Spaces:
Running
Running
Alejandro Cremades
commited on
Commit
•
82116f7
1
Parent(s):
d3537a9
Output user input card name on card list check results when not legal
Browse files- pages/1_Check_Card_List.py +7 -4
- streamlit_common/lib.py +31 -11
pages/1_Check_Card_List.py
CHANGED
@@ -35,15 +35,18 @@ for line in input_list.split("\n"):
|
|
35 |
cardnames.append(lib.remove_number_of_copies(cardname))
|
36 |
|
37 |
input_cards = pd.DataFrame(cardnames, columns=["cardname"])
|
38 |
-
input_cards["Legal"] = input_cards["cardname"].apply(
|
39 |
-
lib.is_cardname_legal, args=[mslist_df]
|
40 |
-
)
|
41 |
input_cards["legalnames"] = input_cards["cardname"].apply(
|
42 |
lib.get_legal_cardnames, args=[mslist_df]
|
43 |
)
|
44 |
input_cards = input_cards.apply(lib.split_names_list, axis=1)
|
|
|
45 |
|
46 |
col2.write("##### Middle School legality")
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
streamlit_common.footer.write_footer()
|
|
|
35 |
cardnames.append(lib.remove_number_of_copies(cardname))
|
36 |
|
37 |
input_cards = pd.DataFrame(cardnames, columns=["cardname"])
|
|
|
|
|
|
|
38 |
input_cards["legalnames"] = input_cards["cardname"].apply(
|
39 |
lib.get_legal_cardnames, args=[mslist_df]
|
40 |
)
|
41 |
input_cards = input_cards.apply(lib.split_names_list, axis=1)
|
42 |
+
input_cards = input_cards.apply(lib.legal_to_checkmark, axis=1)
|
43 |
|
44 |
col2.write("##### Middle School legality")
|
45 |
+
if "English" in input_cards and "日本語" in input_cards:
|
46 |
+
col2.dataframe(
|
47 |
+
input_cards[["Legal", "English", "日本語"]],
|
48 |
+
use_container_width=True,
|
49 |
+
hide_index=True,
|
50 |
+
)
|
51 |
|
52 |
streamlit_common.footer.write_footer()
|
streamlit_common/lib.py
CHANGED
@@ -18,24 +18,35 @@ def row_to_link(row: pd.DataFrame) -> None:
|
|
18 |
|
19 |
|
20 |
def get_legal_cardnames(cardname: str, mslist_df: pd.DataFrame) -> list:
|
21 |
-
"""Returns a list with the English and Japanese
|
22 |
-
if there is an exact match, or
|
23 |
"""
|
|
|
|
|
|
|
24 |
english_match = mslist_df[mslist_df["name"].str.lower() == cardname.lower()]
|
25 |
-
cardname_en_list = None
|
26 |
if english_match.shape[0] > 0:
|
|
|
27 |
cardname_en_list = english_match["name"].to_list()
|
28 |
cardname_ja_list = english_match["name_ja"].to_list()
|
29 |
japanese_match = mslist_df[mslist_df["name_ja"] == cardname]
|
30 |
if japanese_match.shape[0] > 0:
|
|
|
31 |
cardname_en_list = japanese_match["name"].to_list()
|
32 |
cardname_ja_list = japanese_match["name_ja"].to_list()
|
33 |
-
if
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
def remove_number_of_copies(line: str) -> str:
|
@@ -57,11 +68,20 @@ def is_cardname_legal(cardname: str, mslist_df: pd.DataFrame) -> bool:
|
|
57 |
return False
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def split_names_list(row: pd.DataFrame):
|
61 |
"""Splits the English and Japanese card names in a list into two different columns"""
|
62 |
if not isinstance(row["legalnames"], list):
|
63 |
return row
|
64 |
-
row["
|
|
|
65 |
if row["legalnames"][1] is not None:
|
66 |
-
row["日本語"] = row["legalnames"][
|
67 |
return row
|
|
|
18 |
|
19 |
|
20 |
def get_legal_cardnames(cardname: str, mslist_df: pd.DataFrame) -> list:
|
21 |
+
"""Returns a list with legality (boolean) plus the English and Japanese
|
22 |
+
names for the card if there is an exact match, or the user's input if there is not.
|
23 |
"""
|
24 |
+
cardname_en_list = []
|
25 |
+
cardname_ja_list = []
|
26 |
+
legal = False
|
27 |
english_match = mslist_df[mslist_df["name"].str.lower() == cardname.lower()]
|
|
|
28 |
if english_match.shape[0] > 0:
|
29 |
+
legal = True
|
30 |
cardname_en_list = english_match["name"].to_list()
|
31 |
cardname_ja_list = english_match["name_ja"].to_list()
|
32 |
japanese_match = mslist_df[mslist_df["name_ja"] == cardname]
|
33 |
if japanese_match.shape[0] > 0:
|
34 |
+
legal = True
|
35 |
cardname_en_list = japanese_match["name"].to_list()
|
36 |
cardname_ja_list = japanese_match["name_ja"].to_list()
|
37 |
+
if len(cardname_en_list) > 0:
|
38 |
+
legalname_en = cardname_en_list[0]
|
39 |
+
else:
|
40 |
+
legalname_en = cardname
|
41 |
+
if len(cardname_ja_list) > 0:
|
42 |
+
legalname_ja = cardname_ja_list[0]
|
43 |
+
else:
|
44 |
+
legalname_ja = cardname
|
45 |
+
return [
|
46 |
+
legal,
|
47 |
+
legalname_en,
|
48 |
+
legalname_ja,
|
49 |
+
]
|
50 |
|
51 |
|
52 |
def remove_number_of_copies(line: str) -> str:
|
|
|
68 |
return False
|
69 |
|
70 |
|
71 |
+
def legal_to_checkmark(row: pd.DataFrame) -> pd.DataFrame:
|
72 |
+
if row["islegal"]:
|
73 |
+
row["Legal"] = "✅"
|
74 |
+
return row
|
75 |
+
row["Legal"] = "🚫"
|
76 |
+
return row
|
77 |
+
|
78 |
+
|
79 |
def split_names_list(row: pd.DataFrame):
|
80 |
"""Splits the English and Japanese card names in a list into two different columns"""
|
81 |
if not isinstance(row["legalnames"], list):
|
82 |
return row
|
83 |
+
row["islegal"] = row["legalnames"][0]
|
84 |
+
row["English"] = row["legalnames"][1]
|
85 |
if row["legalnames"][1] is not None:
|
86 |
+
row["日本語"] = row["legalnames"][2]
|
87 |
return row
|