Spaces:
Running
Running
File size: 2,747 Bytes
448e881 a807ea9 d9b4271 14f90e3 5dbcf27 a807ea9 0852a22 5dbcf27 a807ea9 0852a22 b6d4315 a807ea9 c751fd4 a807ea9 6085806 b6d4315 448e881 b6d4315 c751fd4 5dbcf27 a807ea9 5dbcf27 a807ea9 14f90e3 a807ea9 14f90e3 a807ea9 9863595 642bcd2 d3537a9 0852a22 e9812fa a807ea9 e9812fa 0852a22 e9812fa 5dbcf27 82116f7 d9b4271 df9758b 0852a22 df9758b d9b4271 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import streamlit as st
import pandas as pd
import streamlit_common.footer
import streamlit_common.lib as lib
import streamlit_common.locale
mslist_path = "static/middleschool_with_banned.csv"
_ = streamlit_common.locale.get_locale()
def legal_to_checkmark(row: pd.DataFrame) -> pd.DataFrame:
if row["isbanned"]:
row["Legal"] = f"π² {_['legality']['banned'][l]}"
return row
if row["islegal"]:
row["Legal"] = f"β
{_['legality']['legal'][l]}"
return row
row["Legal"] = f"π« {_['legality']['not_legal'][l]}"
return row
if "lang" not in st.session_state:
st.session_state["lang"] = "en"
st.set_page_config(
page_title="Middle School Tutor | Check Card List",
page_icon="favicon.ico",
layout="wide",
)
lang = st.sidebar.radio(
label="Language / θ¨θͺ",
options=["English", "ζ₯ζ¬θͺ"],
index=1 if st.session_state["lang"] == "ja" else 0,
)
st.session_state["lang"] = "ja" if lang == "ζ₯ζ¬θͺ" else "en"
l = st.session_state["lang"]
headcol1, headcol2 = st.columns([1, 7])
headcol1.image("favicon.ico", width=80)
headcol2.write(f"# Middle School Tutor")
st.write(f'## {_["check"]["title"][l]}')
st.write(_["check"]["instructions"][l])
mslist_df = pd.read_csv(mslist_path)
mslist_df.fillna("", inplace=True)
col1, col2 = st.columns(2)
input_list = col1.text_area(
label=f'##### {_["check"]["card_list"][l]}',
placeholder="4 Lightning Bolt\n4 γγΌγ«γ»γ©γ€γγγ³γ°",
height=400,
)
cardnames = []
for line in input_list.split("\n"):
cardname = lib.remove_number_of_copies(line)
if cardname is not None:
cardnames.append(lib.remove_number_of_copies(cardname))
input_cards = pd.DataFrame(cardnames, columns=["cardname"])
input_cards["legalnames"] = input_cards["cardname"].apply(
lib.get_legal_cardnames, args=[mslist_df]
)
input_cards = input_cards.apply(lib.split_names_list, axis=1)
input_cards = input_cards.apply(legal_to_checkmark, axis=1)
if input_cards.shape[0] > 0:
input_cards = input_cards.sort_values(by="Legal", ascending=False)
illegal_cards = 0
if input_cards.shape[0] > 0:
illegal_cards = input_cards[
input_cards["Legal"] != f"β
{_['legality']['legal'][l]}"
].shape[0]
col2.write(
f'##### {_["check"]["illegal_cards_1"][l]}{illegal_cards}{_["check"]["illegal_cards_2"][l]}'
)
if "English" in input_cards and "ζ₯ζ¬θͺ" in input_cards:
col2.dataframe(
input_cards[["Legal", "English", "ζ₯ζ¬θͺ"]],
use_container_width=True,
hide_index=True,
)
if input_cards.shape[0] > 0:
input_cards[input_cards["Legal"] == f"β
{_['legality']['legal'][l]}"].apply(
lib.row_to_button_link, axis=1
)
streamlit_common.footer.write_footer()
|