File size: 20,119 Bytes
24829a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from pathlib import Path
from typing import Union


class HighwayNetwork(nn.Module):
    def __init__(self, size):
        super().__init__()
        self.W1 = nn.Linear(size, size)
        self.W2 = nn.Linear(size, size)
        self.W1.bias.data.fill_(0.)

    def forward(self, x):
        x1 = self.W1(x)
        x2 = self.W2(x)
        g = torch.sigmoid(x2)
        y = g * F.relu(x1) + (1. - g) * x
        return y


class Encoder(nn.Module):
    def __init__(self, embed_dims, num_chars, encoder_dims, K, num_highways, dropout):
        super().__init__()
        prenet_dims = (encoder_dims, encoder_dims)
        cbhg_channels = encoder_dims
        self.embedding = nn.Embedding(num_chars, embed_dims)
        self.pre_net = PreNet(embed_dims, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1],
                              dropout=dropout)
        self.cbhg = CBHG(K=K, in_channels=cbhg_channels, channels=cbhg_channels,
                         proj_channels=[cbhg_channels, cbhg_channels],
                         num_highways=num_highways)

    def forward(self, x, speaker_embedding=None):
        x = self.embedding(x)
        x = self.pre_net(x)
        x.transpose_(1, 2)
        x = self.cbhg(x)
        if speaker_embedding is not None:
            x = self.add_speaker_embedding(x, speaker_embedding)
        return x

    def add_speaker_embedding(self, x, speaker_embedding):
        # SV2TTS
        # The input x is the encoder output and is a 3D tensor with size (batch_size, num_chars, tts_embed_dims)
        # When training, speaker_embedding is also a 2D tensor with size (batch_size, speaker_embedding_size)
        #     (for inference, speaker_embedding is a 1D tensor with size (speaker_embedding_size))
        # This concats the speaker embedding for each char in the encoder output

        # Save the dimensions as human-readable names
        batch_size = x.size()[0]
        num_chars = x.size()[1]

        if speaker_embedding.dim() == 1:
            idx = 0
        else:
            idx = 1

        # Start by making a copy of each speaker embedding to match the input text length
        # The output of this has size (batch_size, num_chars * tts_embed_dims)
        speaker_embedding_size = speaker_embedding.size()[idx]
        e = speaker_embedding.repeat_interleave(num_chars, dim=idx)

        # Reshape it and transpose
        e = e.reshape(batch_size, speaker_embedding_size, num_chars)
        e = e.transpose(1, 2)

        # Concatenate the tiled speaker embedding with the encoder output
        x = torch.cat((x, e), 2)
        return x


class BatchNormConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel, relu=True):
        super().__init__()
        self.conv = nn.Conv1d(in_channels, out_channels, kernel, stride=1, padding=kernel // 2, bias=False)
        self.bnorm = nn.BatchNorm1d(out_channels)
        self.relu = relu

    def forward(self, x):
        x = self.conv(x)
        x = F.relu(x) if self.relu is True else x
        return self.bnorm(x)


class CBHG(nn.Module):
    def __init__(self, K, in_channels, channels, proj_channels, num_highways):
        super().__init__()

        # List of all rnns to call `flatten_parameters()` on
        self._to_flatten = []

        self.bank_kernels = [i for i in range(1, K + 1)]
        self.conv1d_bank = nn.ModuleList()
        for k in self.bank_kernels:
            conv = BatchNormConv(in_channels, channels, k)
            self.conv1d_bank.append(conv)

        self.maxpool = nn.MaxPool1d(kernel_size=2, stride=1, padding=1)

        self.conv_project1 = BatchNormConv(len(self.bank_kernels) * channels, proj_channels[0], 3)
        self.conv_project2 = BatchNormConv(proj_channels[0], proj_channels[1], 3, relu=False)

        # Fix the highway input if necessary
        if proj_channels[-1] != channels:
            self.highway_mismatch = True
            self.pre_highway = nn.Linear(proj_channels[-1], channels, bias=False)
        else:
            self.highway_mismatch = False

        self.highways = nn.ModuleList()
        for i in range(num_highways):
            hn = HighwayNetwork(channels)
            self.highways.append(hn)

        self.rnn = nn.GRU(channels, channels // 2, batch_first=True, bidirectional=True)
        self._to_flatten.append(self.rnn)

        # Avoid fragmentation of RNN parameters and associated warning
        self._flatten_parameters()

    def forward(self, x):
        # Although we `_flatten_parameters()` on init, when using DataParallel
        # the model gets replicated, making it no longer guaranteed that the
        # weights are contiguous in GPU memory. Hence, we must call it again
        self._flatten_parameters()

        # Save these for later
        residual = x
        seq_len = x.size(-1)
        conv_bank = []

        # Convolution Bank
        for conv in self.conv1d_bank:
            c = conv(x) # Convolution
            conv_bank.append(c[:, :, :seq_len])

        # Stack along the channel axis
        conv_bank = torch.cat(conv_bank, dim=1)

        # dump the last padding to fit residual
        x = self.maxpool(conv_bank)[:, :, :seq_len]

        # Conv1d projections
        x = self.conv_project1(x)
        x = self.conv_project2(x)

        # Residual Connect
        x = x + residual

        # Through the highways
        x = x.transpose(1, 2)
        if self.highway_mismatch is True:
            x = self.pre_highway(x)
        for h in self.highways: x = h(x)

        # And then the RNN
        x, _ = self.rnn(x)
        return x

    def _flatten_parameters(self):
        """Calls `flatten_parameters` on all the rnns used by the WaveRNN. Used
        to improve efficiency and avoid PyTorch yelling at us."""
        [m.flatten_parameters() for m in self._to_flatten]

class PreNet(nn.Module):
    def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
        super().__init__()
        self.fc1 = nn.Linear(in_dims, fc1_dims)
        self.fc2 = nn.Linear(fc1_dims, fc2_dims)
        self.p = dropout

    def forward(self, x):
        x = self.fc1(x)
        x = F.relu(x)
        x = F.dropout(x, self.p, training=True)
        x = self.fc2(x)
        x = F.relu(x)
        x = F.dropout(x, self.p, training=True)
        return x


class Attention(nn.Module):
    def __init__(self, attn_dims):
        super().__init__()
        self.W = nn.Linear(attn_dims, attn_dims, bias=False)
        self.v = nn.Linear(attn_dims, 1, bias=False)

    def forward(self, encoder_seq_proj, query, t):

        # print(encoder_seq_proj.shape)
        # Transform the query vector
        query_proj = self.W(query).unsqueeze(1)

        # Compute the scores
        u = self.v(torch.tanh(encoder_seq_proj + query_proj))
        scores = F.softmax(u, dim=1)

        return scores.transpose(1, 2)


class LSA(nn.Module):
    def __init__(self, attn_dim, kernel_size=31, filters=32):
        super().__init__()
        self.conv = nn.Conv1d(1, filters, padding=(kernel_size - 1) // 2, kernel_size=kernel_size, bias=True)
        self.L = nn.Linear(filters, attn_dim, bias=False)
        self.W = nn.Linear(attn_dim, attn_dim, bias=True) # Include the attention bias in this term
        self.v = nn.Linear(attn_dim, 1, bias=False)
        self.cumulative = None
        self.attention = None

    def init_attention(self, encoder_seq_proj):
        device = next(self.parameters()).device  # use same device as parameters
        b, t, c = encoder_seq_proj.size()
        self.cumulative = torch.zeros(b, t, device=device)
        self.attention = torch.zeros(b, t, device=device)

    def forward(self, encoder_seq_proj, query, t, chars):

        if t == 0: self.init_attention(encoder_seq_proj)

        processed_query = self.W(query).unsqueeze(1)

        location = self.cumulative.unsqueeze(1)
        processed_loc = self.L(self.conv(location).transpose(1, 2))

        u = self.v(torch.tanh(processed_query + encoder_seq_proj + processed_loc))
        u = u.squeeze(-1)

        # Mask zero padding chars
        u = u * (chars != 0).float()

        # Smooth Attention
        # scores = torch.sigmoid(u) / torch.sigmoid(u).sum(dim=1, keepdim=True)
        scores = F.softmax(u, dim=1)
        self.attention = scores
        self.cumulative = self.cumulative + self.attention

        return scores.unsqueeze(-1).transpose(1, 2)


class Decoder(nn.Module):
    # Class variable because its value doesn't change between classes
    # yet ought to be scoped by class because its a property of a Decoder
    max_r = 20
    def __init__(self, n_mels, encoder_dims, decoder_dims, lstm_dims,
                 dropout, speaker_embedding_size):
        super().__init__()
        self.register_buffer("r", torch.tensor(1, dtype=torch.int))
        self.n_mels = n_mels
        prenet_dims = (decoder_dims * 2, decoder_dims * 2)
        self.prenet = PreNet(n_mels, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1],
                             dropout=dropout)
        self.attn_net = LSA(decoder_dims)
        self.attn_rnn = nn.GRUCell(encoder_dims + prenet_dims[1] + speaker_embedding_size, decoder_dims)
        self.rnn_input = nn.Linear(encoder_dims + decoder_dims + speaker_embedding_size, lstm_dims)
        self.res_rnn1 = nn.LSTMCell(lstm_dims, lstm_dims)
        self.res_rnn2 = nn.LSTMCell(lstm_dims, lstm_dims)
        self.mel_proj = nn.Linear(lstm_dims, n_mels * self.max_r, bias=False)
        self.stop_proj = nn.Linear(encoder_dims + speaker_embedding_size + lstm_dims, 1)

    def zoneout(self, prev, current, p=0.1):
        device = next(self.parameters()).device  # Use same device as parameters
        mask = torch.zeros(prev.size(), device=device).bernoulli_(p)
        return prev * mask + current * (1 - mask)

    def forward(self, encoder_seq, encoder_seq_proj, prenet_in,
                hidden_states, cell_states, context_vec, t, chars):

        # Need this for reshaping mels
        batch_size = encoder_seq.size(0)

        # Unpack the hidden and cell states
        attn_hidden, rnn1_hidden, rnn2_hidden = hidden_states
        rnn1_cell, rnn2_cell = cell_states

        # PreNet for the Attention RNN
        prenet_out = self.prenet(prenet_in)

        # Compute the Attention RNN hidden state
        attn_rnn_in = torch.cat([context_vec, prenet_out], dim=-1)
        attn_hidden = self.attn_rnn(attn_rnn_in.squeeze(1), attn_hidden)

        # Compute the attention scores
        scores = self.attn_net(encoder_seq_proj, attn_hidden, t, chars)

        # Dot product to create the context vector
        context_vec = scores @ encoder_seq
        context_vec = context_vec.squeeze(1)

        # Concat Attention RNN output w. Context Vector & project
        x = torch.cat([context_vec, attn_hidden], dim=1)
        x = self.rnn_input(x)

        # Compute first Residual RNN
        rnn1_hidden_next, rnn1_cell = self.res_rnn1(x, (rnn1_hidden, rnn1_cell))
        if self.training:
            rnn1_hidden = self.zoneout(rnn1_hidden, rnn1_hidden_next)
        else:
            rnn1_hidden = rnn1_hidden_next
        x = x + rnn1_hidden

        # Compute second Residual RNN
        rnn2_hidden_next, rnn2_cell = self.res_rnn2(x, (rnn2_hidden, rnn2_cell))
        if self.training:
            rnn2_hidden = self.zoneout(rnn2_hidden, rnn2_hidden_next)
        else:
            rnn2_hidden = rnn2_hidden_next
        x = x + rnn2_hidden

        # Project Mels
        mels = self.mel_proj(x)
        mels = mels.view(batch_size, self.n_mels, self.max_r)[:, :, :self.r]
        hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)
        cell_states = (rnn1_cell, rnn2_cell)

        # Stop token prediction
        s = torch.cat((x, context_vec), dim=1)
        s = self.stop_proj(s)
        stop_tokens = torch.sigmoid(s)

        return mels, scores, hidden_states, cell_states, context_vec, stop_tokens


class Tacotron(nn.Module):
    def __init__(self, embed_dims, num_chars, encoder_dims, decoder_dims, n_mels, 
                 fft_bins, postnet_dims, encoder_K, lstm_dims, postnet_K, num_highways,
                 dropout, stop_threshold, speaker_embedding_size):
        super().__init__()
        self.n_mels = n_mels
        self.lstm_dims = lstm_dims
        self.encoder_dims = encoder_dims
        self.decoder_dims = decoder_dims
        self.speaker_embedding_size = speaker_embedding_size
        self.encoder = Encoder(embed_dims, num_chars, encoder_dims,
                               encoder_K, num_highways, dropout)
        self.encoder_proj = nn.Linear(encoder_dims + speaker_embedding_size, decoder_dims, bias=False)
        self.decoder = Decoder(n_mels, encoder_dims, decoder_dims, lstm_dims,
                               dropout, speaker_embedding_size)
        self.postnet = CBHG(postnet_K, n_mels, postnet_dims,
                            [postnet_dims, fft_bins], num_highways)
        self.post_proj = nn.Linear(postnet_dims, fft_bins, bias=False)

        self.init_model()
        self.num_params()

        self.register_buffer("step", torch.zeros(1, dtype=torch.long))
        self.register_buffer("stop_threshold", torch.tensor(stop_threshold, dtype=torch.float32))

    @property
    def r(self):
        return self.decoder.r.item()

    @r.setter
    def r(self, value):
        self.decoder.r = self.decoder.r.new_tensor(value, requires_grad=False)

    def forward(self, x, m, speaker_embedding):
        device = next(self.parameters()).device  # use same device as parameters

        self.step += 1
        batch_size, _, steps  = m.size()

        # Initialise all hidden states and pack into tuple
        attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device)
        rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
        rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
        hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)

        # Initialise all lstm cell states and pack into tuple
        rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
        rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
        cell_states = (rnn1_cell, rnn2_cell)

        # <GO> Frame for start of decoder loop
        go_frame = torch.zeros(batch_size, self.n_mels, device=device)

        # Need an initial context vector
        context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device)

        # SV2TTS: Run the encoder with the speaker embedding
        # The projection avoids unnecessary matmuls in the decoder loop
        encoder_seq = self.encoder(x, speaker_embedding)
        encoder_seq_proj = self.encoder_proj(encoder_seq)

        # Need a couple of lists for outputs
        mel_outputs, attn_scores, stop_outputs = [], [], []

        # Run the decoder loop
        for t in range(0, steps, self.r):
            prenet_in = m[:, :, t - 1] if t > 0 else go_frame
            mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \
                self.decoder(encoder_seq, encoder_seq_proj, prenet_in,
                             hidden_states, cell_states, context_vec, t, x)
            mel_outputs.append(mel_frames)
            attn_scores.append(scores)
            stop_outputs.extend([stop_tokens] * self.r)

        # Concat the mel outputs into sequence
        mel_outputs = torch.cat(mel_outputs, dim=2)

        # Post-Process for Linear Spectrograms
        postnet_out = self.postnet(mel_outputs)
        linear = self.post_proj(postnet_out)
        linear = linear.transpose(1, 2)

        # For easy visualisation
        attn_scores = torch.cat(attn_scores, 1)
        # attn_scores = attn_scores.cpu().data.numpy()
        stop_outputs = torch.cat(stop_outputs, 1)

        return mel_outputs, linear, attn_scores, stop_outputs

    def generate(self, x, speaker_embedding=None, steps=2000):
        self.eval()
        device = next(self.parameters()).device  # use same device as parameters

        batch_size, _  = x.size()

        # Need to initialise all hidden states and pack into tuple for tidyness
        attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device)
        rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
        rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
        hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)

        # Need to initialise all lstm cell states and pack into tuple for tidyness
        rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
        rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
        cell_states = (rnn1_cell, rnn2_cell)

        # Need a <GO> Frame for start of decoder loop
        go_frame = torch.zeros(batch_size, self.n_mels, device=device)

        # Need an initial context vector
        context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device)

        # SV2TTS: Run the encoder with the speaker embedding
        # The projection avoids unnecessary matmuls in the decoder loop
        encoder_seq = self.encoder(x, speaker_embedding)
        encoder_seq_proj = self.encoder_proj(encoder_seq)

        # Need a couple of lists for outputs
        mel_outputs, attn_scores, stop_outputs = [], [], []

        # Run the decoder loop
        for t in range(0, steps, self.r):
            prenet_in = mel_outputs[-1][:, :, -1] if t > 0 else go_frame
            mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \
            self.decoder(encoder_seq, encoder_seq_proj, prenet_in,
                         hidden_states, cell_states, context_vec, t, x)
            mel_outputs.append(mel_frames)
            attn_scores.append(scores)
            stop_outputs.extend([stop_tokens] * self.r)
            # Stop the loop when all stop tokens in batch exceed threshold
            if (stop_tokens > 0.5).all() and t > 10: break

        # Concat the mel outputs into sequence
        mel_outputs = torch.cat(mel_outputs, dim=2)

        # Post-Process for Linear Spectrograms
        postnet_out = self.postnet(mel_outputs)
        linear = self.post_proj(postnet_out)


        linear = linear.transpose(1, 2)

        # For easy visualisation
        attn_scores = torch.cat(attn_scores, 1)
        stop_outputs = torch.cat(stop_outputs, 1)

        self.train()

        return mel_outputs, linear, attn_scores

    def init_model(self):
        for p in self.parameters():
            if p.dim() > 1: nn.init.xavier_uniform_(p)

    def get_step(self):
        return self.step.data.item()

    def reset_step(self):
        # assignment to parameters or buffers is overloaded, updates internal dict entry
        self.step = self.step.data.new_tensor(1)

    def log(self, path, msg):
        with open(path, "a") as f:
            print(msg, file=f)

    def load(self, path, optimizer=None):
        # Use device of model params as location for loaded state
        device = next(self.parameters()).device
        checkpoint = torch.load(str(path), map_location=device)
        self.load_state_dict(checkpoint["model_state"])

        if "optimizer_state" in checkpoint and optimizer is not None:
            optimizer.load_state_dict(checkpoint["optimizer_state"])

    def save(self, path, optimizer=None):
        if optimizer is not None:
            torch.save({
                "model_state": self.state_dict(),
                "optimizer_state": optimizer.state_dict(),
            }, str(path))
        else:
            torch.save({
                "model_state": self.state_dict(),
            }, str(path))


    def num_params(self, print_out=True):
        parameters = filter(lambda p: p.requires_grad, self.parameters())
        parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
        if print_out:
            print("Trainable Parameters: %.3fM" % parameters)
        return parameters