File size: 5,718 Bytes
936f6fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804519a
936f6fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from basis import ScoreBasis
import librosa
import math
import numpy as np
import pyworld
import pysptk
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
#refer to : https://github.com/chenqi008/pymcd/blob/main/pymcd/mcd.py
class MCD(ScoreBasis):
    def __init__(self):
        super(MCD, self).__init__(name='MCD')
        self.intrusive = False
        # three different modes "plain", "dtw" and "dtw_sl" for the above three MCD metrics 
        self.mcd_toolbox = Calculate_MCD(MCD_mode="plain")

    def windowed_scoring(self, audios, score_rate):
        if len(audios) != 2:
            return None
        return self.mcd_toolbox.calculate_mcd(audios[1], audios[0], score_rate)

# ================================================= #
# calculate the Mel-Cepstral Distortion (MCD) value #
# ================================================= #
#refer to : https://github.com/chenqi008/pymcd/blob/main/pymcd/mcd.py
class Calculate_MCD(object):
    """docstring for Calculate_MCD"""
    def __init__(self, MCD_mode):
        super(Calculate_MCD, self).__init__()
        self.MCD_mode = MCD_mode
        #self.SAMPLING_RATE = 22050
        self.FRAME_PERIOD = 5.0
        self.log_spec_dB_const = 10.0 / math.log(10.0) * math.sqrt(2.0) # 6.141851463713754
	
    def load_wav(self, wav_file, sample_rate):
        """
        Load a wav file with librosa.
        :param wav_file: path to wav file
        :param sr: sampling rate
        :return: audio time series numpy array
        """
        wav, _ = librosa.load(wav_file, sr=sample_rate, mono=True)
        return wav

    # distance metric
    def log_spec_dB_dist(self, x, y):
        # log_spec_dB_const = 10.0 / math.log(10.0) * math.sqrt(2.0)
        diff = x - y
        return self.log_spec_dB_const * math.sqrt(np.inner(diff, diff))

    # calculate distance (metric)
    # def calculate_mcd_distance(self, x, y, distance, path):
    def calculate_mcd_distance(self, x, y, path):
        '''
        param path: pairs between x and y
        '''
        pathx = list(map(lambda l: l[0], path))
        pathy = list(map(lambda l: l[1], path))
        x, y = x[pathx], y[pathy]
        frames_tot = x.shape[0]       # length of pairs

        z = x - y
        min_cost_tot = np.sqrt((z * z).sum(-1)).sum()

        return frames_tot, min_cost_tot

    # extract acoustic features
    # alpha = 0.65  # commonly used at 22050 Hz
    def wav2mcep_numpy(self, loaded_wav, score_rate=22050, alpha=0.65, fft_size=512):

        # Use WORLD vocoder to spectral envelope
        _, sp, _ = pyworld.wav2world(loaded_wav.astype(np.double), fs=score_rate,
                                     frame_period=self.FRAME_PERIOD, fft_size=fft_size)
        # Extract MCEP features
        mcep = pysptk.sptk.mcep(sp, order=13, alpha=alpha, maxiter=0,
                                etype=1, eps=1.0E-8, min_det=0.0, itype=3)

        return mcep

    # calculate the Mel-Cepstral Distortion (MCD) value
    #def average_mcd(self, ref_audio_file, syn_audio_file, cost_function, MCD_mode):
    def average_mcd(self, loaded_ref_wav, loaded_syn_wav, cost_function, MCD_mode, score_rate):
        """
        Calculate the average MCD.
        :param ref_mcep_files: list of strings, paths to MCEP target reference files
        :param synth_mcep_files: list of strings, paths to MCEP converted synthesised files
        :param cost_function: distance metric used
        :param plain: if plain=True, use Dynamic Time Warping (dtw)
        :returns: average MCD, total frames processed
        """
        # load wav from given wav file
        #loaded_ref_wav = self.load_wav(ref_audio_file, sample_rate=self.SAMPLING_RATE)
        #loaded_syn_wav = self.load_wav(syn_audio_file, sample_rate=self.SAMPLING_RATE)

        if MCD_mode == "plain":
            # pad 0
            if len(loaded_ref_wav)<len(loaded_syn_wav):
                loaded_ref_wav = np.pad(loaded_ref_wav, (0, len(loaded_syn_wav)-len(loaded_ref_wav)))
            else:
                loaded_syn_wav = np.pad(loaded_syn_wav, (0, len(loaded_ref_wav)-len(loaded_syn_wav)))

            # extract MCEP features (vectors): 2D matrix (num x mcep_size)
            ref_mcep_vec = self.wav2mcep_numpy(loaded_ref_wav, score_rate)
            syn_mcep_vec = self.wav2mcep_numpy(loaded_syn_wav, score_rate)

            if MCD_mode == "plain":
                # print("Calculate plain MCD ...")
                path = []
                # for i in range(num_temp):
                for i in range(len(ref_mcep_vec)):
                    path.append((i, i))
            elif MCD_mode == "dtw":
                # print("Calculate MCD-dtw ...")
                _, path = fastdtw(ref_mcep_vec[:, 1:], syn_mcep_vec[:, 1:], dist=euclidean)
            elif MCD_mode == "dtw_sl":
                # print("Calculate MCD-dtw-sl ...")
                cof = len(ref_mcep_vec)/len(syn_mcep_vec) if len(ref_mcep_vec)>len(syn_mcep_vec) else len(syn_mcep_vec)/len(ref_mcep_vec)
                _, path = fastdtw(ref_mcep_vec[:, 1:], syn_mcep_vec[:, 1:], dist=euclidean)

            frames_tot, min_cost_tot = self.calculate_mcd_distance(ref_mcep_vec, syn_mcep_vec, path)

            if MCD_mode == "dtw_sl":
                mean_mcd = cof * self.log_spec_dB_const * min_cost_tot / frames_tot
            else:
                mean_mcd = self.log_spec_dB_const * min_cost_tot / frames_tot

            return mean_mcd

    # calculate mcd
    def calculate_mcd(self, reference_audio, synthesized_audio, score_rate):
        # extract acoustic features
        mean_mcd = self.average_mcd(reference_audio, synthesized_audio, self.log_spec_dB_dist, self.MCD_mode, score_rate)

        return mean_mcd