File size: 4,320 Bytes
0145b71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import math

from collections import namedtuple

import torch
from torch import nn
from torch.nn import functional as F

import torchvision.models.vgg as vgg

from op import fused_leaky_relu


FeatureOutput = namedtuple(
    "FeatureOutput", ["relu1", "relu2", "relu3", "relu4", "relu5"])


def gram_matrix(y):
    (b, ch, h, w) = y.size()
    features = y.view(b, ch, w * h)
    features_t = features.transpose(1, 2)
    gram = features.bmm(features_t) / (ch * h * w)
    return gram


class FeatureExtractor(nn.Module):
    """Reference:
        https://discuss.pytorch.org/t/how-to-extract-features-of-an-image-from-a-trained-model/119/3
    """

    def __init__(self):
        super(FeatureExtractor, self).__init__()
        self.vgg_layers = vgg.vgg19(pretrained=True).features
        self.layer_name_mapping = {
            '3': "relu1",
            '8': "relu2",
            '17': "relu3",
            '26': "relu4",
            '35': "relu5",
        }

    def forward(self, x):
        output = {}
        for name, module in self.vgg_layers._modules.items():
            x = module(x)
            if name in self.layer_name_mapping:
                output[self.layer_name_mapping[name]] = x
        return FeatureOutput(**output)


class StyleEmbedder(nn.Module):
    def __init__(self):
        super(StyleEmbedder, self).__init__()
        self.feature_extractor = FeatureExtractor()
        self.feature_extractor.eval()
        self.avg_pool = torch.nn.AdaptiveAvgPool2d((256, 256))

    def forward(self, img):
        N = img.shape[0]
        features = self.feature_extractor(self.avg_pool(img))

        grams = []
        for feature in features:
            gram = gram_matrix(feature)
            grams.append(gram.view(N, -1))
        out = torch.cat(grams, dim=1)
        return out


class PixelNorm(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)


class EqualLinear(nn.Module):
    def __init__(
        self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
    ):
        super().__init__()

        self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))

        else:
            self.bias = None

        self.activation = activation

        self.scale = (1 / math.sqrt(in_dim)) * lr_mul
        self.lr_mul = lr_mul

    def forward(self, input):
        if self.activation:
            out = F.linear(input, self.weight * self.scale)
            out = fused_leaky_relu(out, self.bias * self.lr_mul)

        else:
            out = F.linear(
                input, self.weight * self.scale, bias=self.bias * self.lr_mul
            )

        return out

    def __repr__(self):
        return (
            f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
        )


class StyleEncoder(nn.Module):
    def __init__(
        self,
        style_dim=512,
        n_mlp=4,
    ):
        super().__init__()

        self.style_dim = style_dim

        e_dim = 610304
        self.embedder = StyleEmbedder()

        layers = []

        layers.append(EqualLinear(e_dim, style_dim, lr_mul=1, activation='fused_lrelu'))
        for i in range(n_mlp - 2):
            layers.append(
                EqualLinear(
                    style_dim, style_dim, lr_mul=1, activation='fused_lrelu'
                )
            )
        layers.append(EqualLinear(style_dim, style_dim, lr_mul=1, activation=None))
        self.embedder_mlp = nn.Sequential(*layers)

    def forward(self, image):
        z_embed = self.embedder_mlp(self.embedder(image))  # [N, 512]
        return z_embed


class Projector(nn.Module):
    def __init__(self, style_dim=512, n_mlp=4):
        super().__init__()

        layers = []
        for i in range(n_mlp - 1):
            layers.append(
                EqualLinear(
                    style_dim, style_dim, lr_mul=1, activation='fused_lrelu'
                )
            )
        layers.append(EqualLinear(style_dim, style_dim, lr_mul=1, activation=None))
        self.projector = nn.Sequential(*layers)

    def forward(self, x):
        return self.projector(x)