File size: 12,805 Bytes
936f6fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""
Modifications in Metrics

# Original copyright:
# Copyright (c) Facebook, Inc. and its affiliates.
# Demucs (https://github.com/facebookresearch/denoiser) / author: adefossez
"""
import numpy as np
from scipy.linalg import toeplitz

# ----------------------------- HELPERS ------------------------------------ #
def trim_mos(val):
    return min(max(val, 1), 5)

def lpcoeff(speech_frame, model_order):
    # (1) Compute Autocor lags
    winlength = speech_frame.shape[0]
    R = []
    for k in range(model_order + 1):
        first  = speech_frame[:(winlength - k)]
        second = speech_frame[k:winlength]
        R.append(np.sum(first * second))

    # (2) Lev-Durbin
    a = np.ones((model_order,))
    E = np.zeros((model_order + 1,))
    rcoeff = np.zeros((model_order,))
    E[0] = R[0]
    for i in range(model_order):
        if i == 0:
            sum_term = 0
        else:
            a_past = a[:i]
            sum_term = np.sum(a_past * np.array(R[i:0:-1]))
        rcoeff[i] = (R[i+1] - sum_term)/E[i]
        a[i] = rcoeff[i]
        if i > 0:
            a[:i] = a_past[:i] - rcoeff[i] * a_past[::-1]
        E[i+1] = (1-rcoeff[i]*rcoeff[i])*E[i]
    acorr    = np.array(R, dtype=np.float32)
    refcoeff = np.array(rcoeff, dtype=np.float32)
    a = a * -1
    lpparams = np.array([1] + list(a), dtype=np.float32)
    acorr    = np.array(acorr, dtype=np.float32)
    refcoeff = np.array(refcoeff, dtype=np.float32)
    lpparams = np.array(lpparams, dtype=np.float32)

    return acorr, refcoeff, lpparams
# -------------------------------------------------------------------------- #


def SSNR(ref_wav, deg_wav, srate=16000, eps=1e-10):
    """ Segmental Signal-to-Noise Ratio Objective Speech Quality Measure
        This function implements the segmental signal-to-noise ratio
        as defined in [1, p. 45] (see Equation 2.12).
    """
    clean_speech     = ref_wav
    processed_speech = deg_wav
    clean_length     = ref_wav.shape[0]
    processed_length = deg_wav.shape[0]
    
    # scale both to have same dynamic range. Remove DC too.
    clean_speech     -= clean_speech.mean()
    processed_speech -= processed_speech.mean()
    processed_speech *= (np.max(np.abs(clean_speech)) / np.max(np.abs(processed_speech)))
   
    # Signal-to-Noise Ratio 
    dif = ref_wav - deg_wav
    overall_snr = 10 * np.log10(np.sum(ref_wav ** 2) / (np.sum(dif ** 2) +
                                                        10e-20))
    # global variables
    winlength = int(np.round(30 * srate / 1000)) # 30 msecs
    skiprate  = winlength // 4
    MIN_SNR   = -10
    MAX_SNR   = 35

    # For each frame, calculate SSNR
    num_frames    = int(clean_length / skiprate - (winlength/skiprate))
    start         = 0
    time          = np.linspace(1, winlength, winlength) / (winlength + 1)
    window        = 0.5 * (1 - np.cos(2 * np.pi * time))
    segmental_snr = []

    for frame_count in range(int(num_frames)):
        # (1) get the frames for the test and ref speech.
        # Apply Hanning Window
        clean_frame     = clean_speech[start:start+winlength]
        processed_frame = processed_speech[start:start+winlength]
        clean_frame     = clean_frame * window
        processed_frame = processed_frame * window

        # (2) Compute Segmental SNR
        signal_energy = np.sum(clean_frame ** 2)
        noise_energy  = np.sum((clean_frame - processed_frame) ** 2)
        segmental_snr.append(10 * np.log10(signal_energy / (noise_energy + eps)+ eps))
        segmental_snr[-1] = max(segmental_snr[-1], MIN_SNR)
        segmental_snr[-1] = min(segmental_snr[-1], MAX_SNR)
        start += int(skiprate)
    return overall_snr, segmental_snr


def wss(ref_wav, deg_wav, srate):
    clean_speech     = ref_wav
    processed_speech = deg_wav
    clean_length     = ref_wav.shape[0]
    processed_length = deg_wav.shape[0]

    assert clean_length == processed_length, clean_length

    winlength = round(30 * srate / 1000.) # 240 wlen in samples
    skiprate  = np.floor(winlength / 4)
    max_freq  = srate / 2
    num_crit  = 25 # num of critical bands

    USE_FFT_SPECTRUM = 1
    n_fft    = int(2 ** np.ceil(np.log(2*winlength)/np.log(2)))
    n_fftby2 = int(n_fft / 2)
    Kmax     = 20
    Klocmax  = 1

    # Critical band filter definitions (Center frequency and BW in Hz)
    cent_freq = [50., 120, 190, 260, 330, 400, 470, 540, 617.372,
                 703.378, 798.717, 904.128, 1020.38, 1148.30, 
                 1288.72, 1442.54, 1610.70, 1794.16, 1993.93, 
                 2211.08, 2446.71, 2701.97, 2978.04, 3276.17,
                 3597.63]
    bandwidth = [70., 70, 70, 70, 70, 70, 70, 77.3724, 86.0056,
                 95.3398, 105.411, 116.256, 127.914, 140.423, 
                 153.823, 168.154, 183.457, 199.776, 217.153, 
                 235.631, 255.255, 276.072, 298.126, 321.465,
                 346.136]

    bw_min = bandwidth[0] # min critical bandwidth

    # set up critical band filters. Note here that Gaussianly shaped filters
    # are used. Also, the sum of the filter weights are equivalent for each
    # critical band filter. Filter less than -30 dB and set to zero.
    min_factor = np.exp(-30. / (2 * 2.303)) # -30 dB point of filter

    crit_filter = np.zeros((num_crit, n_fftby2))
    all_f0 = []
    for i in range(num_crit):
        f0 = (cent_freq[i] / max_freq) * (n_fftby2)
        all_f0.append(np.floor(f0))
        bw = (bandwidth[i] / max_freq) * (n_fftby2)
        norm_factor = np.log(bw_min) - np.log(bandwidth[i])
        j = list(range(n_fftby2))
        crit_filter[i, :] = np.exp(-11 * (((j - np.floor(f0)) / bw) ** 2) + \
                                   norm_factor)
        crit_filter[i, :] = crit_filter[i, :] * (crit_filter[i, :] > \
                                                 min_factor)

    # For each frame of input speech, compute Weighted Spectral Slope Measure
    num_frames = int(clean_length / skiprate - (winlength / skiprate))
    start = 0 # starting sample
    time = np.linspace(1, winlength, winlength) / (winlength + 1)
    window = 0.5 * (1 - np.cos(2 * np.pi * time))
    distortion = []

    for frame_count in range(num_frames):
        # (1) Get the Frames for the test and reference speeech.
        # Multiply by Hanning window.
        clean_frame = clean_speech[start:start+winlength]
        processed_frame = processed_speech[start:start+winlength]
        clean_frame = clean_frame * window
        processed_frame = processed_frame * window

        # (2) Compuet Power Spectrum of clean and processed
        clean_spec = (np.abs(np.fft.fft(clean_frame, n_fft)) ** 2)
        processed_spec = (np.abs(np.fft.fft(processed_frame, n_fft)) ** 2)
        clean_energy = [None] * num_crit
        processed_energy = [None] * num_crit

        # (3) Compute Filterbank output energies (in dB)
        for i in range(num_crit):
            clean_energy[i] = np.sum(clean_spec[:n_fftby2] * \
                                     crit_filter[i, :])
            processed_energy[i] = np.sum(processed_spec[:n_fftby2] * \
                                         crit_filter[i, :])
        clean_energy = np.array(clean_energy).reshape(-1, 1)
        eps = np.ones((clean_energy.shape[0], 1)) * 1e-10
        clean_energy = np.concatenate((clean_energy, eps), axis=1)
        clean_energy = 10 * np.log10(np.max(clean_energy, axis=1))
        processed_energy = np.array(processed_energy).reshape(-1, 1)
        processed_energy = np.concatenate((processed_energy, eps), axis=1)
        processed_energy = 10 * np.log10(np.max(processed_energy, axis=1))

        # (4) Compute Spectral Shape (dB[i+1] - dB[i])
        clean_slope = clean_energy[1:num_crit] - clean_energy[:num_crit-1]
        processed_slope = processed_energy[1:num_crit] - \
                processed_energy[:num_crit-1]

        # (5) Find the nearest peak locations in the spectra to each
        # critical band. If the slope is negative, we search
        # to the left. If positive, we search to the right.
        clean_loc_peak = []
        processed_loc_peak = []
        for i in range(num_crit - 1):
            if clean_slope[i] > 0:
                # search to the right
                n = i
                while n < num_crit - 1 and clean_slope[n] > 0:
                    n += 1
                clean_loc_peak.append(clean_energy[n - 1])
            else:
                # search to the left
                n = i
                while n >= 0 and clean_slope[n] <= 0:
                    n -= 1
                clean_loc_peak.append(clean_energy[n + 1])
            # find the peaks in the processed speech signal
            if processed_slope[i] > 0:
                n = i
                while n < num_crit - 1 and processed_slope[n] > 0:
                    n += 1
                processed_loc_peak.append(processed_energy[n - 1])
            else:
                n = i
                while n >= 0 and processed_slope[n] <= 0:
                    n -= 1
                processed_loc_peak.append(processed_energy[n + 1])

        # (6) Compuet the WSS Measure for this frame. This includes
        # determination of the weighting functino
        dBMax_clean = max(clean_energy)
        dBMax_processed = max(processed_energy)

        # The weights are calculated by averaging individual
        # weighting factors from the clean and processed frame.
        # These weights W_clean and W_processed should range
        # from 0 to 1 and place more emphasis on spectral 
        # peaks and less emphasis on slope differences in spectral
        # valleys.  This procedure is described on page 1280 of
        # Klatt's 1982 ICASSP paper.
        clean_loc_peak = np.array(clean_loc_peak)
        processed_loc_peak = np.array(processed_loc_peak)
        Wmax_clean = Kmax / (Kmax + dBMax_clean - clean_energy[:num_crit-1])
        Wlocmax_clean = Klocmax / (Klocmax + clean_loc_peak - \
                                   clean_energy[:num_crit-1])
        W_clean = Wmax_clean * Wlocmax_clean
        Wmax_processed = Kmax / (Kmax + dBMax_processed - \
                                processed_energy[:num_crit-1])
        Wlocmax_processed = Klocmax / (Klocmax + processed_loc_peak - \
                                      processed_energy[:num_crit-1])
        W_processed = Wmax_processed * Wlocmax_processed
        W = (W_clean + W_processed) / 2
        distortion.append(np.sum(W * (clean_slope[:num_crit - 1] - \
                                     processed_slope[:num_crit - 1]) ** 2))

        # this normalization is not part of Klatt's paper, but helps
        # to normalize the meaasure. Here we scale the measure by the sum of the
        # weights
        distortion[frame_count] = distortion[frame_count] / np.sum(W)
        start += int(skiprate)
    return distortion


def llr(ref_wav, deg_wav, srate):
    clean_speech = ref_wav
    processed_speech = deg_wav
    clean_length = ref_wav.shape[0]
    processed_length = deg_wav.shape[0]
    assert clean_length == processed_length, clean_length

    winlength = round(30 * srate / 1000.) # 240 wlen in samples
    skiprate = np.floor(winlength / 4)
    if srate < 10000:
        # LPC analysis order
        P = 10
    else:
        P = 16

    # For each frame of input speech, calculate the Log Likelihood Ratio
    num_frames = int(clean_length / skiprate - (winlength / skiprate))
    start = 0
    time = np.linspace(1, winlength, winlength) / (winlength + 1)
    window = 0.5 * (1 - np.cos(2 * np.pi * time))
    distortion = []

    for frame_count in range(num_frames):
        # (1) Get the Frames for the test and reference speeech.
        # Multiply by Hanning window.
        clean_frame = clean_speech[start:start+winlength]
        processed_frame = processed_speech[start:start+winlength]
        clean_frame = clean_frame * window
        processed_frame = processed_frame * window

        # (2) Get the autocorrelation logs and LPC params used
        # to compute the LLR measure
        R_clean, Ref_clean, A_clean = lpcoeff(clean_frame, P)
        R_processed, Ref_processed, A_processed = lpcoeff(processed_frame, P)
        A_clean = A_clean[None, :]
        A_processed = A_processed[None, :]

        # (3) Compute the LLR measure
        numerator = A_processed.dot(toeplitz(R_clean)).dot(A_processed.T)
        denominator = A_clean.dot(toeplitz(R_clean)).dot(A_clean.T)

        if (numerator/denominator) <= 0:
            print(f'Numerator: {numerator}')
            print(f'Denominator: {denominator}')

        log_ = np.log(numerator / denominator)
        distortion.append(np.squeeze(log_))
        start += int(skiprate)
    return np.nan_to_num(np.array(distortion))
# -------------------------------------------------------------------------- #