Spaces:
Running
Running
File size: 1,148 Bytes
936f6fa c07bd3d 936f6fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
from basis import ScoreBasis
import numpy as np
from pesq import pesq
from scores.helper import wss, llr, SSNR, trim_mos
class COVL(ScoreBasis):
def __init__(self):
super(COVL, self).__init__(name='COVL')
self.score_rate = 16000
self.intrusive = False
def windowed_scoring(self, audios, score_rate):
if len(audios) != 2:
return None
return cal_COVL(audios[0], audios[1], score_rate)
def cal_COVL(target_wav, pred_wav, fs):
alpha = 0.95
# Compute WSS measure
wss_dist_vec = wss(target_wav, pred_wav, fs)
wss_dist_vec = sorted(wss_dist_vec, reverse=False)
wss_dist = np.mean(wss_dist_vec[:int(round(len(wss_dist_vec) * alpha))])
# Compute LLR measure
LLR_dist = llr(target_wav, pred_wav, fs)
LLR_dist = sorted(LLR_dist, reverse=False)
LLRs = LLR_dist
LLR_len = round(len(LLR_dist) * alpha)
llr_mean = np.mean(LLRs[:LLR_len])
# Compute the PESQ
pesq_raw = pesq(fs, target_wav, pred_wav, 'wb')
# Covl
Covl = 1.594 + 0.805 * pesq_raw - 0.512 * llr_mean - 0.007 * wss_dist
Covl = trim_mos(Covl)
return Covl
|