File size: 5,684 Bytes
6fcd376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from dataclasses import dataclass, field
from typing import Dict, Optional, Sequence
import logging
import os, sys
import copy

import torch
import transformers
from transformers import LlamaForCausalLM, LlamaTokenizer, TextStreamer

from torch.utils.data import Dataset
from transformers import Trainer

import torch
from rich.console import Console
from rich.table import Table
from datetime import datetime
from threading import Thread

sys.path.append(os.path.dirname(__file__))
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from utils.special_tok_llama2 import (
    B_CODE,
    E_CODE,
    B_RESULT,
    E_RESULT,
    B_INST,
    E_INST,
    B_SYS,
    E_SYS,
    DEFAULT_PAD_TOKEN,
    DEFAULT_BOS_TOKEN,
    DEFAULT_EOS_TOKEN,
    DEFAULT_UNK_TOKEN,
    IGNORE_INDEX,
)

from finetuning.conversation_template import (
    json_to_code_result_tok_temp,
    msg_to_code_result_tok_temp,
)

import warnings

warnings.filterwarnings("ignore", category=UserWarning, module="transformers")
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"

console = Console()  # for pretty print


@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default="./output/llama-2-7b-chat-ci")
    load_peft: Optional[bool] = field(default=False)
    peft_model_name_or_path: Optional[str] = field(
        default="./output/llama-2-7b-chat-ci"
    )


def create_peft_config(model):
    from peft import (
        get_peft_model,
        LoraConfig,
        TaskType,
        prepare_model_for_int8_training,
    )

    peft_config = LoraConfig(
        task_type=TaskType.CAUSAL_LM,
        inference_mode=False,
        r=8,
        lora_alpha=32,
        lora_dropout=0.05,
        target_modules=["q_proj", "v_proj"],
    )

    # prepare int-8 model for training
    model = prepare_model_for_int8_training(model)
    model = get_peft_model(model, peft_config)
    model.print_trainable_parameters()
    return model, peft_config


def build_model_from_hf_path(
    hf_base_model_path: str = "./ckpt/llama-2-13b-chat",
    load_peft: Optional[bool] = False,
    peft_model_path: Optional[str] = None,
):
    start_time = datetime.now()

    # build tokenizer
    console.log("[bold cyan]Building tokenizer...[/bold cyan]")
    tokenizer = LlamaTokenizer.from_pretrained(
        hf_base_model_path,
        padding_side="right",
        use_fast=False,
    )

    # Handle special tokens
    console.log("[bold cyan]Handling special tokens...[/bold cyan]")
    special_tokens_dict = dict()
    if tokenizer.pad_token is None:
        special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN  # 32000
    if tokenizer.eos_token is None:
        special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN  # 2
    if tokenizer.bos_token is None:
        special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN  # 1
    if tokenizer.unk_token is None:
        special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN

    tokenizer.add_special_tokens(special_tokens_dict)
    tokenizer.add_tokens(
        [B_CODE, B_RESULT, E_RESULT, B_INST, E_INST, B_SYS, E_SYS],
        special_tokens=True,
    )

    # build model
    console.log("[bold cyan]Building model...[/bold cyan]")
    model = LlamaForCausalLM.from_pretrained(
        hf_base_model_path,
        load_in_4bit=True,
        device_map="auto",
    )

    model.resize_token_embeddings(len(tokenizer))

    if load_peft and (peft_model_path is not None):
        from peft import PeftModel

        model = PeftModel.from_pretrained(model, peft_model_path)
        console.log("[bold green]Peft Model Loaded[/bold green]")

    end_time = datetime.now()
    elapsed_time = end_time - start_time

    # Log time performance
    table = Table(title="Time Performance")
    table.add_column("Task", style="cyan")
    table.add_column("Time Taken", justify="right")
    table.add_row("Loading model", str(elapsed_time))
    console.print(table)

    console.log("[bold green]Model Loaded[/bold green]")
    return {"tokenizer": tokenizer, "model": model}


@torch.inference_mode()
def inference(
    user_input="What is 100th fibo num?",
    max_new_tokens=512,
    do_sample: bool = True,
    use_cache: bool = True,
    top_p: float = 1.0,
    temperature: float = 0.1,
    top_k: int = 50,
    repetition_penalty: float = 1.0,
):
    parser = transformers.HfArgumentParser(ModelArguments)
    model_args = parser.parse_args_into_dataclasses()[0]

    model_dict = build_model_from_hf_path(
        hf_base_model_path=model_args.model_name_or_path,
        load_peft=model_args.load_peft,
        peft_model_path=model_args.peft_model_name_or_path,
    )

    model = model_dict["model"]
    tokenizer = model_dict["tokenizer"]

    streamer = TextStreamer(tokenizer, skip_prompt=True)

    # peft
    # create peft config
    model.eval()

    user_prompt = msg_to_code_result_tok_temp(
        [{"role": "user", "content": f"{user_input}"}]
    )
    # Printing user's content in blue
    console.print("\n" + "-" * 20, style="#808080")
    console.print(f"###User : {user_input}\n", style="blue")

    prompt = f"{user_prompt}\n###Assistant :"
    # prompt = f"{user_input}\n### Assistant : Here is python code to get the 55th fibonacci number {B_CODE}\n"

    inputs = tokenizer([prompt], return_tensors="pt")

    generated_text = model.generate(
        **inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=do_sample,
        top_p=top_p,
        temperature=temperature,
        use_cache=use_cache,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
    )

    return generated_text


if __name__ == "__main__":
    inference(user_input="what is sin(44)?")