File size: 5,889 Bytes
936f6fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
class Metric:
    def __init__(self, name, window, hop=None, verbose=False):
        # the metric operates on some fixed rate only or only on mono ?
        self.fixed_rate = None
        self.mono = False

        # is the metric absolute or relative ?
        self.absolute = False

        # length and hop of windows
        self.window = window
        if hop is None:
            hop = window
        self.hop = hop
        self.name = name
        self.verbose = verbose

    def test_window(self, audios, rate):
        raise NotImplementedError

    def test(self, *test_files, array_rate=None):
        """loading sound files and making sure they all have the same lengths
        (zero-padding to the largest). Also works with numpy arrays.
        Then, calling the `test_window` function that should be specialised
        depending on the metric."""

        # imports
        import soundfile as sf
        import resampy
        from museval.metrics import Framing
        import numpy as np

        audios = []
        maxlen = 0
        if isinstance(test_files, str):
            test_files = [test_files]
        if self.absolute and len(test_files) > 1:
            if self.verbose:
                print('  [%s] is absolute. Processing first file only'
                      % self.name)
            test_files = [test_files[0],]

        for file in test_files:
            # Loading sound file
            if isinstance(file, str):
                audio, rate = sf.read(file, always_2d=True)
            else:
                rate = array_rate
                if rate is None:
                    raise ValueError('Sampling rate needs to be specified '
                                     'when feeding numpy arrays.')
                audio = file
                # Standardize shapes
                if len(audio.shape) == 1:
                    audio = audio[:, None]
                if len(audio.shape) != 2:
                    raise ValueError('Please provide 1D or 2D array, received '
                                     '{}D array'.format(len(audio.shape)))

            if self.fixed_rate is not None and rate != self.fixed_rate:
                if self.verbose:
                    print('  [%s] preferred is %dkHz rate. resampling'
                          % (self.name, self.fixed_rate))
                audio = resampy.resample(audio, rate, self.fixed_rate, axis=0)
                rate = self.fixed_rate
            if self.mono and audio.shape[1] > 1:
                if self.verbose:
                    print('  [%s] only supports mono. Will use first channel'
                          % self.name)
                audio = audio[..., 0, None]
            if self.mono:
                audio = audio[..., 0]
            maxlen = max(maxlen, audio.shape[0])
            audios += [audio]

        for index, audio in enumerate(audios):
            if audio.shape[0] != maxlen:
                new = np.zeros((maxlen,) + audio.shape[1:])
                new[:audio.shape[0]] = audio
                audios[index] = new

        if self.window is not None:
            framer = Framing(self.window * rate,
                             self.hop * rate, maxlen)
            nwin = framer.nwin
            result = {}
            for (t, win) in enumerate(framer):
                result_t = self.test_window([audio[win] for audio in audios],
                                            rate)
                for metric in result_t.keys():
                    if metric not in result.keys():
                        result[metric] = np.empty(nwin)
                    result[metric][t] = result_t[metric]
        else:
            result = self.test_window(audios, rate)
        return result


import absolute
import relative


class MetricsList:
    def __init__(self):
        self.metrics = []

    def __add__(self, metric):
        self.metrics += [metric]
        return self

    def __str__(self):
        return 'Metrics: ' + ' '.join([x.name for x in self.metrics])

    def __call__(self, *files, rate=None):
        result = {}
        for metric in self.metrics:
            result_metric = metric.test(*files, array_rate=rate)
            for name in result_metric.keys():
                result[name] = result_metric[name]
        return result


def load(metrics='', window=2, verbose=False):
    """ Load the desired metrics inside a Metrics object that can then
    be called to compute all the desired metrics.

    Parameters:
    ----------
    metrics: str or list of str
        the metrics matching any of these will be automatically loaded. this
        match is relative to the structure of the speechmetrics package.
        For instance:
        * 'absolute' will match all absolute metrics
        * 'absolute.srmr' or 'srmr' will only match SRMR
        * '' will match all

    window: float
        the window length to use for testing the files.

    verbose: boolean
        will display information during computations

    Returns:
    --------

    A MetricsList object, that can be run to get the desired metrics
    """
    import pkgutil
    import importlib

    result = MetricsList()

    found_modules = []
    iterator = pkgutil.walk_packages(__path__, __name__ + '.')

    if isinstance(metrics, str):
        metrics = [metrics]
    for module_info in iterator:
        if any([metric in module_info.name for metric in metrics]):
            module = importlib.import_module(module_info.name)
            if module not in found_modules:
                found_modules += [module],
                if hasattr(module, 'load'):
                    load_function = getattr(module, 'load')
                    new_metric = load_function(window)
                    new_metric.verbose = verbose
                    result += new_metric
                    print('Loaded ', module_info.name)
    return result