 101, 1012, 102]])
|
192 |
+
# x.requires_grad_()
|
193 |
+
|
194 |
+
model.eval()
|
195 |
+
|
196 |
+
y = model(x['input_ids'], x['attention_mask'])
|
197 |
+
print(y)
|
198 |
+
|
199 |
+
cam, _ = model.relprop()
|
200 |
+
|
201 |
+
#print(cam.shape)
|
202 |
+
|
203 |
+
cam = cam.sum(-1)
|
204 |
+
#print(cam)
|
BERT_explainability/ExplanationGenerator.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import glob
|
5 |
+
|
6 |
+
from captum._utils.common import _get_module_from_name
|
7 |
+
|
8 |
+
# compute rollout between attention layers
|
9 |
+
def compute_rollout_attention(all_layer_matrices, start_layer=0):
|
10 |
+
# adding residual consideration- code adapted from https://github.com/samiraabnar/attention_flow
|
11 |
+
num_tokens = all_layer_matrices[0].shape[1]
|
12 |
+
batch_size = all_layer_matrices[0].shape[0]
|
13 |
+
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
|
14 |
+
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
|
15 |
+
matrices_aug = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
|
16 |
+
for i in range(len(all_layer_matrices))]
|
17 |
+
joint_attention = matrices_aug[start_layer]
|
18 |
+
for i in range(start_layer+1, len(matrices_aug)):
|
19 |
+
joint_attention = matrices_aug[i].bmm(joint_attention)
|
20 |
+
return joint_attention
|
21 |
+
|
22 |
+
class Generator:
|
23 |
+
def __init__(self, model, key="bert.encoder.layer"):
|
24 |
+
self.model = model
|
25 |
+
self.key = key
|
26 |
+
self.model.eval()
|
27 |
+
|
28 |
+
def forward(self, input_ids, attention_mask):
|
29 |
+
return self.model(input_ids, attention_mask)
|
30 |
+
|
31 |
+
def _calculate_gradients(self, output, index, do_relprop=True):
|
32 |
+
if index == None:
|
33 |
+
index = np.argmax(output.cpu().data.numpy(), axis=-1)
|
34 |
+
|
35 |
+
one_hot_vector = (torch.nn.functional
|
36 |
+
.one_hot(
|
37 |
+
# one_hot requires ints
|
38 |
+
torch.tensor(index, dtype=torch.int64),
|
39 |
+
num_classes=output.size(-1)
|
40 |
+
)
|
41 |
+
# but requires_grad_ needs floats
|
42 |
+
.to(torch.float)
|
43 |
+
).to(output.device)
|
44 |
+
|
45 |
+
hot_output = torch.sum(one_hot_vector.clone().requires_grad_(True) * output)
|
46 |
+
self.model.zero_grad()
|
47 |
+
hot_output.backward(retain_graph=True)
|
48 |
+
|
49 |
+
if do_relprop:
|
50 |
+
return self.model.relprop(one_hot_vector, alpha=1)
|
51 |
+
|
52 |
+
def generate_LRP(self, input_ids, attention_mask,
|
53 |
+
index=None, start_layer=11):
|
54 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
55 |
+
|
56 |
+
if index == None:
|
57 |
+
index = np.argmax(output.cpu().data.numpy(), axis=-1)
|
58 |
+
|
59 |
+
self._calculate_gradients(output, index)
|
60 |
+
|
61 |
+
cams = []
|
62 |
+
blocks = _get_module_from_name(self.model, self.key)
|
63 |
+
for blk in blocks:
|
64 |
+
grad = blk.attention.self.get_attn_gradients()
|
65 |
+
cam = blk.attention.self.get_attn_cam()
|
66 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
67 |
+
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
|
68 |
+
cam = grad * cam
|
69 |
+
cam = cam.clamp(min=0).mean(dim=0)
|
70 |
+
cams.append(cam.unsqueeze(0))
|
71 |
+
rollout = compute_rollout_attention(cams, start_layer=start_layer)
|
72 |
+
rollout[:, 0, 0] = rollout[:, 0].min()
|
73 |
+
return rollout[:, 0]
|
74 |
+
|
75 |
+
|
76 |
+
def generate_LRP_last_layer(self, input_ids, attention_mask,
|
77 |
+
index=None):
|
78 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
79 |
+
if index == None:
|
80 |
+
index = np.argmax(output.cpu().data.numpy(), axis=-1)
|
81 |
+
|
82 |
+
self._calculate_gradients(output, index)
|
83 |
+
|
84 |
+
cam = _get_module_from_name(self.model, self.key)[-1].attention.self.get_attn_cam()[0]
|
85 |
+
cam = cam.clamp(min=0).mean(dim=0).unsqueeze(0)
|
86 |
+
cam[:, 0, 0] = 0
|
87 |
+
return cam[:, 0]
|
88 |
+
|
89 |
+
def generate_full_lrp(self, input_ids, attention_mask,
|
90 |
+
index=None):
|
91 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
92 |
+
|
93 |
+
if index == None:
|
94 |
+
index = np.argmax(output.cpu().data.numpy(), axis=-1)
|
95 |
+
|
96 |
+
cam = self._calculate_gradients(output, index)
|
97 |
+
cam = cam.sum(dim=2)
|
98 |
+
cam[:, 0] = 0
|
99 |
+
return cam
|
100 |
+
|
101 |
+
def generate_attn_last_layer(self, input_ids, attention_mask,
|
102 |
+
index=None):
|
103 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
104 |
+
cam = _get_module_from_name(self.model, self.key)[-1].attention.self.get_attn()[0]
|
105 |
+
cam = cam.mean(dim=0).unsqueeze(0)
|
106 |
+
cam[:, 0, 0] = 0
|
107 |
+
return cam[:, 0]
|
108 |
+
|
109 |
+
def generate_rollout(self, input_ids, attention_mask, start_layer=0, index=None):
|
110 |
+
self.model.zero_grad()
|
111 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
112 |
+
blocks = _get_module_from_name(self.model, self.key)
|
113 |
+
all_layer_attentions = []
|
114 |
+
for blk in blocks:
|
115 |
+
attn_heads = blk.attention.self.get_attn()
|
116 |
+
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach()
|
117 |
+
all_layer_attentions.append(avg_heads)
|
118 |
+
rollout = compute_rollout_attention(all_layer_attentions, start_layer=start_layer)
|
119 |
+
rollout[:, 0, 0] = 0
|
120 |
+
return rollout[:, 0]
|
121 |
+
|
122 |
+
def generate_attn_gradcam(self, input_ids, attention_mask, index=None):
|
123 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
124 |
+
|
125 |
+
if index == None:
|
126 |
+
index = np.argmax(output.cpu().data.numpy(), axis=-1)
|
127 |
+
|
128 |
+
self._calculate_gradients(output, index)
|
129 |
+
|
130 |
+
cam = _get_module_from_name(self.model, self.key)[-1].attention.self.get_attn()
|
131 |
+
grad = _get_module_from_name(self.model, self.key)[-1].attention.self.get_attn_gradients()
|
132 |
+
|
133 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
134 |
+
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
|
135 |
+
grad = grad.mean(dim=[1, 2], keepdim=True)
|
136 |
+
cam = (cam * grad).mean(0).clamp(min=0).unsqueeze(0)
|
137 |
+
cam = (cam - cam.min()) / (cam.max() - cam.min())
|
138 |
+
cam[:, 0, 0] = 0
|
139 |
+
return cam[:, 0]
|
140 |
+
|
141 |
+
def generate_rollout_attn_gradcam(self, input_ids, attention_mask, index=None, start_layer=0):
|
142 |
+
# rule 5 from paper
|
143 |
+
def avg_heads(cam, grad):
|
144 |
+
return (grad * cam).clamp(min=0).mean(dim=-3)
|
145 |
+
|
146 |
+
# rule 6 from paper
|
147 |
+
def apply_self_attention_rules(R_ss, cam_ss):
|
148 |
+
return torch.matmul(cam_ss, R_ss)
|
149 |
+
|
150 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
151 |
+
blocks = _get_module_from_name(self.model, self.key)
|
152 |
+
|
153 |
+
num_tokens = input_ids.size(-1)
|
154 |
+
R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(output.device)
|
155 |
+
|
156 |
+
for i, blk in enumerate(model.roberta.encoder.layer):
|
157 |
+
if i < start_layer:
|
158 |
+
continue
|
159 |
+
grad = blk.attention.self.get_attn_gradients().detach()
|
160 |
+
cam = blk.attention.self.get_attn().detach()
|
161 |
+
cam = avg_heads(cam, grad)
|
162 |
+
joint = apply_self_attention_rules(R, cam)
|
163 |
+
R += joint
|
164 |
+
return R[:, 0, 1:-1]
|
165 |
+
|
BERT_explainability/NewExplanationGenerator.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import glob
|
5 |
+
|
6 |
+
from captum._utils.common import _get_module_from_name
|
7 |
+
|
8 |
+
# compute rollout between attention layers
|
9 |
+
def compute_rollout_attention(all_layer_matrices, start_layer=0):
|
10 |
+
# adding residual consideration- code adapted from https://github.com/samiraabnar/attention_flow
|
11 |
+
num_tokens = all_layer_matrices[0].shape[1]
|
12 |
+
batch_size = all_layer_matrices[0].shape[0]
|
13 |
+
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
|
14 |
+
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
|
15 |
+
matrices_aug = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
|
16 |
+
for i in range(len(all_layer_matrices))]
|
17 |
+
joint_attention = matrices_aug[start_layer]
|
18 |
+
for i in range(start_layer+1, len(matrices_aug)):
|
19 |
+
joint_attention = matrices_aug[i].bmm(joint_attention)
|
20 |
+
return joint_attention
|
21 |
+
|
22 |
+
class Generator:
|
23 |
+
def __init__(self, model, key="bert.encoder.layer"):
|
24 |
+
self.model = model
|
25 |
+
self.key = key
|
26 |
+
self.model.eval()
|
27 |
+
|
28 |
+
def forward(self, input_ids, attention_mask):
|
29 |
+
return self.model(input_ids, attention_mask)
|
30 |
+
|
31 |
+
def _build_one_hot(self, output, index):
|
32 |
+
if index == None:
|
33 |
+
index = np.argmax(output.cpu().data.numpy(), axis=-1)
|
34 |
+
|
35 |
+
one_hot = np.zeros((1, output.size()[-1]), dtype=np.float32)
|
36 |
+
one_hot[0, index] = 1
|
37 |
+
one_hot_vector = one_hot
|
38 |
+
one_hot = torch.from_numpy(one_hot).requires_grad_(True).to(output.device)
|
39 |
+
one_hot = torch.sum(one_hot * output)
|
40 |
+
|
41 |
+
return one_hot, one_hot_vector
|
42 |
+
|
43 |
+
def generate_LRP(self, input_ids, attention_mask,
|
44 |
+
index=None, start_layer=11):
|
45 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
46 |
+
kwargs = {"alpha": 1}
|
47 |
+
|
48 |
+
one_hot, one_hot_vector = self._build_one_hot(output, index)
|
49 |
+
self.model.zero_grad()
|
50 |
+
one_hot.backward(retain_graph=True)
|
51 |
+
|
52 |
+
self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs)
|
53 |
+
|
54 |
+
cams = []
|
55 |
+
blocks = _get_module_from_name(self.model, self.key)
|
56 |
+
for blk in blocks:
|
57 |
+
grad = blk.attention.self.get_attn_gradients()
|
58 |
+
cam = blk.attention.self.get_attn_cam()
|
59 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
60 |
+
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
|
61 |
+
cam = grad * cam
|
62 |
+
cam = cam.clamp(min=0).mean(dim=0)
|
63 |
+
cams.append(cam.unsqueeze(0))
|
64 |
+
rollout = compute_rollout_attention(cams, start_layer=start_layer)
|
65 |
+
rollout[:, 0, 0] = rollout[:, 0].min()
|
66 |
+
return rollout[:, 0]
|
67 |
+
|
68 |
+
def generate_LRP_last_layer(self, input_ids, attention_mask,
|
69 |
+
index=None):
|
70 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
71 |
+
kwargs = {"alpha": 1}
|
72 |
+
|
73 |
+
one_hot, one_hot_vector = self._build_one_hot(output, index)
|
74 |
+
|
75 |
+
self.model.zero_grad()
|
76 |
+
one_hot.backward(retain_graph=True)
|
77 |
+
|
78 |
+
self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs)
|
79 |
+
|
80 |
+
cam = _get_module_from_name(self.model, self.key)[-1].attention.self.get_attn_cam()[0]
|
81 |
+
cam = cam.clamp(min=0).mean(dim=0).unsqueeze(0)
|
82 |
+
cam[:, 0, 0] = 0
|
83 |
+
return cam[:, 0]
|
84 |
+
|
85 |
+
def generate_full_lrp(self, input_ids, attention_mask,
|
86 |
+
index=None):
|
87 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
88 |
+
kwargs = {"alpha": 1}
|
89 |
+
|
90 |
+
one_hot, one_hot_vector = self._build_one_hot(output, index)
|
91 |
+
|
92 |
+
self.model.zero_grad()
|
93 |
+
one_hot.backward(retain_graph=True)
|
94 |
+
|
95 |
+
cam = self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs)
|
96 |
+
cam = cam.sum(dim=2)
|
97 |
+
cam[:, 0] = 0
|
98 |
+
return cam
|
99 |
+
|
100 |
+
def generate_attn_last_layer(self, input_ids, attention_mask,
|
101 |
+
index=None):
|
102 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
103 |
+
cam = _get_module_from_name(self.model, self.key)[-1].attention.self.get_attn()[0]
|
104 |
+
cam = cam.mean(dim=0).unsqueeze(0)
|
105 |
+
cam[:, 0, 0] = 0
|
106 |
+
return cam[:, 0]
|
107 |
+
|
108 |
+
def generate_rollout(self, input_ids, attention_mask, start_layer=0, index=None):
|
109 |
+
self.model.zero_grad()
|
110 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
111 |
+
blocks = _get_module_from_name(self.model, self.key)
|
112 |
+
all_layer_attentions = []
|
113 |
+
for blk in blocks:
|
114 |
+
attn_heads = blk.attention.self.get_attn()
|
115 |
+
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach()
|
116 |
+
all_layer_attentions.append(avg_heads)
|
117 |
+
rollout = compute_rollout_attention(all_layer_attentions, start_layer=start_layer)
|
118 |
+
rollout[:, 0, 0] = 0
|
119 |
+
return rollout[:, 0]
|
120 |
+
|
121 |
+
def generate_attn_gradcam(self, input_ids, attention_mask, index=None):
|
122 |
+
output = self.model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
123 |
+
kwargs = {"alpha": 1}
|
124 |
+
|
125 |
+
if index == None:
|
126 |
+
index = np.argmax(output.cpu().data.numpy(), axis=-1)
|
127 |
+
|
128 |
+
one_hot, one_hot_vector = self._build_one_hot(output, index)
|
129 |
+
|
130 |
+
self.model.zero_grad()
|
131 |
+
one_hot.backward(retain_graph=True)
|
132 |
+
|
133 |
+
self.model.relprop(torch.tensor(one_hot_vector).to(input_ids.device), **kwargs)
|
134 |
+
|
135 |
+
cam = _get_module_from_name(self.model, self.key)[-1].attention.self.get_attn()
|
136 |
+
grad = _get_module_from_name(self.model, self.key)[-1].attention.self.get_attn_gradients()
|
137 |
+
|
138 |
+
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
|
139 |
+
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
|
140 |
+
grad = grad.mean(dim=[1, 2], keepdim=True)
|
141 |
+
cam = (cam * grad).mean(0).clamp(min=0).unsqueeze(0)
|
142 |
+
cam = (cam - cam.min()) / (cam.max() - cam.min())
|
143 |
+
cam[:, 0, 0] = 0
|
144 |
+
return cam[:, 0]
|
145 |
+
|
BERT_explainability/RobertaForSequenceClassification.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertPreTrainedModel
|
2 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
3 |
+
from transformers.utils import logging
|
4 |
+
from BERT_explainability.modules.layers_ours import *
|
5 |
+
from BERT_explainability.modules.BERT.BERT import BertModel
|
6 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
7 |
+
import torch.nn as nn
|
8 |
+
from typing import List, Any
|
9 |
+
import torch
|
10 |
+
from BERT_rationale_benchmark.models.model_utils import PaddedSequence
|
11 |
+
|
12 |
+
|
13 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__(config)
|
16 |
+
self.num_labels = config.num_labels
|
17 |
+
|
18 |
+
self.bert = BertModel(config)
|
19 |
+
self.dropout = Dropout(config.hidden_dropout_prob)
|
20 |
+
self.classifier = Linear(config.hidden_size, config.num_labels)
|
21 |
+
|
22 |
+
self.init_weights()
|
23 |
+
|
24 |
+
def forward(
|
25 |
+
self,
|
26 |
+
input_ids=None,
|
27 |
+
attention_mask=None,
|
28 |
+
token_type_ids=None,
|
29 |
+
position_ids=None,
|
30 |
+
head_mask=None,
|
31 |
+
inputs_embeds=None,
|
32 |
+
labels=None,
|
33 |
+
output_attentions=None,
|
34 |
+
output_hidden_states=None,
|
35 |
+
return_dict=None,
|
36 |
+
):
|
37 |
+
r"""
|
38 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
39 |
+
Labels for computing the sequence classification/regression loss.
|
40 |
+
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
|
41 |
+
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
42 |
+
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
43 |
+
"""
|
44 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
45 |
+
|
46 |
+
outputs = self.bert(
|
47 |
+
input_ids,
|
48 |
+
attention_mask=attention_mask,
|
49 |
+
token_type_ids=token_type_ids,
|
50 |
+
position_ids=position_ids,
|
51 |
+
head_mask=head_mask,
|
52 |
+
inputs_embeds=inputs_embeds,
|
53 |
+
output_attentions=output_attentions,
|
54 |
+
output_hidden_states=output_hidden_states,
|
55 |
+
return_dict=return_dict,
|
56 |
+
)
|
57 |
+
|
58 |
+
pooled_output = outputs[1]
|
59 |
+
|
60 |
+
pooled_output = self.dropout(pooled_output)
|
61 |
+
logits = self.classifier(pooled_output)
|
62 |
+
|
63 |
+
loss = None
|
64 |
+
if labels is not None:
|
65 |
+
if self.num_labels == 1:
|
66 |
+
# We are doing regression
|
67 |
+
loss_fct = MSELoss()
|
68 |
+
loss = loss_fct(logits.view(-1), labels.view(-1))
|
69 |
+
else:
|
70 |
+
loss_fct = CrossEntropyLoss()
|
71 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
72 |
+
|
73 |
+
if not return_dict:
|
74 |
+
output = (logits,) + outputs[2:]
|
75 |
+
return ((loss,) + output) if loss is not None else output
|
76 |
+
|
77 |
+
return SequenceClassifierOutput(
|
78 |
+
loss=loss,
|
79 |
+
logits=logits,
|
80 |
+
hidden_states=outputs.hidden_states,
|
81 |
+
attentions=outputs.attentions,
|
82 |
+
)
|
83 |
+
|
84 |
+
def relprop(self, cam=None, **kwargs):
|
85 |
+
cam = self.classifier.relprop(cam, **kwargs)
|
86 |
+
cam = self.dropout.relprop(cam, **kwargs)
|
87 |
+
cam = self.bert.relprop(cam, **kwargs)
|
88 |
+
# print("conservation: ", cam.sum())
|
89 |
+
return cam
|
90 |
+
|
91 |
+
|
92 |
+
# this is the actual classifier we will be using
|
93 |
+
class BertClassifier(nn.Module):
|
94 |
+
"""Thin wrapper around BertForSequenceClassification"""
|
95 |
+
|
96 |
+
def __init__(self,
|
97 |
+
bert_dir: str,
|
98 |
+
pad_token_id: int,
|
99 |
+
cls_token_id: int,
|
100 |
+
sep_token_id: int,
|
101 |
+
num_labels: int,
|
102 |
+
max_length: int = 512,
|
103 |
+
use_half_precision=True):
|
104 |
+
super(BertClassifier, self).__init__()
|
105 |
+
bert = BertForSequenceClassification.from_pretrained(bert_dir, num_labels=num_labels)
|
106 |
+
if use_half_precision:
|
107 |
+
import apex
|
108 |
+
bert = bert.half()
|
109 |
+
self.bert = bert
|
110 |
+
self.pad_token_id = pad_token_id
|
111 |
+
self.cls_token_id = cls_token_id
|
112 |
+
self.sep_token_id = sep_token_id
|
113 |
+
self.max_length = max_length
|
114 |
+
|
115 |
+
def forward(self,
|
116 |
+
query: List[torch.tensor],
|
117 |
+
docids: List[Any],
|
118 |
+
document_batch: List[torch.tensor]):
|
119 |
+
assert len(query) == len(document_batch)
|
120 |
+
print(query)
|
121 |
+
# note about device management:
|
122 |
+
# since distributed training is enabled, the inputs to this module can be on *any* device (preferably cpu, since we wrap and unwrap the module)
|
123 |
+
# we want to keep these params on the input device (assuming CPU) for as long as possible for cheap memory access
|
124 |
+
target_device = next(self.parameters()).device
|
125 |
+
cls_token = torch.tensor([self.cls_token_id]).to(device=document_batch[0].device)
|
126 |
+
sep_token = torch.tensor([self.sep_token_id]).to(device=document_batch[0].device)
|
127 |
+
input_tensors = []
|
128 |
+
position_ids = []
|
129 |
+
for q, d in zip(query, document_batch):
|
130 |
+
if len(q) + len(d) + 2 > self.max_length:
|
131 |
+
d = d[:(self.max_length - len(q) - 2)]
|
132 |
+
input_tensors.append(torch.cat([cls_token, q, sep_token, d]))
|
133 |
+
position_ids.append(torch.tensor(list(range(0, len(q) + 1)) + list(range(0, len(d) + 1))))
|
134 |
+
bert_input = PaddedSequence.autopad(input_tensors, batch_first=True, padding_value=self.pad_token_id,
|
135 |
+
device=target_device)
|
136 |
+
positions = PaddedSequence.autopad(position_ids, batch_first=True, padding_value=0, device=target_device)
|
137 |
+
(classes,) = self.bert(bert_input.data,
|
138 |
+
attention_mask=bert_input.mask(on=0.0, off=float('-inf'), device=target_device),
|
139 |
+
position_ids=positions.data)
|
140 |
+
assert torch.all(classes == classes) # for nans
|
141 |
+
|
142 |
+
print(input_tensors[0])
|
143 |
+
print(self.relprop()[0])
|
144 |
+
|
145 |
+
return classes
|
146 |
+
|
147 |
+
def relprop(self, cam=None, **kwargs):
|
148 |
+
return self.bert.relprop(cam, **kwargs)
|
149 |
+
|
150 |
+
|
151 |
+
if __name__ == '__main__':
|
152 |
+
from transformers import BertTokenizer
|
153 |
+
import os
|
154 |
+
|
155 |
+
class Config:
|
156 |
+
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, num_labels,
|
157 |
+
hidden_dropout_prob):
|
158 |
+
self.hidden_size = hidden_size
|
159 |
+
self.num_attention_heads = num_attention_heads
|
160 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
161 |
+
self.num_labels = num_labels
|
162 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
163 |
+
|
164 |
+
|
165 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
166 |
+
x = tokenizer.encode_plus("In this movie the acting is great. The movie is perfect! [sep]",
|
167 |
+
add_special_tokens=True,
|
168 |
+
max_length=512,
|
169 |
+
return_token_type_ids=False,
|
170 |
+
return_attention_mask=True,
|
171 |
+
pad_to_max_length=True,
|
172 |
+
return_tensors='pt',
|
173 |
+
truncation=True)
|
174 |
+
|
175 |
+
print(x['input_ids'])
|
176 |
+
|
177 |
+
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
178 |
+
model_save_file = os.path.join('./BERT_explainability/output_bert/movies/classifier/', 'classifier.pt')
|
179 |
+
model.load_state_dict(torch.load(model_save_file))
|
180 |
+
|
181 |
+
# x = torch.randint(100, (2, 20))
|
182 |
+
# x = torch.tensor([[101, 2054, 2003, 1996, 15792, 1997, 2023, 3319, 1029, 102,
|
183 |
+
# 101, 4079, 102, 101, 6732, 102, 101, 2643, 102, 101,
|
184 |
+
# 2038, 102, 101, 1037, 102, 101, 2933, 102, 101, 2005,
|
185 |
+
# 102, 101, 2032, 102, 101, 1010, 102, 101, 1037, 102,
|
186 |
+
# 101, 3800, 102, 101, 2005, 102, 101, 2010, 102, 101,
|
187 |
+
# 2166, 102, 101, 1010, 102, 101, 1998, 102, 101, 2010,
|
188 |
+
# 102, 101, 4650, 102, 101, 1010, 102, 101, 2002, 102,
|
189 |
+
# 101, 2074, 102, 101, 2515, 102, 101, 1050, 102, 101,
|
190 |
+
# 1005, 102, 101, 1056, 102, 101, 2113, 102, 101, 2054,
|
191 |
+
# 102, 101, 1012, 102]])
|
192 |
+
# x.requires_grad_()
|
193 |
+
|
194 |
+
model.eval()
|
195 |
+
|
196 |
+
y = model(x['input_ids'], x['attention_mask'])
|
197 |
+
print(y)
|
198 |
+
|
199 |
+
cam, _ = model.relprop()
|
200 |
+
|
201 |
+
#print(cam.shape)
|
202 |
+
|
203 |
+
cam = cam.sum(-1)
|
204 |
+
#print(cam)
|
BERT_explainability/roberta2.py
ADDED
@@ -0,0 +1,1596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch RoBERTa model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from packaging import version
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from transformers.activations import ACT2FN, gelu
|
28 |
+
from transformers.modeling_outputs import (
|
29 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
31 |
+
CausalLMOutputWithCrossAttentions,
|
32 |
+
MaskedLMOutput,
|
33 |
+
MultipleChoiceModelOutput,
|
34 |
+
QuestionAnsweringModelOutput,
|
35 |
+
SequenceClassifierOutput,
|
36 |
+
TokenClassifierOutput,
|
37 |
+
)
|
38 |
+
from transformers.modeling_utils import PreTrainedModel
|
39 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
40 |
+
from transformers.utils import (
|
41 |
+
add_code_sample_docstrings,
|
42 |
+
add_start_docstrings,
|
43 |
+
add_start_docstrings_to_model_forward,
|
44 |
+
logging,
|
45 |
+
replace_return_docstrings,
|
46 |
+
)
|
47 |
+
from transformers.models.roberta.configuration_roberta import RobertaConfig
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
_CHECKPOINT_FOR_DOC = "roberta-base"
|
53 |
+
_CONFIG_FOR_DOC = "RobertaConfig"
|
54 |
+
_TOKENIZER_FOR_DOC = "RobertaTokenizer"
|
55 |
+
|
56 |
+
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
57 |
+
"roberta-base",
|
58 |
+
"roberta-large",
|
59 |
+
"roberta-large-mnli",
|
60 |
+
"distilroberta-base",
|
61 |
+
"roberta-base-openai-detector",
|
62 |
+
"roberta-large-openai-detector",
|
63 |
+
# See all RoBERTa models at https://huggingface.co/models?filter=roberta
|
64 |
+
]
|
65 |
+
|
66 |
+
|
67 |
+
class RobertaEmbeddings(nn.Module):
|
68 |
+
"""
|
69 |
+
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
70 |
+
"""
|
71 |
+
|
72 |
+
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
|
73 |
+
def __init__(self, config):
|
74 |
+
super().__init__()
|
75 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
76 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
77 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
78 |
+
|
79 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
80 |
+
# any TensorFlow checkpoint file
|
81 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
82 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
83 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
84 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
85 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
86 |
+
if version.parse(torch.__version__) > version.parse("1.6.0"):
|
87 |
+
self.register_buffer(
|
88 |
+
"token_type_ids",
|
89 |
+
torch.zeros(self.position_ids.size(), dtype=torch.long),
|
90 |
+
persistent=False,
|
91 |
+
)
|
92 |
+
|
93 |
+
# End copy
|
94 |
+
self.padding_idx = config.pad_token_id
|
95 |
+
self.position_embeddings = nn.Embedding(
|
96 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
97 |
+
)
|
98 |
+
|
99 |
+
def forward(
|
100 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
101 |
+
):
|
102 |
+
if position_ids is None:
|
103 |
+
if input_ids is not None:
|
104 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
105 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
106 |
+
else:
|
107 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
108 |
+
|
109 |
+
if input_ids is not None:
|
110 |
+
input_shape = input_ids.size()
|
111 |
+
else:
|
112 |
+
input_shape = inputs_embeds.size()[:-1]
|
113 |
+
|
114 |
+
seq_length = input_shape[1]
|
115 |
+
|
116 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
117 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
118 |
+
# issue #5664
|
119 |
+
if token_type_ids is None:
|
120 |
+
if hasattr(self, "token_type_ids"):
|
121 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
122 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
123 |
+
token_type_ids = buffered_token_type_ids_expanded
|
124 |
+
else:
|
125 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
126 |
+
|
127 |
+
if inputs_embeds is None:
|
128 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
129 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
130 |
+
|
131 |
+
embeddings = inputs_embeds + token_type_embeddings
|
132 |
+
if self.position_embedding_type == "absolute":
|
133 |
+
position_embeddings = self.position_embeddings(position_ids)
|
134 |
+
embeddings += position_embeddings
|
135 |
+
embeddings = self.LayerNorm(embeddings)
|
136 |
+
embeddings = self.dropout(embeddings)
|
137 |
+
return embeddings
|
138 |
+
|
139 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
140 |
+
"""
|
141 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
inputs_embeds: torch.Tensor
|
145 |
+
|
146 |
+
Returns: torch.Tensor
|
147 |
+
"""
|
148 |
+
input_shape = inputs_embeds.size()[:-1]
|
149 |
+
sequence_length = input_shape[1]
|
150 |
+
|
151 |
+
position_ids = torch.arange(
|
152 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
153 |
+
)
|
154 |
+
return position_ids.unsqueeze(0).expand(input_shape)
|
155 |
+
|
156 |
+
|
157 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Roberta
|
158 |
+
class RobertaSelfAttention(nn.Module):
|
159 |
+
def __init__(self, config, position_embedding_type=None):
|
160 |
+
super().__init__()
|
161 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
162 |
+
raise ValueError(
|
163 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
164 |
+
f"heads ({config.num_attention_heads})"
|
165 |
+
)
|
166 |
+
|
167 |
+
self.num_attention_heads = config.num_attention_heads
|
168 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
169 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
170 |
+
|
171 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
172 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
173 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
174 |
+
|
175 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
176 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
177 |
+
config, "position_embedding_type", "absolute"
|
178 |
+
)
|
179 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
180 |
+
self.max_position_embeddings = config.max_position_embeddings
|
181 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
182 |
+
|
183 |
+
self.is_decoder = config.is_decoder
|
184 |
+
|
185 |
+
def get_attn(self):
|
186 |
+
return self.attn
|
187 |
+
|
188 |
+
def save_attn(self, attn):
|
189 |
+
self.attn = attn
|
190 |
+
|
191 |
+
def save_attn_cam(self, cam):
|
192 |
+
self.attn_cam = cam
|
193 |
+
|
194 |
+
def get_attn_cam(self):
|
195 |
+
return self.attn_cam
|
196 |
+
|
197 |
+
def save_attn_gradients(self, attn_gradients):
|
198 |
+
self.attn_gradients = attn_gradients
|
199 |
+
|
200 |
+
def get_attn_gradients(self):
|
201 |
+
return self.attn_gradients
|
202 |
+
|
203 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
204 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
205 |
+
x = x.view(new_x_shape)
|
206 |
+
return x.permute(0, 2, 1, 3)
|
207 |
+
|
208 |
+
def forward(
|
209 |
+
self,
|
210 |
+
hidden_states: torch.Tensor,
|
211 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
212 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
213 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
214 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
215 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
216 |
+
output_attentions: Optional[bool] = False,
|
217 |
+
) -> Tuple[torch.Tensor]:
|
218 |
+
mixed_query_layer = self.query(hidden_states)
|
219 |
+
|
220 |
+
# If this is instantiated as a cross-attention module, the keys
|
221 |
+
# and values come from an encoder; the attention mask needs to be
|
222 |
+
# such that the encoder's padding tokens are not attended to.
|
223 |
+
is_cross_attention = encoder_hidden_states is not None
|
224 |
+
|
225 |
+
if is_cross_attention and past_key_value is not None:
|
226 |
+
# reuse k,v, cross_attentions
|
227 |
+
key_layer = past_key_value[0]
|
228 |
+
value_layer = past_key_value[1]
|
229 |
+
attention_mask = encoder_attention_mask
|
230 |
+
elif is_cross_attention:
|
231 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
232 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
233 |
+
attention_mask = encoder_attention_mask
|
234 |
+
elif past_key_value is not None:
|
235 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
236 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
237 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
238 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
239 |
+
else:
|
240 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
241 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
242 |
+
|
243 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
244 |
+
|
245 |
+
if self.is_decoder:
|
246 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
247 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
248 |
+
# key/value_states (first "if" case)
|
249 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
250 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
251 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
252 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
253 |
+
past_key_value = (key_layer, value_layer)
|
254 |
+
|
255 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
256 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
257 |
+
|
258 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
259 |
+
seq_length = hidden_states.size()[1]
|
260 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
261 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
262 |
+
distance = position_ids_l - position_ids_r
|
263 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
264 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
265 |
+
|
266 |
+
if self.position_embedding_type == "relative_key":
|
267 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
268 |
+
attention_scores = attention_scores + relative_position_scores
|
269 |
+
elif self.position_embedding_type == "relative_key_query":
|
270 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
271 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
272 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
273 |
+
|
274 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
275 |
+
if attention_mask is not None:
|
276 |
+
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
|
277 |
+
attention_scores = attention_scores + attention_mask
|
278 |
+
|
279 |
+
# Normalize the attention scores to probabilities.
|
280 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
281 |
+
|
282 |
+
self.save_attn(attention_probs)
|
283 |
+
attention_probs.register_hook(self.save_attn_gradients)
|
284 |
+
|
285 |
+
# This is actually dropping out entire tokens to attend to, which might
|
286 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
287 |
+
attention_probs = self.dropout(attention_probs)
|
288 |
+
|
289 |
+
# Mask heads if we want to
|
290 |
+
if head_mask is not None:
|
291 |
+
attention_probs = attention_probs * head_mask
|
292 |
+
|
293 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
294 |
+
|
295 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
296 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
297 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
298 |
+
|
299 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
300 |
+
|
301 |
+
if self.is_decoder:
|
302 |
+
outputs = outputs + (past_key_value,)
|
303 |
+
return outputs
|
304 |
+
|
305 |
+
|
306 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
307 |
+
class RobertaSelfOutput(nn.Module):
|
308 |
+
def __init__(self, config):
|
309 |
+
super().__init__()
|
310 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
311 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
312 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
313 |
+
|
314 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
315 |
+
hidden_states = self.dense(hidden_states)
|
316 |
+
hidden_states = self.dropout(hidden_states)
|
317 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
318 |
+
return hidden_states
|
319 |
+
|
320 |
+
|
321 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Roberta
|
322 |
+
class RobertaAttention(nn.Module):
|
323 |
+
def __init__(self, config, position_embedding_type=None):
|
324 |
+
super().__init__()
|
325 |
+
self.self = RobertaSelfAttention(config, position_embedding_type=position_embedding_type)
|
326 |
+
self.output = RobertaSelfOutput(config)
|
327 |
+
self.pruned_heads = set()
|
328 |
+
|
329 |
+
def prune_heads(self, heads):
|
330 |
+
if len(heads) == 0:
|
331 |
+
return
|
332 |
+
heads, index = find_pruneable_heads_and_indices(
|
333 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
334 |
+
)
|
335 |
+
|
336 |
+
# Prune linear layers
|
337 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
338 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
339 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
340 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
341 |
+
|
342 |
+
# Update hyper params and store pruned heads
|
343 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
344 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
345 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
346 |
+
|
347 |
+
def forward(
|
348 |
+
self,
|
349 |
+
hidden_states: torch.Tensor,
|
350 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
351 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
352 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
353 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
354 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
355 |
+
output_attentions: Optional[bool] = False,
|
356 |
+
) -> Tuple[torch.Tensor]:
|
357 |
+
self_outputs = self.self(
|
358 |
+
hidden_states,
|
359 |
+
attention_mask,
|
360 |
+
head_mask,
|
361 |
+
encoder_hidden_states,
|
362 |
+
encoder_attention_mask,
|
363 |
+
past_key_value,
|
364 |
+
output_attentions,
|
365 |
+
)
|
366 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
367 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
368 |
+
return outputs
|
369 |
+
|
370 |
+
|
371 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
372 |
+
class RobertaIntermediate(nn.Module):
|
373 |
+
def __init__(self, config):
|
374 |
+
super().__init__()
|
375 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
376 |
+
if isinstance(config.hidden_act, str):
|
377 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
378 |
+
else:
|
379 |
+
self.intermediate_act_fn = config.hidden_act
|
380 |
+
|
381 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
382 |
+
hidden_states = self.dense(hidden_states)
|
383 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
384 |
+
return hidden_states
|
385 |
+
|
386 |
+
|
387 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
388 |
+
class RobertaOutput(nn.Module):
|
389 |
+
def __init__(self, config):
|
390 |
+
super().__init__()
|
391 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
392 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
393 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
394 |
+
|
395 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
396 |
+
hidden_states = self.dense(hidden_states)
|
397 |
+
hidden_states = self.dropout(hidden_states)
|
398 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
399 |
+
return hidden_states
|
400 |
+
|
401 |
+
|
402 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Roberta
|
403 |
+
class RobertaLayer(nn.Module):
|
404 |
+
def __init__(self, config):
|
405 |
+
super().__init__()
|
406 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
407 |
+
self.seq_len_dim = 1
|
408 |
+
self.attention = RobertaAttention(config)
|
409 |
+
self.is_decoder = config.is_decoder
|
410 |
+
self.add_cross_attention = config.add_cross_attention
|
411 |
+
if self.add_cross_attention:
|
412 |
+
if not self.is_decoder:
|
413 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
414 |
+
self.crossattention = RobertaAttention(config, position_embedding_type="absolute")
|
415 |
+
self.intermediate = RobertaIntermediate(config)
|
416 |
+
self.output = RobertaOutput(config)
|
417 |
+
|
418 |
+
def forward(
|
419 |
+
self,
|
420 |
+
hidden_states: torch.Tensor,
|
421 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
422 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
423 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
424 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
425 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
426 |
+
output_attentions: Optional[bool] = False,
|
427 |
+
) -> Tuple[torch.Tensor]:
|
428 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
429 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
430 |
+
self_attention_outputs = self.attention(
|
431 |
+
hidden_states,
|
432 |
+
attention_mask,
|
433 |
+
head_mask,
|
434 |
+
output_attentions=output_attentions,
|
435 |
+
past_key_value=self_attn_past_key_value,
|
436 |
+
)
|
437 |
+
attention_output = self_attention_outputs[0]
|
438 |
+
|
439 |
+
# if decoder, the last output is tuple of self-attn cache
|
440 |
+
if self.is_decoder:
|
441 |
+
outputs = self_attention_outputs[1:-1]
|
442 |
+
present_key_value = self_attention_outputs[-1]
|
443 |
+
else:
|
444 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
445 |
+
|
446 |
+
cross_attn_present_key_value = None
|
447 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
448 |
+
if not hasattr(self, "crossattention"):
|
449 |
+
raise ValueError(
|
450 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
451 |
+
" by setting `config.add_cross_attention=True`"
|
452 |
+
)
|
453 |
+
|
454 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
455 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
456 |
+
cross_attention_outputs = self.crossattention(
|
457 |
+
attention_output,
|
458 |
+
attention_mask,
|
459 |
+
head_mask,
|
460 |
+
encoder_hidden_states,
|
461 |
+
encoder_attention_mask,
|
462 |
+
cross_attn_past_key_value,
|
463 |
+
output_attentions,
|
464 |
+
)
|
465 |
+
attention_output = cross_attention_outputs[0]
|
466 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
467 |
+
|
468 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
469 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
470 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
471 |
+
|
472 |
+
layer_output = apply_chunking_to_forward(
|
473 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
474 |
+
)
|
475 |
+
outputs = (layer_output,) + outputs
|
476 |
+
|
477 |
+
# if decoder, return the attn key/values as the last output
|
478 |
+
if self.is_decoder:
|
479 |
+
outputs = outputs + (present_key_value,)
|
480 |
+
|
481 |
+
return outputs
|
482 |
+
|
483 |
+
def feed_forward_chunk(self, attention_output):
|
484 |
+
intermediate_output = self.intermediate(attention_output)
|
485 |
+
layer_output = self.output(intermediate_output, attention_output)
|
486 |
+
return layer_output
|
487 |
+
|
488 |
+
|
489 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Roberta
|
490 |
+
class RobertaEncoder(nn.Module):
|
491 |
+
def __init__(self, config):
|
492 |
+
super().__init__()
|
493 |
+
self.config = config
|
494 |
+
self.layer = nn.ModuleList([RobertaLayer(config) for _ in range(config.num_hidden_layers)])
|
495 |
+
self.gradient_checkpointing = False
|
496 |
+
|
497 |
+
def forward(
|
498 |
+
self,
|
499 |
+
hidden_states: torch.Tensor,
|
500 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
501 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
502 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
503 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
504 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
505 |
+
use_cache: Optional[bool] = None,
|
506 |
+
output_attentions: Optional[bool] = False,
|
507 |
+
output_hidden_states: Optional[bool] = False,
|
508 |
+
return_dict: Optional[bool] = True,
|
509 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
510 |
+
all_hidden_states = () if output_hidden_states else None
|
511 |
+
all_self_attentions = () if output_attentions else None
|
512 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
513 |
+
|
514 |
+
next_decoder_cache = () if use_cache else None
|
515 |
+
for i, layer_module in enumerate(self.layer):
|
516 |
+
if output_hidden_states:
|
517 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
518 |
+
|
519 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
520 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
521 |
+
|
522 |
+
if self.gradient_checkpointing and self.training:
|
523 |
+
|
524 |
+
if use_cache:
|
525 |
+
logger.warning(
|
526 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
527 |
+
)
|
528 |
+
use_cache = False
|
529 |
+
|
530 |
+
def create_custom_forward(module):
|
531 |
+
def custom_forward(*inputs):
|
532 |
+
return module(*inputs, past_key_value, output_attentions)
|
533 |
+
|
534 |
+
return custom_forward
|
535 |
+
|
536 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
537 |
+
create_custom_forward(layer_module),
|
538 |
+
hidden_states,
|
539 |
+
attention_mask,
|
540 |
+
layer_head_mask,
|
541 |
+
encoder_hidden_states,
|
542 |
+
encoder_attention_mask,
|
543 |
+
)
|
544 |
+
else:
|
545 |
+
layer_outputs = layer_module(
|
546 |
+
hidden_states,
|
547 |
+
attention_mask,
|
548 |
+
layer_head_mask,
|
549 |
+
encoder_hidden_states,
|
550 |
+
encoder_attention_mask,
|
551 |
+
past_key_value,
|
552 |
+
output_attentions,
|
553 |
+
)
|
554 |
+
|
555 |
+
hidden_states = layer_outputs[0]
|
556 |
+
if use_cache:
|
557 |
+
next_decoder_cache += (layer_outputs[-1],)
|
558 |
+
if output_attentions:
|
559 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
560 |
+
if self.config.add_cross_attention:
|
561 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
562 |
+
|
563 |
+
if output_hidden_states:
|
564 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
565 |
+
|
566 |
+
if not return_dict:
|
567 |
+
return tuple(
|
568 |
+
v
|
569 |
+
for v in [
|
570 |
+
hidden_states,
|
571 |
+
next_decoder_cache,
|
572 |
+
all_hidden_states,
|
573 |
+
all_self_attentions,
|
574 |
+
all_cross_attentions,
|
575 |
+
]
|
576 |
+
if v is not None
|
577 |
+
)
|
578 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
579 |
+
last_hidden_state=hidden_states,
|
580 |
+
past_key_values=next_decoder_cache,
|
581 |
+
hidden_states=all_hidden_states,
|
582 |
+
attentions=all_self_attentions,
|
583 |
+
cross_attentions=all_cross_attentions,
|
584 |
+
)
|
585 |
+
|
586 |
+
|
587 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
588 |
+
class RobertaPooler(nn.Module):
|
589 |
+
def __init__(self, config):
|
590 |
+
super().__init__()
|
591 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
592 |
+
self.activation = nn.Tanh()
|
593 |
+
|
594 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
595 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
596 |
+
# to the first token.
|
597 |
+
first_token_tensor = hidden_states[:, 0]
|
598 |
+
pooled_output = self.dense(first_token_tensor)
|
599 |
+
pooled_output = self.activation(pooled_output)
|
600 |
+
return pooled_output
|
601 |
+
|
602 |
+
|
603 |
+
class RobertaPreTrainedModel(PreTrainedModel):
|
604 |
+
"""
|
605 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
606 |
+
models.
|
607 |
+
"""
|
608 |
+
|
609 |
+
config_class = RobertaConfig
|
610 |
+
base_model_prefix = "roberta"
|
611 |
+
supports_gradient_checkpointing = True
|
612 |
+
|
613 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
614 |
+
def _init_weights(self, module):
|
615 |
+
"""Initialize the weights"""
|
616 |
+
if isinstance(module, nn.Linear):
|
617 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
618 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
619 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
620 |
+
if module.bias is not None:
|
621 |
+
module.bias.data.zero_()
|
622 |
+
elif isinstance(module, nn.Embedding):
|
623 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
624 |
+
if module.padding_idx is not None:
|
625 |
+
module.weight.data[module.padding_idx].zero_()
|
626 |
+
elif isinstance(module, nn.LayerNorm):
|
627 |
+
module.bias.data.zero_()
|
628 |
+
module.weight.data.fill_(1.0)
|
629 |
+
|
630 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
631 |
+
if isinstance(module, RobertaEncoder):
|
632 |
+
module.gradient_checkpointing = value
|
633 |
+
|
634 |
+
def update_keys_to_ignore(self, config, del_keys_to_ignore):
|
635 |
+
"""Remove some keys from ignore list"""
|
636 |
+
if not config.tie_word_embeddings:
|
637 |
+
# must make a new list, or the class variable gets modified!
|
638 |
+
self._keys_to_ignore_on_save = [k for k in self._keys_to_ignore_on_save if k not in del_keys_to_ignore]
|
639 |
+
self._keys_to_ignore_on_load_missing = [
|
640 |
+
k for k in self._keys_to_ignore_on_load_missing if k not in del_keys_to_ignore
|
641 |
+
]
|
642 |
+
|
643 |
+
|
644 |
+
ROBERTA_START_DOCSTRING = r"""
|
645 |
+
|
646 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
647 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
648 |
+
etc.)
|
649 |
+
|
650 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
651 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
652 |
+
and behavior.
|
653 |
+
|
654 |
+
Parameters:
|
655 |
+
config ([`RobertaConfig`]): Model configuration class with all the parameters of the
|
656 |
+
model. Initializing with a config file does not load the weights associated with the model, only the
|
657 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
658 |
+
"""
|
659 |
+
|
660 |
+
ROBERTA_INPUTS_DOCSTRING = r"""
|
661 |
+
Args:
|
662 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
663 |
+
Indices of input sequence tokens in the vocabulary.
|
664 |
+
|
665 |
+
Indices can be obtained using [`RobertaTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
666 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
667 |
+
|
668 |
+
[What are input IDs?](../glossary#input-ids)
|
669 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
670 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
671 |
+
|
672 |
+
- 1 for tokens that are **not masked**,
|
673 |
+
- 0 for tokens that are **masked**.
|
674 |
+
|
675 |
+
[What are attention masks?](../glossary#attention-mask)
|
676 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
677 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
678 |
+
1]`:
|
679 |
+
|
680 |
+
- 0 corresponds to a *sentence A* token,
|
681 |
+
- 1 corresponds to a *sentence B* token.
|
682 |
+
|
683 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
684 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
685 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
686 |
+
config.max_position_embeddings - 1]`.
|
687 |
+
|
688 |
+
[What are position IDs?](../glossary#position-ids)
|
689 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
690 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
691 |
+
|
692 |
+
- 1 indicates the head is **not masked**,
|
693 |
+
- 0 indicates the head is **masked**.
|
694 |
+
|
695 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
696 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
697 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
698 |
+
model's internal embedding lookup matrix.
|
699 |
+
output_attentions (`bool`, *optional*):
|
700 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
701 |
+
tensors for more detail.
|
702 |
+
output_hidden_states (`bool`, *optional*):
|
703 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
704 |
+
more detail.
|
705 |
+
return_dict (`bool`, *optional*):
|
706 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
707 |
+
"""
|
708 |
+
|
709 |
+
|
710 |
+
@add_start_docstrings(
|
711 |
+
"The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
|
712 |
+
ROBERTA_START_DOCSTRING,
|
713 |
+
)
|
714 |
+
class RobertaModel(RobertaPreTrainedModel):
|
715 |
+
"""
|
716 |
+
|
717 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
718 |
+
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
|
719 |
+
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
720 |
+
Kaiser and Illia Polosukhin.
|
721 |
+
|
722 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
723 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
724 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
725 |
+
|
726 |
+
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
|
727 |
+
|
728 |
+
"""
|
729 |
+
|
730 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
731 |
+
|
732 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.__init__ with Bert->Roberta
|
733 |
+
def __init__(self, config, add_pooling_layer=True):
|
734 |
+
super().__init__(config)
|
735 |
+
self.config = config
|
736 |
+
|
737 |
+
self.embeddings = RobertaEmbeddings(config)
|
738 |
+
self.encoder = RobertaEncoder(config)
|
739 |
+
|
740 |
+
self.pooler = RobertaPooler(config) if add_pooling_layer else None
|
741 |
+
|
742 |
+
# Initialize weights and apply final processing
|
743 |
+
self.post_init()
|
744 |
+
|
745 |
+
def get_input_embeddings(self):
|
746 |
+
return self.embeddings.word_embeddings
|
747 |
+
|
748 |
+
def set_input_embeddings(self, value):
|
749 |
+
self.embeddings.word_embeddings = value
|
750 |
+
|
751 |
+
def _prune_heads(self, heads_to_prune):
|
752 |
+
"""
|
753 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
754 |
+
class PreTrainedModel
|
755 |
+
"""
|
756 |
+
for layer, heads in heads_to_prune.items():
|
757 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
758 |
+
|
759 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
760 |
+
@add_code_sample_docstrings(
|
761 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
762 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
763 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
764 |
+
config_class=_CONFIG_FOR_DOC,
|
765 |
+
)
|
766 |
+
# Copied from transformers.models.bert.modeling_bert.BertModel.forward
|
767 |
+
def forward(
|
768 |
+
self,
|
769 |
+
input_ids: Optional[torch.Tensor] = None,
|
770 |
+
attention_mask: Optional[torch.Tensor] = None,
|
771 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
772 |
+
position_ids: Optional[torch.Tensor] = None,
|
773 |
+
head_mask: Optional[torch.Tensor] = None,
|
774 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
775 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
776 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
777 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
778 |
+
use_cache: Optional[bool] = None,
|
779 |
+
output_attentions: Optional[bool] = None,
|
780 |
+
output_hidden_states: Optional[bool] = None,
|
781 |
+
return_dict: Optional[bool] = None,
|
782 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
783 |
+
r"""
|
784 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
785 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
786 |
+
the model is configured as a decoder.
|
787 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
788 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
789 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
790 |
+
|
791 |
+
- 1 for tokens that are **not masked**,
|
792 |
+
- 0 for tokens that are **masked**.
|
793 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
794 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
795 |
+
|
796 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
797 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
798 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
799 |
+
use_cache (`bool`, *optional*):
|
800 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
801 |
+
`past_key_values`).
|
802 |
+
"""
|
803 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
804 |
+
output_hidden_states = (
|
805 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
806 |
+
)
|
807 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
808 |
+
|
809 |
+
if self.config.is_decoder:
|
810 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
811 |
+
else:
|
812 |
+
use_cache = False
|
813 |
+
|
814 |
+
if input_ids is not None and inputs_embeds is not None:
|
815 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
816 |
+
elif input_ids is not None:
|
817 |
+
input_shape = input_ids.size()
|
818 |
+
elif inputs_embeds is not None:
|
819 |
+
input_shape = inputs_embeds.size()[:-1]
|
820 |
+
else:
|
821 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
822 |
+
|
823 |
+
batch_size, seq_length = input_shape
|
824 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
825 |
+
|
826 |
+
# past_key_values_length
|
827 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
828 |
+
|
829 |
+
if attention_mask is None:
|
830 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
831 |
+
|
832 |
+
if token_type_ids is None:
|
833 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
834 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
835 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
836 |
+
token_type_ids = buffered_token_type_ids_expanded
|
837 |
+
else:
|
838 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
839 |
+
|
840 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
841 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
842 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
843 |
+
|
844 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
845 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
846 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
847 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
848 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
849 |
+
if encoder_attention_mask is None:
|
850 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
851 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
852 |
+
else:
|
853 |
+
encoder_extended_attention_mask = None
|
854 |
+
|
855 |
+
# Prepare head mask if needed
|
856 |
+
# 1.0 in head_mask indicate we keep the head
|
857 |
+
# attention_probs has shape bsz x n_heads x N x N
|
858 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
859 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
860 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
861 |
+
|
862 |
+
embedding_output = self.embeddings(
|
863 |
+
input_ids=input_ids,
|
864 |
+
position_ids=position_ids,
|
865 |
+
token_type_ids=token_type_ids,
|
866 |
+
inputs_embeds=inputs_embeds,
|
867 |
+
past_key_values_length=past_key_values_length,
|
868 |
+
)
|
869 |
+
encoder_outputs = self.encoder(
|
870 |
+
embedding_output,
|
871 |
+
attention_mask=extended_attention_mask,
|
872 |
+
head_mask=head_mask,
|
873 |
+
encoder_hidden_states=encoder_hidden_states,
|
874 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
875 |
+
past_key_values=past_key_values,
|
876 |
+
use_cache=use_cache,
|
877 |
+
output_attentions=output_attentions,
|
878 |
+
output_hidden_states=output_hidden_states,
|
879 |
+
return_dict=return_dict,
|
880 |
+
)
|
881 |
+
sequence_output = encoder_outputs[0]
|
882 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
883 |
+
|
884 |
+
if not return_dict:
|
885 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
886 |
+
|
887 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
888 |
+
last_hidden_state=sequence_output,
|
889 |
+
pooler_output=pooled_output,
|
890 |
+
past_key_values=encoder_outputs.past_key_values,
|
891 |
+
hidden_states=encoder_outputs.hidden_states,
|
892 |
+
attentions=encoder_outputs.attentions,
|
893 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
894 |
+
)
|
895 |
+
|
896 |
+
|
897 |
+
@add_start_docstrings(
|
898 |
+
"""RoBERTa Model with a `language modeling` head on top for CLM fine-tuning.""", ROBERTA_START_DOCSTRING
|
899 |
+
)
|
900 |
+
class RobertaForCausalLM(RobertaPreTrainedModel):
|
901 |
+
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
902 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
903 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
904 |
+
|
905 |
+
def __init__(self, config):
|
906 |
+
super().__init__(config)
|
907 |
+
|
908 |
+
if not config.is_decoder:
|
909 |
+
logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
|
910 |
+
|
911 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
912 |
+
self.lm_head = RobertaLMHead(config)
|
913 |
+
|
914 |
+
# The LM head weights require special treatment only when they are tied with the word embeddings
|
915 |
+
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
916 |
+
|
917 |
+
# Initialize weights and apply final processing
|
918 |
+
self.post_init()
|
919 |
+
|
920 |
+
def get_output_embeddings(self):
|
921 |
+
return self.lm_head.decoder
|
922 |
+
|
923 |
+
def set_output_embeddings(self, new_embeddings):
|
924 |
+
self.lm_head.decoder = new_embeddings
|
925 |
+
|
926 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
927 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
928 |
+
def forward(
|
929 |
+
self,
|
930 |
+
input_ids: Optional[torch.LongTensor] = None,
|
931 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
932 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
933 |
+
position_ids: Optional[torch.LongTensor] = None,
|
934 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
935 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
936 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
937 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
938 |
+
labels: Optional[torch.LongTensor] = None,
|
939 |
+
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
|
940 |
+
use_cache: Optional[bool] = None,
|
941 |
+
output_attentions: Optional[bool] = None,
|
942 |
+
output_hidden_states: Optional[bool] = None,
|
943 |
+
return_dict: Optional[bool] = None,
|
944 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
945 |
+
r"""
|
946 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
947 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
948 |
+
the model is configured as a decoder.
|
949 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
950 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
951 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
952 |
+
|
953 |
+
- 1 for tokens that are **not masked**,
|
954 |
+
- 0 for tokens that are **masked**.
|
955 |
+
|
956 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
957 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
958 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
959 |
+
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
960 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
961 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
962 |
+
|
963 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
964 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
965 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
966 |
+
use_cache (`bool`, *optional*):
|
967 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
968 |
+
`past_key_values`).
|
969 |
+
|
970 |
+
Returns:
|
971 |
+
|
972 |
+
Example:
|
973 |
+
|
974 |
+
```python
|
975 |
+
>>> from transformers import RobertaTokenizer, RobertaForCausalLM, RobertaConfig
|
976 |
+
>>> import torch
|
977 |
+
|
978 |
+
>>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
979 |
+
>>> config = RobertaConfig.from_pretrained("roberta-base")
|
980 |
+
>>> config.is_decoder = True
|
981 |
+
>>> model = RobertaForCausalLM.from_pretrained("roberta-base", config=config)
|
982 |
+
|
983 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
984 |
+
>>> outputs = model(**inputs)
|
985 |
+
|
986 |
+
>>> prediction_logits = outputs.logits
|
987 |
+
```"""
|
988 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
989 |
+
if labels is not None:
|
990 |
+
use_cache = False
|
991 |
+
|
992 |
+
outputs = self.roberta(
|
993 |
+
input_ids,
|
994 |
+
attention_mask=attention_mask,
|
995 |
+
token_type_ids=token_type_ids,
|
996 |
+
position_ids=position_ids,
|
997 |
+
head_mask=head_mask,
|
998 |
+
inputs_embeds=inputs_embeds,
|
999 |
+
encoder_hidden_states=encoder_hidden_states,
|
1000 |
+
encoder_attention_mask=encoder_attention_mask,
|
1001 |
+
past_key_values=past_key_values,
|
1002 |
+
use_cache=use_cache,
|
1003 |
+
output_attentions=output_attentions,
|
1004 |
+
output_hidden_states=output_hidden_states,
|
1005 |
+
return_dict=return_dict,
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
sequence_output = outputs[0]
|
1009 |
+
prediction_scores = self.lm_head(sequence_output)
|
1010 |
+
|
1011 |
+
lm_loss = None
|
1012 |
+
if labels is not None:
|
1013 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1014 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1015 |
+
labels = labels[:, 1:].contiguous()
|
1016 |
+
loss_fct = CrossEntropyLoss()
|
1017 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1018 |
+
|
1019 |
+
if not return_dict:
|
1020 |
+
output = (prediction_scores,) + outputs[2:]
|
1021 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1022 |
+
|
1023 |
+
return CausalLMOutputWithCrossAttentions(
|
1024 |
+
loss=lm_loss,
|
1025 |
+
logits=prediction_scores,
|
1026 |
+
past_key_values=outputs.past_key_values,
|
1027 |
+
hidden_states=outputs.hidden_states,
|
1028 |
+
attentions=outputs.attentions,
|
1029 |
+
cross_attentions=outputs.cross_attentions,
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
1033 |
+
input_shape = input_ids.shape
|
1034 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1035 |
+
if attention_mask is None:
|
1036 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1037 |
+
|
1038 |
+
# cut decoder_input_ids if past is used
|
1039 |
+
if past is not None:
|
1040 |
+
input_ids = input_ids[:, -1:]
|
1041 |
+
|
1042 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past}
|
1043 |
+
|
1044 |
+
def _reorder_cache(self, past, beam_idx):
|
1045 |
+
reordered_past = ()
|
1046 |
+
for layer_past in past:
|
1047 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1048 |
+
return reordered_past
|
1049 |
+
|
1050 |
+
|
1051 |
+
@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top.""", ROBERTA_START_DOCSTRING)
|
1052 |
+
class RobertaForMaskedLM(RobertaPreTrainedModel):
|
1053 |
+
_keys_to_ignore_on_save = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
1054 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias"]
|
1055 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1056 |
+
|
1057 |
+
def __init__(self, config):
|
1058 |
+
super().__init__(config)
|
1059 |
+
|
1060 |
+
if config.is_decoder:
|
1061 |
+
logger.warning(
|
1062 |
+
"If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
|
1063 |
+
"bi-directional self-attention."
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1067 |
+
self.lm_head = RobertaLMHead(config)
|
1068 |
+
|
1069 |
+
# The LM head weights require special treatment only when they are tied with the word embeddings
|
1070 |
+
self.update_keys_to_ignore(config, ["lm_head.decoder.weight"])
|
1071 |
+
|
1072 |
+
# Initialize weights and apply final processing
|
1073 |
+
self.post_init()
|
1074 |
+
|
1075 |
+
def get_output_embeddings(self):
|
1076 |
+
return self.lm_head.decoder
|
1077 |
+
|
1078 |
+
def set_output_embeddings(self, new_embeddings):
|
1079 |
+
self.lm_head.decoder = new_embeddings
|
1080 |
+
|
1081 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1082 |
+
@add_code_sample_docstrings(
|
1083 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1084 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1085 |
+
output_type=MaskedLMOutput,
|
1086 |
+
config_class=_CONFIG_FOR_DOC,
|
1087 |
+
mask="<mask>",
|
1088 |
+
expected_output="' Paris'",
|
1089 |
+
expected_loss=0.1,
|
1090 |
+
)
|
1091 |
+
def forward(
|
1092 |
+
self,
|
1093 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1094 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1095 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1096 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1097 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1098 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1099 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1100 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1101 |
+
labels: Optional[torch.LongTensor] = None,
|
1102 |
+
output_attentions: Optional[bool] = None,
|
1103 |
+
output_hidden_states: Optional[bool] = None,
|
1104 |
+
return_dict: Optional[bool] = None,
|
1105 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1106 |
+
r"""
|
1107 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1108 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1109 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1110 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1111 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1112 |
+
Used to hide legacy arguments that have been deprecated.
|
1113 |
+
"""
|
1114 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1115 |
+
|
1116 |
+
outputs = self.roberta(
|
1117 |
+
input_ids,
|
1118 |
+
attention_mask=attention_mask,
|
1119 |
+
token_type_ids=token_type_ids,
|
1120 |
+
position_ids=position_ids,
|
1121 |
+
head_mask=head_mask,
|
1122 |
+
inputs_embeds=inputs_embeds,
|
1123 |
+
encoder_hidden_states=encoder_hidden_states,
|
1124 |
+
encoder_attention_mask=encoder_attention_mask,
|
1125 |
+
output_attentions=output_attentions,
|
1126 |
+
output_hidden_states=output_hidden_states,
|
1127 |
+
return_dict=return_dict,
|
1128 |
+
)
|
1129 |
+
sequence_output = outputs[0]
|
1130 |
+
prediction_scores = self.lm_head(sequence_output)
|
1131 |
+
|
1132 |
+
masked_lm_loss = None
|
1133 |
+
if labels is not None:
|
1134 |
+
loss_fct = CrossEntropyLoss()
|
1135 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1136 |
+
|
1137 |
+
if not return_dict:
|
1138 |
+
output = (prediction_scores,) + outputs[2:]
|
1139 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1140 |
+
|
1141 |
+
return MaskedLMOutput(
|
1142 |
+
loss=masked_lm_loss,
|
1143 |
+
logits=prediction_scores,
|
1144 |
+
hidden_states=outputs.hidden_states,
|
1145 |
+
attentions=outputs.attentions,
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
|
1149 |
+
class RobertaLMHead(nn.Module):
|
1150 |
+
"""Roberta Head for masked language modeling."""
|
1151 |
+
|
1152 |
+
def __init__(self, config):
|
1153 |
+
super().__init__()
|
1154 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1155 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1156 |
+
|
1157 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
1158 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1159 |
+
self.decoder.bias = self.bias
|
1160 |
+
|
1161 |
+
def forward(self, features, **kwargs):
|
1162 |
+
x = self.dense(features)
|
1163 |
+
x = gelu(x)
|
1164 |
+
x = self.layer_norm(x)
|
1165 |
+
|
1166 |
+
# project back to size of vocabulary with bias
|
1167 |
+
x = self.decoder(x)
|
1168 |
+
|
1169 |
+
return x
|
1170 |
+
|
1171 |
+
def _tie_weights(self):
|
1172 |
+
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
|
1173 |
+
self.bias = self.decoder.bias
|
1174 |
+
|
1175 |
+
|
1176 |
+
@add_start_docstrings(
|
1177 |
+
"""
|
1178 |
+
RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1179 |
+
pooled output) e.g. for GLUE tasks.
|
1180 |
+
""",
|
1181 |
+
ROBERTA_START_DOCSTRING,
|
1182 |
+
)
|
1183 |
+
class RobertaForSequenceClassification(RobertaPreTrainedModel):
|
1184 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1185 |
+
|
1186 |
+
def __init__(self, config):
|
1187 |
+
super().__init__(config)
|
1188 |
+
self.num_labels = config.num_labels
|
1189 |
+
self.config = config
|
1190 |
+
|
1191 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1192 |
+
self.classifier = RobertaClassificationHead(config)
|
1193 |
+
|
1194 |
+
# Initialize weights and apply final processing
|
1195 |
+
self.post_init()
|
1196 |
+
|
1197 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1198 |
+
@add_code_sample_docstrings(
|
1199 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1200 |
+
checkpoint="cardiffnlp/twitter-roberta-base-emotion",
|
1201 |
+
output_type=SequenceClassifierOutput,
|
1202 |
+
config_class=_CONFIG_FOR_DOC,
|
1203 |
+
expected_output="'optimism'",
|
1204 |
+
expected_loss=0.08,
|
1205 |
+
)
|
1206 |
+
def forward(
|
1207 |
+
self,
|
1208 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1209 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1210 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1211 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1212 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1213 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1214 |
+
labels: Optional[torch.LongTensor] = None,
|
1215 |
+
output_attentions: Optional[bool] = None,
|
1216 |
+
output_hidden_states: Optional[bool] = None,
|
1217 |
+
return_dict: Optional[bool] = None,
|
1218 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1219 |
+
r"""
|
1220 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1221 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1222 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1223 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1224 |
+
"""
|
1225 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1226 |
+
|
1227 |
+
outputs = self.roberta(
|
1228 |
+
input_ids,
|
1229 |
+
attention_mask=attention_mask,
|
1230 |
+
token_type_ids=token_type_ids,
|
1231 |
+
position_ids=position_ids,
|
1232 |
+
head_mask=head_mask,
|
1233 |
+
inputs_embeds=inputs_embeds,
|
1234 |
+
output_attentions=output_attentions,
|
1235 |
+
output_hidden_states=output_hidden_states,
|
1236 |
+
return_dict=return_dict,
|
1237 |
+
)
|
1238 |
+
sequence_output = outputs[0]
|
1239 |
+
logits = self.classifier(sequence_output)
|
1240 |
+
|
1241 |
+
loss = None
|
1242 |
+
if labels is not None:
|
1243 |
+
if self.config.problem_type is None:
|
1244 |
+
if self.num_labels == 1:
|
1245 |
+
self.config.problem_type = "regression"
|
1246 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1247 |
+
self.config.problem_type = "single_label_classification"
|
1248 |
+
else:
|
1249 |
+
self.config.problem_type = "multi_label_classification"
|
1250 |
+
|
1251 |
+
if self.config.problem_type == "regression":
|
1252 |
+
loss_fct = MSELoss()
|
1253 |
+
if self.num_labels == 1:
|
1254 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1255 |
+
else:
|
1256 |
+
loss = loss_fct(logits, labels)
|
1257 |
+
elif self.config.problem_type == "single_label_classification":
|
1258 |
+
loss_fct = CrossEntropyLoss()
|
1259 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1260 |
+
elif self.config.problem_type == "multi_label_classification":
|
1261 |
+
loss_fct = BCEWithLogitsLoss()
|
1262 |
+
loss = loss_fct(logits, labels)
|
1263 |
+
|
1264 |
+
if not return_dict:
|
1265 |
+
output = (logits,) + outputs[2:]
|
1266 |
+
return ((loss,) + output) if loss is not None else output
|
1267 |
+
|
1268 |
+
return SequenceClassifierOutput(
|
1269 |
+
loss=loss,
|
1270 |
+
logits=logits,
|
1271 |
+
hidden_states=outputs.hidden_states,
|
1272 |
+
attentions=outputs.attentions,
|
1273 |
+
)
|
1274 |
+
|
1275 |
+
|
1276 |
+
@add_start_docstrings(
|
1277 |
+
"""
|
1278 |
+
Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1279 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1280 |
+
""",
|
1281 |
+
ROBERTA_START_DOCSTRING,
|
1282 |
+
)
|
1283 |
+
class RobertaForMultipleChoice(RobertaPreTrainedModel):
|
1284 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1285 |
+
|
1286 |
+
def __init__(self, config):
|
1287 |
+
super().__init__(config)
|
1288 |
+
|
1289 |
+
self.roberta = RobertaModel(config)
|
1290 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1291 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1292 |
+
|
1293 |
+
# Initialize weights and apply final processing
|
1294 |
+
self.post_init()
|
1295 |
+
|
1296 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
1297 |
+
@add_code_sample_docstrings(
|
1298 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1299 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1300 |
+
output_type=MultipleChoiceModelOutput,
|
1301 |
+
config_class=_CONFIG_FOR_DOC,
|
1302 |
+
)
|
1303 |
+
def forward(
|
1304 |
+
self,
|
1305 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1306 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1307 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1308 |
+
labels: Optional[torch.LongTensor] = None,
|
1309 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1310 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1311 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1312 |
+
output_attentions: Optional[bool] = None,
|
1313 |
+
output_hidden_states: Optional[bool] = None,
|
1314 |
+
return_dict: Optional[bool] = None,
|
1315 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1316 |
+
r"""
|
1317 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1318 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1319 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1320 |
+
`input_ids` above)
|
1321 |
+
"""
|
1322 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1323 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1324 |
+
|
1325 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1326 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1327 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1328 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1329 |
+
flat_inputs_embeds = (
|
1330 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1331 |
+
if inputs_embeds is not None
|
1332 |
+
else None
|
1333 |
+
)
|
1334 |
+
|
1335 |
+
outputs = self.roberta(
|
1336 |
+
flat_input_ids,
|
1337 |
+
position_ids=flat_position_ids,
|
1338 |
+
token_type_ids=flat_token_type_ids,
|
1339 |
+
attention_mask=flat_attention_mask,
|
1340 |
+
head_mask=head_mask,
|
1341 |
+
inputs_embeds=flat_inputs_embeds,
|
1342 |
+
output_attentions=output_attentions,
|
1343 |
+
output_hidden_states=output_hidden_states,
|
1344 |
+
return_dict=return_dict,
|
1345 |
+
)
|
1346 |
+
pooled_output = outputs[1]
|
1347 |
+
|
1348 |
+
pooled_output = self.dropout(pooled_output)
|
1349 |
+
logits = self.classifier(pooled_output)
|
1350 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1351 |
+
|
1352 |
+
loss = None
|
1353 |
+
if labels is not None:
|
1354 |
+
loss_fct = CrossEntropyLoss()
|
1355 |
+
loss = loss_fct(reshaped_logits, labels)
|
1356 |
+
|
1357 |
+
if not return_dict:
|
1358 |
+
output = (reshaped_logits,) + outputs[2:]
|
1359 |
+
return ((loss,) + output) if loss is not None else output
|
1360 |
+
|
1361 |
+
return MultipleChoiceModelOutput(
|
1362 |
+
loss=loss,
|
1363 |
+
logits=reshaped_logits,
|
1364 |
+
hidden_states=outputs.hidden_states,
|
1365 |
+
attentions=outputs.attentions,
|
1366 |
+
)
|
1367 |
+
|
1368 |
+
|
1369 |
+
@add_start_docstrings(
|
1370 |
+
"""
|
1371 |
+
Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1372 |
+
Named-Entity-Recognition (NER) tasks.
|
1373 |
+
""",
|
1374 |
+
ROBERTA_START_DOCSTRING,
|
1375 |
+
)
|
1376 |
+
class RobertaForTokenClassification(RobertaPreTrainedModel):
|
1377 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1378 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1379 |
+
|
1380 |
+
def __init__(self, config):
|
1381 |
+
super().__init__(config)
|
1382 |
+
self.num_labels = config.num_labels
|
1383 |
+
|
1384 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1385 |
+
classifier_dropout = (
|
1386 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1387 |
+
)
|
1388 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1389 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1390 |
+
|
1391 |
+
# Initialize weights and apply final processing
|
1392 |
+
self.post_init()
|
1393 |
+
|
1394 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1395 |
+
@add_code_sample_docstrings(
|
1396 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1397 |
+
checkpoint="Jean-Baptiste/roberta-large-ner-english",
|
1398 |
+
output_type=TokenClassifierOutput,
|
1399 |
+
config_class=_CONFIG_FOR_DOC,
|
1400 |
+
expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
|
1401 |
+
expected_loss=0.01,
|
1402 |
+
)
|
1403 |
+
def forward(
|
1404 |
+
self,
|
1405 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1406 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1407 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1408 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1409 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1410 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1411 |
+
labels: Optional[torch.LongTensor] = None,
|
1412 |
+
output_attentions: Optional[bool] = None,
|
1413 |
+
output_hidden_states: Optional[bool] = None,
|
1414 |
+
return_dict: Optional[bool] = None,
|
1415 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1416 |
+
r"""
|
1417 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1418 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1419 |
+
"""
|
1420 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1421 |
+
|
1422 |
+
outputs = self.roberta(
|
1423 |
+
input_ids,
|
1424 |
+
attention_mask=attention_mask,
|
1425 |
+
token_type_ids=token_type_ids,
|
1426 |
+
position_ids=position_ids,
|
1427 |
+
head_mask=head_mask,
|
1428 |
+
inputs_embeds=inputs_embeds,
|
1429 |
+
output_attentions=output_attentions,
|
1430 |
+
output_hidden_states=output_hidden_states,
|
1431 |
+
return_dict=return_dict,
|
1432 |
+
)
|
1433 |
+
|
1434 |
+
sequence_output = outputs[0]
|
1435 |
+
|
1436 |
+
sequence_output = self.dropout(sequence_output)
|
1437 |
+
logits = self.classifier(sequence_output)
|
1438 |
+
|
1439 |
+
loss = None
|
1440 |
+
if labels is not None:
|
1441 |
+
loss_fct = CrossEntropyLoss()
|
1442 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1443 |
+
|
1444 |
+
if not return_dict:
|
1445 |
+
output = (logits,) + outputs[2:]
|
1446 |
+
return ((loss,) + output) if loss is not None else output
|
1447 |
+
|
1448 |
+
return TokenClassifierOutput(
|
1449 |
+
loss=loss,
|
1450 |
+
logits=logits,
|
1451 |
+
hidden_states=outputs.hidden_states,
|
1452 |
+
attentions=outputs.attentions,
|
1453 |
+
)
|
1454 |
+
|
1455 |
+
|
1456 |
+
class RobertaClassificationHead(nn.Module):
|
1457 |
+
"""Head for sentence-level classification tasks."""
|
1458 |
+
|
1459 |
+
def __init__(self, config):
|
1460 |
+
super().__init__()
|
1461 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1462 |
+
classifier_dropout = (
|
1463 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1464 |
+
)
|
1465 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1466 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
1467 |
+
|
1468 |
+
def forward(self, features, **kwargs):
|
1469 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1470 |
+
x = self.dropout(x)
|
1471 |
+
x = self.dense(x)
|
1472 |
+
x = torch.tanh(x)
|
1473 |
+
x = self.dropout(x)
|
1474 |
+
x = self.out_proj(x)
|
1475 |
+
return x
|
1476 |
+
|
1477 |
+
|
1478 |
+
@add_start_docstrings(
|
1479 |
+
"""
|
1480 |
+
Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1481 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1482 |
+
""",
|
1483 |
+
ROBERTA_START_DOCSTRING,
|
1484 |
+
)
|
1485 |
+
class RobertaForQuestionAnswering(RobertaPreTrainedModel):
|
1486 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1487 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
1488 |
+
|
1489 |
+
def __init__(self, config):
|
1490 |
+
super().__init__(config)
|
1491 |
+
self.num_labels = config.num_labels
|
1492 |
+
|
1493 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
1494 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1495 |
+
|
1496 |
+
# Initialize weights and apply final processing
|
1497 |
+
self.post_init()
|
1498 |
+
|
1499 |
+
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1500 |
+
@add_code_sample_docstrings(
|
1501 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1502 |
+
checkpoint="deepset/roberta-base-squad2",
|
1503 |
+
output_type=QuestionAnsweringModelOutput,
|
1504 |
+
config_class=_CONFIG_FOR_DOC,
|
1505 |
+
expected_output="' puppet'",
|
1506 |
+
expected_loss=0.86,
|
1507 |
+
)
|
1508 |
+
def forward(
|
1509 |
+
self,
|
1510 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1511 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1512 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1513 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1514 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1515 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1516 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1517 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1518 |
+
output_attentions: Optional[bool] = None,
|
1519 |
+
output_hidden_states: Optional[bool] = None,
|
1520 |
+
return_dict: Optional[bool] = None,
|
1521 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1522 |
+
r"""
|
1523 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1524 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1525 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1526 |
+
are not taken into account for computing the loss.
|
1527 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1528 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1529 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1530 |
+
are not taken into account for computing the loss.
|
1531 |
+
"""
|
1532 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1533 |
+
|
1534 |
+
outputs = self.roberta(
|
1535 |
+
input_ids,
|
1536 |
+
attention_mask=attention_mask,
|
1537 |
+
token_type_ids=token_type_ids,
|
1538 |
+
position_ids=position_ids,
|
1539 |
+
head_mask=head_mask,
|
1540 |
+
inputs_embeds=inputs_embeds,
|
1541 |
+
output_attentions=output_attentions,
|
1542 |
+
output_hidden_states=output_hidden_states,
|
1543 |
+
return_dict=return_dict,
|
1544 |
+
)
|
1545 |
+
|
1546 |
+
sequence_output = outputs[0]
|
1547 |
+
|
1548 |
+
logits = self.qa_outputs(sequence_output)
|
1549 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1550 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1551 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1552 |
+
|
1553 |
+
total_loss = None
|
1554 |
+
if start_positions is not None and end_positions is not None:
|
1555 |
+
# If we are on multi-GPU, split add a dimension
|
1556 |
+
if len(start_positions.size()) > 1:
|
1557 |
+
start_positions = start_positions.squeeze(-1)
|
1558 |
+
if len(end_positions.size()) > 1:
|
1559 |
+
end_positions = end_positions.squeeze(-1)
|
1560 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1561 |
+
ignored_index = start_logits.size(1)
|
1562 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1563 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1564 |
+
|
1565 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1566 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1567 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1568 |
+
total_loss = (start_loss + end_loss) / 2
|
1569 |
+
|
1570 |
+
if not return_dict:
|
1571 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1572 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1573 |
+
|
1574 |
+
return QuestionAnsweringModelOutput(
|
1575 |
+
loss=total_loss,
|
1576 |
+
start_logits=start_logits,
|
1577 |
+
end_logits=end_logits,
|
1578 |
+
hidden_states=outputs.hidden_states,
|
1579 |
+
attentions=outputs.attentions,
|
1580 |
+
)
|
1581 |
+
|
1582 |
+
|
1583 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
1584 |
+
"""
|
1585 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
1586 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
1587 |
+
|
1588 |
+
Args:
|
1589 |
+
x: torch.Tensor x:
|
1590 |
+
|
1591 |
+
Returns: torch.Tensor
|
1592 |
+
"""
|
1593 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
1594 |
+
mask = input_ids.ne(padding_idx).int()
|
1595 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
1596 |
+
return incremental_indices.long() + padding_idx
|
BERT_explainability/roberta2.py.rej
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--- modeling_roberta.py 2022-06-28 11:59:19.974278244 +0200
|
2 |
+
+++ roberta2.py 2022-06-28 14:13:05.765050058 +0200
|
3 |
+
@@ -23,14 +23,14 @@
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
6 |
+
|
7 |
+
-from ...activations import ACT2FN, gelu
|
8 |
+
-from ...file_utils import (
|
9 |
+
+from transformers.activations import ACT2FN, gelu
|
10 |
+
+from transformers.file_utils import (
|
11 |
+
add_code_sample_docstrings,
|
12 |
+
add_start_docstrings,
|
13 |
+
add_start_docstrings_to_model_forward,
|
14 |
+
replace_return_docstrings,
|
15 |
+
)
|
16 |
+
-from ...modeling_outputs import (
|
17 |
+
+from transformers.modeling_outputs import (
|
18 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
19 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
20 |
+
CausalLMOutputWithCrossAttentions,
|
21 |
+
@@ -40,14 +40,14 @@
|
22 |
+
SequenceClassifierOutput,
|
23 |
+
TokenClassifierOutput,
|
24 |
+
)
|
25 |
+
-from ...modeling_utils import (
|
26 |
+
+from transformers.modeling_utils import (
|
27 |
+
PreTrainedModel,
|
28 |
+
apply_chunking_to_forward,
|
29 |
+
find_pruneable_heads_and_indices,
|
30 |
+
prune_linear_layer,
|
31 |
+
)
|
32 |
+
-from ...utils import logging
|
33 |
+
-from .configuration_roberta import RobertaConfig
|
34 |
+
+from transformers.utils import logging
|
35 |
+
+from transformers.models.roberta.configuration_roberta import RobertaConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
@@ -183,6 +183,24 @@
|
40 |
+
|
41 |
+
self.is_decoder = config.is_decoder
|
42 |
+
|
43 |
+
+ def get_attn(self):
|
44 |
+
+ return self.attn
|
45 |
+
+
|
46 |
+
+ def save_attn(self, attn):
|
47 |
+
+ self.attn = attn
|
48 |
+
+
|
49 |
+
+ def save_attn_cam(self, cam):
|
50 |
+
+ self.attn_cam = cam
|
51 |
+
+
|
52 |
+
+ def get_attn_cam(self):
|
53 |
+
+ return self.attn_cam
|
54 |
+
+
|
55 |
+
+ def save_attn_gradients(self, attn_gradients):
|
56 |
+
+ self.attn_gradients = attn_gradients
|
57 |
+
+
|
58 |
+
+ def get_attn_gradients(self):
|
59 |
+
+ return self.attn_gradients
|
60 |
+
+
|
61 |
+
def transpose_for_scores(self, x):
|
62 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
63 |
+
x = x.view(*new_x_shape)
|
app.py
CHANGED
@@ -1,7 +1,194 @@
|
|
|
|
1 |
import gradio
|
2 |
|
3 |
-
|
4 |
-
return f"Hello {name}. Check back soon for real content"
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
iface.launch()
|
|
|
1 |
+
import sys
|
2 |
import gradio
|
3 |
|
4 |
+
sys.path.append("BERT_explainability")
|
|
|
5 |
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from BERT_explainability.ExplanationGenerator import Generator
|
9 |
+
from BERT_explainability.roberta2 import RobertaForSequenceClassification
|
10 |
+
from transformers import AutoTokenizer
|
11 |
+
|
12 |
+
from captum.attr import (
|
13 |
+
visualization
|
14 |
+
)
|
15 |
+
import torch
|
16 |
+
|
17 |
+
# from https://discuss.pytorch.org/t/using-scikit-learns-scalers-for-torchvision/53455
|
18 |
+
class PyTMinMaxScalerVectorized(object):
|
19 |
+
"""
|
20 |
+
Transforms each channel to the range [0, 1].
|
21 |
+
"""
|
22 |
+
def __init__(self, dimension=-1):
|
23 |
+
self.d = dimension
|
24 |
+
def __call__(self, tensor):
|
25 |
+
d = self.d
|
26 |
+
scale = 1.0 / (tensor.max(dim=d, keepdim=True)[0] - tensor.min(dim=d, keepdim=True)[0])
|
27 |
+
tensor.mul_(scale).sub_(tensor.min(dim=d, keepdim=True)[0])
|
28 |
+
return tensor
|
29 |
+
|
30 |
+
|
31 |
+
if torch.cuda.is_available():
|
32 |
+
device = torch.device("cuda")
|
33 |
+
else:
|
34 |
+
device = torch.device("cpu")
|
35 |
+
|
36 |
+
model = RobertaForSequenceClassification.from_pretrained("textattack/roberta-base-SST-2").to(device)
|
37 |
+
model.eval()
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-SST-2")
|
39 |
+
# initialize the explanations generator
|
40 |
+
explanations = Generator(model, "roberta")
|
41 |
+
|
42 |
+
classifications = ["NEGATIVE", "POSITIVE"]
|
43 |
+
|
44 |
+
# rule 5 from paper
|
45 |
+
def avg_heads(cam, grad):
|
46 |
+
cam = (
|
47 |
+
(grad * cam)
|
48 |
+
.clamp(min=0)
|
49 |
+
.mean(dim=-3)
|
50 |
+
)
|
51 |
+
# set negative values to 0, then average
|
52 |
+
# cam = cam.clamp(min=0).mean(dim=0)
|
53 |
+
return cam
|
54 |
+
|
55 |
+
# rule 6 from paper
|
56 |
+
def apply_self_attention_rules(R_ss, cam_ss):
|
57 |
+
R_ss_addition = torch.matmul(cam_ss, R_ss)
|
58 |
+
return R_ss_addition
|
59 |
+
|
60 |
+
def generate_relevance(model, input_ids, attention_mask, index=None, start_layer=0):
|
61 |
+
output = model(input_ids=input_ids, attention_mask=attention_mask)[0]
|
62 |
+
if index == None:
|
63 |
+
#index = np.expand_dims(np.arange(input_ids.shape[1])
|
64 |
+
# by default explain the class with the highest score
|
65 |
+
index = output.argmax(axis=-1).detach().cpu().numpy()
|
66 |
+
|
67 |
+
# create a one-hot vector selecting class we want explanations for
|
68 |
+
one_hot = (torch.nn.functional
|
69 |
+
.one_hot(torch.tensor(index, dtype=torch.int64), num_classes=output.size(-1))
|
70 |
+
.to(torch.float)
|
71 |
+
.requires_grad_(True)
|
72 |
+
).to(device)
|
73 |
+
print("ONE_HOT", one_hot.size(), one_hot)
|
74 |
+
one_hot = torch.sum(one_hot * output)
|
75 |
+
model.zero_grad()
|
76 |
+
# create the gradients for the class we're interested in
|
77 |
+
one_hot.backward(retain_graph=True)
|
78 |
+
|
79 |
+
num_tokens = model.roberta.encoder.layer[0].attention.self.get_attn().shape[-1]
|
80 |
+
print(input_ids.size(-1), num_tokens)
|
81 |
+
R = torch.eye(num_tokens).expand(output.size(0), -1, -1).clone().to(device)
|
82 |
+
|
83 |
+
for i, blk in enumerate(model.roberta.encoder.layer):
|
84 |
+
if i < start_layer:
|
85 |
+
continue
|
86 |
+
grad = blk.attention.self.get_attn_gradients()
|
87 |
+
cam = blk.attention.self.get_attn()
|
88 |
+
cam = avg_heads(cam, grad)
|
89 |
+
joint = apply_self_attention_rules(R, cam)
|
90 |
+
R += joint
|
91 |
+
return output, R[:, 0, 1:-1]
|
92 |
+
|
93 |
+
def visualize_text(datarecords, legend=True):
|
94 |
+
dom = ["<table width: 100%>"]
|
95 |
+
rows = [
|
96 |
+
"<tr><th>True Label</th>"
|
97 |
+
"<th>Predicted Label</th>"
|
98 |
+
"<th>Attribution Label</th>"
|
99 |
+
"<th>Attribution Score</th>"
|
100 |
+
"<th>Word Importance</th>"
|
101 |
+
]
|
102 |
+
for datarecord in datarecords:
|
103 |
+
rows.append(
|
104 |
+
"".join(
|
105 |
+
[
|
106 |
+
"<tr>",
|
107 |
+
format_classname(datarecord.true_class),
|
108 |
+
format_classname(
|
109 |
+
"{0} ({1:.2f})".format(
|
110 |
+
datarecord.pred_class, datarecord.pred_prob
|
111 |
+
)
|
112 |
+
),
|
113 |
+
format_classname(datarecord.attr_class),
|
114 |
+
format_classname("{0:.2f}".format(datarecord.attr_score)),
|
115 |
+
format_word_importances(
|
116 |
+
datarecord.raw_input_ids, datarecord.word_attributions
|
117 |
+
),
|
118 |
+
"<tr>",
|
119 |
+
]
|
120 |
+
)
|
121 |
+
)
|
122 |
+
|
123 |
+
if legend:
|
124 |
+
dom.append(
|
125 |
+
'<div style="border-top: 1px solid; margin-top: 5px; \
|
126 |
+
padding-top: 5px; display: inline-block">'
|
127 |
+
)
|
128 |
+
dom.append("<b>Legend: </b>")
|
129 |
+
|
130 |
+
for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]):
|
131 |
+
dom.append(
|
132 |
+
'<span style="display: inline-block; width: 10px; height: 10px; \
|
133 |
+
border: 1px solid; background-color: \
|
134 |
+
{value}"></span> {label} '.format(
|
135 |
+
value=_get_color(value), label=label
|
136 |
+
)
|
137 |
+
)
|
138 |
+
dom.append("</div>")
|
139 |
+
|
140 |
+
dom.append("".join(rows))
|
141 |
+
dom.append("</table>")
|
142 |
+
html = "".join(dom)
|
143 |
+
|
144 |
+
return html
|
145 |
+
|
146 |
+
def show_explanation(model, input_ids, attention_mask, index=None, start_layer=0):
|
147 |
+
# generate an explanation for the input
|
148 |
+
output, expl = generate_relevance(model, input_ids, attention_mask, index=index, start_layer=start_layer)
|
149 |
+
print(output.shape, expl.shape)
|
150 |
+
# normalize scores
|
151 |
+
scaler = PyTMinMaxScalerVectorized()
|
152 |
+
|
153 |
+
norm = scaler(expl)
|
154 |
+
# get the model classification
|
155 |
+
output = torch.nn.functional.softmax(output, dim=-1)
|
156 |
+
|
157 |
+
|
158 |
+
vis_data_records = []
|
159 |
+
for record in range(input_ids.size(0)):
|
160 |
+
classification = output[record].argmax(dim=-1).item()
|
161 |
+
class_name = classifications[classification]
|
162 |
+
nrm = norm[record]
|
163 |
+
|
164 |
+
# if the classification is negative, higher explanation scores are more negative
|
165 |
+
# flip for visualization
|
166 |
+
if class_name == "NEGATIVE":
|
167 |
+
nrm *= (-1)
|
168 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids[record].flatten())[1:0 - ((attention_mask[record] == 0).sum().item() + 1)]
|
169 |
+
print([(tokens[i], nrm[i].item()) for i in range(len(tokens))])
|
170 |
+
vis_data_records.append(visualization.VisualizationDataRecord(
|
171 |
+
nrm,
|
172 |
+
output[record][classification],
|
173 |
+
classification,
|
174 |
+
classification,
|
175 |
+
index,
|
176 |
+
1,
|
177 |
+
tokens,
|
178 |
+
1))
|
179 |
+
return visualize_text(vis_data_records)
|
180 |
+
|
181 |
+
def run(input_text):
|
182 |
+
text_batch = [input_text]
|
183 |
+
encoding = tokenizer(text_batch, return_tensors='pt')
|
184 |
+
input_ids = encoding['input_ids'].to(device)
|
185 |
+
attention_mask = encoding['attention_mask'].to(device)
|
186 |
+
|
187 |
+
# true class is positive - 1
|
188 |
+
true_class = 1
|
189 |
+
|
190 |
+
html = show_explanation(model, input_ids, attention_mask)
|
191 |
+
return html
|
192 |
+
|
193 |
+
iface = gradio.Interface(fn=greet, inputs="text", outputs="html", examples=[["This movie was the best movie I have ever seen! some scenes were ridiculous, but acting was great"], ["I really didn't like this movie. Some of the actors were good, but overall the movie was boring"]])
|
194 |
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pytorch
|
2 |
+
transformers==4.21.2
|
3 |
+
captum
|
4 |
+
|