AK391 commited on
Commit
0145b71
1 Parent(s): 99116c0
gen_video.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+
4
+ import cv2
5
+ import numpy as np
6
+ import torch
7
+
8
+ from model import Generator
9
+ from psp_encoder.psp_encoders import PSPEncoder
10
+ from utils import ten2cv, cv2ten
11
+
12
+ import glob
13
+ from tqdm import tqdm
14
+ import random
15
+
16
+
17
+ seed = 0
18
+
19
+ random.seed(seed)
20
+ np.random.seed(seed)
21
+ torch.manual_seed(seed)
22
+ torch.cuda.manual_seed_all(seed)
23
+
24
+
25
+ def sigmoid(x, w=1):
26
+ return 1. / (1 + np.exp(-w * x))
27
+
28
+
29
+ def get_alphas(start=-5, end=5, step=0.5, len_tail=10):
30
+ return [0] + [sigmoid(alpha) for alpha in np.arange(start, end, step)] + [1] * len_tail
31
+
32
+
33
+ def slide(entries, margin=32):
34
+ """Returns a sliding reference window.
35
+ Args:
36
+ entries: a list containing two reference images, x_prev and x_next,
37
+ both of which has a shape (1, 3, H, W)
38
+ Returns:
39
+ canvas: output slide of shape (num_frames, 3, H*2, W+margin)
40
+ """
41
+ _, C, H, W = entries[0].shape
42
+ alphas = get_alphas()
43
+ T = len(alphas) # number of frames
44
+
45
+ canvas = - torch.ones((T, C, H*2, W + margin))
46
+ merged = torch.cat(entries, dim=2) # (1, 3, H*2, W)
47
+ for t, alpha in enumerate(alphas):
48
+ top = int(H * (1 - alpha)) # top, bottom for canvas
49
+ bottom = H * 2
50
+ m_top = 0 # top, bottom for merged
51
+ m_bottom = 2 * H - top
52
+ canvas[t, :, top:bottom, :W] = merged[:, :, m_top:m_bottom, :]
53
+ return canvas
54
+
55
+
56
+ def slide_one_window(entries, margin=32):
57
+ """Returns a sliding reference window.
58
+ Args:
59
+ entries: a list containing two reference images, x_prev and x_next,
60
+ both of which has a shape (1, 3, H, W)
61
+ Returns:
62
+ canvas: output slide of shape (num_frames, 3, H, W+margin)
63
+ """
64
+ _, C, H, W = entries[0].shape
65
+ device = entries[0].device
66
+ alphas = get_alphas()
67
+ T = len(alphas) # number of frames
68
+
69
+ canvas = - torch.ones((T, C, H, W + margin)).to(device)
70
+ merged = torch.cat(entries, dim=2) # (1, 3, H*2, W)
71
+ for t, alpha in enumerate(alphas):
72
+ m_top = int(H * alpha) # top, bottom for merged
73
+ m_bottom = m_top + H
74
+ canvas[t, :, :, :W] = merged[:, :, m_top:m_bottom, :]
75
+ return canvas
76
+
77
+
78
+ def tensor2ndarray255(images):
79
+ images = torch.clamp(images * 0.5 + 0.5, 0, 1)
80
+ return (images.cpu().numpy().transpose(0, 2, 3, 1) * 255).astype(np.uint8)
81
+
82
+
83
+ @torch.no_grad()
84
+ def interpolate(args, g, sample_in, sample_style_prev, sample_style_next):
85
+ ''' returns T x C x H x W '''
86
+ frames_ten = []
87
+ alphas = get_alphas()
88
+
89
+ for alpha in alphas:
90
+ sample_style = torch.lerp(sample_style_prev, sample_style_next, alpha)
91
+ frame_ten, _ = g([sample_in], z_embed=sample_style, add_weight_index=args.add_weight_index,
92
+ input_is_latent=True, return_latents=False, randomize_noise=False)
93
+ frames_ten.append(frame_ten)
94
+ frames_ten = torch.cat(frames_ten)
95
+ return frames_ten
96
+
97
+
98
+ @torch.no_grad()
99
+ def video_ref(args, g, psp_encoder, img_in_ten, img_style_tens):
100
+ video = []
101
+ sample_in = psp_encoder(img_in_ten)
102
+
103
+ img_style_ten_prev, sample_style_prev = None, None
104
+
105
+ for idx in tqdm(range(len(img_style_tens))):
106
+ img_style_ten_next = img_style_tens[idx]
107
+ sample_style_next = g_ema.get_z_embed(img_style_ten_next)
108
+ if img_style_ten_prev is None:
109
+ img_style_ten_prev, sample_style_prev = img_style_ten_next, sample_style_next
110
+ continue
111
+
112
+ interpolated = interpolate(args, g, sample_in, sample_style_prev, sample_style_next)
113
+ entries = [img_style_ten_prev, img_style_ten_next]
114
+ slided = slide_one_window(entries, margin=0) # [T, C, H, W)
115
+ frames = torch.cat([img_in_ten.expand_as(interpolated), slided, interpolated], dim=3).cpu() # [T, C, H, W*3)
116
+ video.append(frames)
117
+ img_style_ten_prev, sample_style_prev = img_style_ten_next, sample_style_next
118
+
119
+ # append last frame 10 time
120
+ for _ in range(10):
121
+ video.append(frames[-1:])
122
+ video = tensor2ndarray255(torch.cat(video)) # [T, H, W*3, C)
123
+
124
+ return video
125
+
126
+
127
+ def save_video(fname, images, output_fps=30):
128
+ print('save video to: %s' % fname)
129
+
130
+ assert isinstance(images, np.ndarray), "images should be np.array: NHWC"
131
+ num_frames, height, width, channels = images.shape
132
+
133
+ fourcc = cv2.VideoWriter_fourcc(*'XVID')
134
+ videoWriter = cv2.VideoWriter(fname, fourcc, output_fps, (width, height))
135
+
136
+ for idx in tqdm(range(num_frames)):
137
+ frame = images[idx][:, :, ::-1] # [H, W*3, C)
138
+ videoWriter.write(frame)
139
+
140
+ videoWriter.release()
141
+
142
+
143
+ if __name__ == '__main__':
144
+ device = 'cuda'
145
+
146
+ parser = argparse.ArgumentParser()
147
+
148
+ parser.add_argument('--size', type=int, default=1024)
149
+
150
+ parser.add_argument('--ckpt', type=str, default='', help='path to BlendGAN checkpoint')
151
+ parser.add_argument('--psp_encoder_ckpt', type=str, default='', help='path to psp_encoder checkpoint')
152
+
153
+ parser.add_argument('--style_img_path', type=str, default=None, help='path to style image')
154
+ parser.add_argument('--input_img_path', type=str, default=None, help='path to input image')
155
+ parser.add_argument('--add_weight_index', type=int, default=7)
156
+
157
+ parser.add_argument('--channel_multiplier', type=int, default=2)
158
+ parser.add_argument('--outdir', type=str, default="")
159
+
160
+ args = parser.parse_args()
161
+
162
+ outdir = args.outdir
163
+ if not os.path.exists(outdir):
164
+ os.makedirs(outdir, exist_ok=True)
165
+
166
+ args.latent = 512
167
+ args.n_mlp = 8
168
+
169
+ checkpoint = torch.load(args.ckpt)
170
+ model_dict = checkpoint['g_ema']
171
+ print('ckpt: ', args.ckpt)
172
+
173
+ g_ema = Generator(
174
+ args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
175
+ ).to(device)
176
+ g_ema.load_state_dict(model_dict)
177
+ g_ema.eval()
178
+
179
+ psp_encoder = PSPEncoder(args.psp_encoder_ckpt, output_size=args.size).to(device)
180
+ psp_encoder.eval()
181
+
182
+ input_img_paths = sorted(glob.glob(os.path.join(args.input_img_path, '*.*')))
183
+ style_img_paths = sorted(glob.glob(os.path.join(args.style_img_path, '*.*')))[:]
184
+
185
+ for input_img_path in input_img_paths:
186
+ print('process: %s' % input_img_path)
187
+
188
+ name_in = os.path.splitext(os.path.basename(input_img_path))[0]
189
+ img_in = cv2.imread(input_img_path, 1)
190
+ img_in = cv2.resize(img_in, (args.size, args.size))
191
+ img_in_ten = cv2ten(img_in, device)
192
+
193
+ img_style_tens = []
194
+
195
+ style_img_path_rand = random.choices(style_img_paths, k=8)
196
+ for style_img_path in style_img_path_rand:
197
+ name_style = os.path.splitext(os.path.basename(style_img_path))[0]
198
+ img_style = cv2.imread(style_img_path, 1)
199
+ img_style = cv2.resize(img_style, (args.size, args.size))
200
+ img_style_ten = cv2ten(img_style, device)
201
+
202
+ img_style_tens.append(img_style_ten)
203
+
204
+ fname = f'{args.outdir}/{name_in}.mp4'
205
+ video = video_ref(args, g_ema, psp_encoder, img_in_ten, img_style_tens)
206
+
207
+ save_video(fname, video, output_fps=30)
208
+
209
+ print('Done!')
210
+
generate_image_pairs.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+
4
+ import cv2
5
+ import numpy as np
6
+ import torch
7
+ from tqdm import tqdm
8
+
9
+ from model import Generator
10
+ from utils import ten2cv, cv2ten
11
+ import random
12
+
13
+ seed = 0
14
+
15
+ random.seed(seed)
16
+ np.random.seed(seed)
17
+ torch.manual_seed(seed)
18
+ torch.cuda.manual_seed_all(seed)
19
+
20
+
21
+ def generate(args, g_ema, device, mean_latent, sample_style, add_weight_index):
22
+ if args.sample_zs is not None:
23
+ sample_zs = torch.load(args.sample_zs)
24
+ else:
25
+ sample_zs = None
26
+
27
+ with torch.no_grad():
28
+ g_ema.eval()
29
+ for i in tqdm(range(args.pics)):
30
+ if sample_zs is not None:
31
+ sample_z = sample_zs[i]
32
+ else:
33
+ sample_z = torch.randn(1, args.latent, device=device)
34
+
35
+ sample1, _ = g_ema([sample_z],
36
+ truncation=args.truncation, truncation_latent=mean_latent, return_latents=False, randomize_noise=False)
37
+ sample2, _ = g_ema([sample_z], z_embed=sample_style, add_weight_index=add_weight_index,
38
+ truncation=args.truncation, truncation_latent=mean_latent, return_latents=False, randomize_noise=False)
39
+
40
+ sample1 = ten2cv(sample1)
41
+ sample2 = ten2cv(sample2)
42
+ out = np.concatenate([sample1, sample2], axis=1)
43
+
44
+ cv2.imwrite(f'{args.outdir}/{str(i).zfill(6)}.jpg', out)
45
+
46
+
47
+ if __name__ == '__main__':
48
+ device = 'cuda'
49
+
50
+ parser = argparse.ArgumentParser()
51
+
52
+ parser.add_argument('--size', type=int, default=1024)
53
+ parser.add_argument('--pics', type=int, default=20, help='N_PICS')
54
+ parser.add_argument('--truncation', type=float, default=0.75)
55
+ parser.add_argument('--truncation_mean', type=int, default=4096)
56
+ parser.add_argument('--ckpt', type=str, default='', help='path to BlendGAN checkpoint')
57
+ parser.add_argument('--style_img', type=str, default=None, help='path to style image')
58
+ parser.add_argument('--sample_zs', type=str, default=None)
59
+ parser.add_argument('--add_weight_index', type=int, default=6)
60
+
61
+ parser.add_argument('--channel_multiplier', type=int, default=2)
62
+ parser.add_argument('--outdir', type=str, default="")
63
+
64
+ args = parser.parse_args()
65
+
66
+ outdir = args.outdir
67
+ if not os.path.exists(outdir):
68
+ os.makedirs(outdir, exist_ok=True)
69
+
70
+ args.latent = 512
71
+ args.n_mlp = 8
72
+
73
+ checkpoint = torch.load(args.ckpt)
74
+ model_dict = checkpoint['g_ema']
75
+ if "latent_avg" in checkpoint.keys():
76
+ latent_avg = checkpoint["latent_avg"]
77
+ else:
78
+ latent_avg = None
79
+ if "truncation" in checkpoint.keys():
80
+ args.truncation = checkpoint["truncation"]
81
+
82
+ print('ckpt: ', args.ckpt)
83
+ print('truncation: ', args.truncation)
84
+
85
+ g_ema = Generator(
86
+ args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
87
+ ).to(device)
88
+ g_ema.load_state_dict(model_dict)
89
+
90
+ if args.truncation < 1:
91
+ if latent_avg is not None:
92
+ mean_latent = latent_avg
93
+ print('### use mean_latent in ckpt["latent_avg"]')
94
+ else:
95
+ with torch.no_grad():
96
+ mean_latent = g_ema.mean_latent(args.truncation_mean)
97
+ print('### generate mean_latent with \'g_ema.mean_latent\'')
98
+ else:
99
+ mean_latent = None
100
+ print('### args.truncation = 1, mean_latent is None')
101
+
102
+ if args.style_img is not None:
103
+ img = cv2.imread(args.style_img, 1)
104
+ img = cv2ten(img, device)
105
+ sample_style = g_ema.get_z_embed(img)
106
+ else:
107
+ sample_style = torch.randn(1, args.latent, device=device)
108
+
109
+ generate(args, g_ema, device, mean_latent, sample_style, args.add_weight_index)
110
+
111
+ print('Done!')
model.py ADDED
@@ -0,0 +1,782 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import random
3
+
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ from op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
9
+ from model_encoder import StyleEncoder
10
+
11
+
12
+ class PixelNorm(nn.Module):
13
+ def __init__(self):
14
+ super().__init__()
15
+
16
+ def forward(self, input):
17
+ return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
18
+
19
+
20
+ def make_kernel(k):
21
+ k = torch.tensor(k, dtype=torch.float32)
22
+
23
+ if k.ndim == 1:
24
+ k = k[None, :] * k[:, None]
25
+
26
+ k /= k.sum()
27
+
28
+ return k
29
+
30
+
31
+ class Upsample(nn.Module):
32
+ def __init__(self, kernel, factor=2):
33
+ super().__init__()
34
+
35
+ self.factor = factor
36
+ kernel = make_kernel(kernel) * (factor ** 2)
37
+ self.register_buffer('kernel', kernel)
38
+
39
+ p = kernel.shape[0] - factor
40
+
41
+ pad0 = (p + 1) // 2 + factor - 1
42
+ pad1 = p // 2
43
+
44
+ self.pad = (pad0, pad1)
45
+
46
+ def forward(self, input):
47
+ out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
48
+
49
+ return out
50
+
51
+
52
+ class Downsample(nn.Module):
53
+ def __init__(self, kernel, factor=2):
54
+ super().__init__()
55
+
56
+ self.factor = factor
57
+ kernel = make_kernel(kernel)
58
+ self.register_buffer('kernel', kernel)
59
+
60
+ p = kernel.shape[0] - factor
61
+
62
+ pad0 = (p + 1) // 2
63
+ pad1 = p // 2
64
+
65
+ self.pad = (pad0, pad1)
66
+
67
+ def forward(self, input):
68
+ out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
69
+
70
+ return out
71
+
72
+
73
+ class Blur(nn.Module):
74
+ def __init__(self, kernel, pad, upsample_factor=1):
75
+ super().__init__()
76
+
77
+ kernel = make_kernel(kernel)
78
+
79
+ if upsample_factor > 1:
80
+ kernel = kernel * (upsample_factor ** 2)
81
+
82
+ self.register_buffer('kernel', kernel)
83
+
84
+ self.pad = pad
85
+
86
+ def forward(self, input):
87
+ out = upfirdn2d(input, self.kernel, pad=self.pad)
88
+
89
+ return out
90
+
91
+
92
+ class EqualConv2d(nn.Module):
93
+ def __init__(
94
+ self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
95
+ ):
96
+ super().__init__()
97
+
98
+ self.weight = nn.Parameter(
99
+ torch.randn(out_channel, in_channel, kernel_size, kernel_size)
100
+ )
101
+ self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
102
+
103
+ self.stride = stride
104
+ self.padding = padding
105
+
106
+ if bias:
107
+ self.bias = nn.Parameter(torch.zeros(out_channel))
108
+
109
+ else:
110
+ self.bias = None
111
+
112
+ def forward(self, input):
113
+ out = F.conv2d(
114
+ input,
115
+ self.weight * self.scale,
116
+ bias=self.bias,
117
+ stride=self.stride,
118
+ padding=self.padding,
119
+ )
120
+
121
+ return out
122
+
123
+ def __repr__(self):
124
+ return (
125
+ f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
126
+ f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
127
+ )
128
+
129
+
130
+ class EqualLinear(nn.Module):
131
+ def __init__(
132
+ self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
133
+ ):
134
+ super().__init__()
135
+
136
+ self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
137
+
138
+ if bias:
139
+ self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
140
+
141
+ else:
142
+ self.bias = None
143
+
144
+ self.activation = activation
145
+
146
+ self.scale = (1 / math.sqrt(in_dim)) * lr_mul
147
+ self.lr_mul = lr_mul
148
+
149
+ def forward(self, input):
150
+ if self.activation:
151
+ out = F.linear(input, self.weight * self.scale)
152
+ out = fused_leaky_relu(out, self.bias * self.lr_mul)
153
+
154
+ else:
155
+ out = F.linear(
156
+ input, self.weight * self.scale, bias=self.bias * self.lr_mul
157
+ )
158
+
159
+ return out
160
+
161
+ def __repr__(self):
162
+ return (
163
+ f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
164
+ )
165
+
166
+
167
+ class ScaledLeakyReLU(nn.Module):
168
+ def __init__(self, negative_slope=0.2):
169
+ super().__init__()
170
+
171
+ self.negative_slope = negative_slope
172
+
173
+ def forward(self, input):
174
+ out = F.leaky_relu(input, negative_slope=self.negative_slope)
175
+
176
+ return out * math.sqrt(2)
177
+
178
+
179
+ class ModulatedConv2d(nn.Module):
180
+ def __init__(
181
+ self,
182
+ in_channel,
183
+ out_channel,
184
+ kernel_size,
185
+ style_dim,
186
+ demodulate=True,
187
+ upsample=False,
188
+ downsample=False,
189
+ blur_kernel=[1, 3, 3, 1],
190
+ ):
191
+ super().__init__()
192
+
193
+ self.eps = 1e-8
194
+ self.kernel_size = kernel_size
195
+ self.in_channel = in_channel
196
+ self.out_channel = out_channel
197
+ self.upsample = upsample
198
+ self.downsample = downsample
199
+
200
+ if upsample:
201
+ factor = 2
202
+ p = (len(blur_kernel) - factor) - (kernel_size - 1)
203
+ pad0 = (p + 1) // 2 + factor - 1
204
+ pad1 = p // 2 + 1
205
+
206
+ self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
207
+
208
+ if downsample:
209
+ factor = 2
210
+ p = (len(blur_kernel) - factor) + (kernel_size - 1)
211
+ pad0 = (p + 1) // 2
212
+ pad1 = p // 2
213
+
214
+ self.blur = Blur(blur_kernel, pad=(pad0, pad1))
215
+
216
+ fan_in = in_channel * kernel_size ** 2
217
+ self.scale = 1 / math.sqrt(fan_in)
218
+ self.padding = kernel_size // 2
219
+
220
+ self.weight = nn.Parameter(
221
+ torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
222
+ )
223
+
224
+ self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
225
+
226
+ self.demodulate = demodulate
227
+
228
+ def __repr__(self):
229
+ return (
230
+ f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
231
+ f'upsample={self.upsample}, downsample={self.downsample})'
232
+ )
233
+
234
+ def forward(self, input, style):
235
+ batch, in_channel, height, width = input.shape
236
+
237
+ style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
238
+ weight = self.scale * self.weight * style
239
+
240
+ if self.demodulate:
241
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
242
+ weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
243
+
244
+ weight = weight.view(
245
+ batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
246
+ )
247
+
248
+ if self.upsample:
249
+ input = input.view(1, batch * in_channel, height, width)
250
+ weight = weight.view(
251
+ batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
252
+ )
253
+ weight = weight.transpose(1, 2).reshape(
254
+ batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
255
+ )
256
+ out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
257
+ _, _, height, width = out.shape
258
+ out = out.view(batch, self.out_channel, height, width)
259
+ out = self.blur(out)
260
+
261
+ elif self.downsample:
262
+ input = self.blur(input)
263
+ _, _, height, width = input.shape
264
+ input = input.view(1, batch * in_channel, height, width)
265
+ out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
266
+ _, _, height, width = out.shape
267
+ out = out.view(batch, self.out_channel, height, width)
268
+
269
+ else:
270
+ input = input.view(1, batch * in_channel, height, width)
271
+ out = F.conv2d(input, weight, padding=self.padding, groups=batch)
272
+ _, _, height, width = out.shape
273
+ out = out.view(batch, self.out_channel, height, width)
274
+
275
+ return out
276
+
277
+
278
+ class NoiseInjection(nn.Module):
279
+ def __init__(self):
280
+ super().__init__()
281
+
282
+ self.weight = nn.Parameter(torch.zeros(1))
283
+
284
+ def forward(self, image, noise=None):
285
+ if noise is None:
286
+ batch, _, height, width = image.shape
287
+ noise = image.new_empty(batch, 1, height, width).normal_()
288
+
289
+ return image + self.weight * noise
290
+
291
+
292
+ class ConstantInput(nn.Module):
293
+ def __init__(self, channel, size=4):
294
+ super().__init__()
295
+
296
+ self.input = nn.Parameter(torch.randn(1, channel, size, size))
297
+
298
+ def forward(self, input):
299
+ batch = input.shape[0]
300
+ out = self.input.repeat(batch, 1, 1, 1)
301
+
302
+ return out
303
+
304
+
305
+ class StyledConv(nn.Module):
306
+ def __init__(
307
+ self,
308
+ in_channel,
309
+ out_channel,
310
+ kernel_size,
311
+ style_dim,
312
+ upsample=False,
313
+ blur_kernel=[1, 3, 3, 1],
314
+ demodulate=True,
315
+ ):
316
+ super().__init__()
317
+
318
+ self.conv = ModulatedConv2d(
319
+ in_channel,
320
+ out_channel,
321
+ kernel_size,
322
+ style_dim,
323
+ upsample=upsample,
324
+ blur_kernel=blur_kernel,
325
+ demodulate=demodulate,
326
+ )
327
+
328
+ self.noise = NoiseInjection()
329
+ # self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
330
+ # self.activate = ScaledLeakyReLU(0.2)
331
+ self.activate = FusedLeakyReLU(out_channel)
332
+
333
+ def forward(self, input, style, noise=None):
334
+ out = self.conv(input, style)
335
+ out = self.noise(out, noise=noise)
336
+ # out = out + self.bias
337
+ out = self.activate(out)
338
+
339
+ return out
340
+
341
+
342
+ class ToRGB(nn.Module):
343
+ def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
344
+ super().__init__()
345
+
346
+ if upsample:
347
+ self.upsample = Upsample(blur_kernel)
348
+
349
+ self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
350
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
351
+
352
+ def forward(self, input, style, skip=None):
353
+ out = self.conv(input, style)
354
+ out = out + self.bias
355
+
356
+ if skip is not None:
357
+ skip = self.upsample(skip)
358
+
359
+ out = out + skip
360
+
361
+ return out
362
+
363
+
364
+ class Generator(nn.Module):
365
+ def __init__(
366
+ self,
367
+ size,
368
+ style_dim,
369
+ n_mlp,
370
+ channel_multiplier=2,
371
+ blur_kernel=[1, 3, 3, 1],
372
+ lr_mlp=0.01,
373
+ ):
374
+ super().__init__()
375
+
376
+ self.size = size
377
+
378
+ self.style_dim = style_dim
379
+
380
+ self.embedder = StyleEncoder(style_dim=512, n_mlp=4)
381
+
382
+ layers = [PixelNorm()]
383
+
384
+ for i in range(n_mlp):
385
+ layers.append(
386
+ EqualLinear(
387
+ style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'
388
+ )
389
+ )
390
+ self.embedding = nn.Sequential(*layers)
391
+
392
+ layers = [PixelNorm()]
393
+
394
+ for i in range(n_mlp):
395
+ layers.append(
396
+ EqualLinear(
397
+ style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'
398
+ )
399
+ )
400
+
401
+ self.style = nn.Sequential(*layers)
402
+
403
+ self.channels = {
404
+ 4: 512,
405
+ 8: 512,
406
+ 16: 512,
407
+ 32: 512,
408
+ 64: 256 * channel_multiplier,
409
+ 128: 128 * channel_multiplier,
410
+ 256: 64 * channel_multiplier,
411
+ 512: 32 * channel_multiplier,
412
+ 1024: 16 * channel_multiplier,
413
+ }
414
+
415
+ self.input = ConstantInput(self.channels[4])
416
+ self.conv1 = StyledConv(
417
+ self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
418
+ )
419
+ self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
420
+
421
+ self.log_size = int(math.log(size, 2))
422
+ self.num_layers = (self.log_size - 2) * 2 + 1
423
+
424
+ self.convs = nn.ModuleList()
425
+ self.upsamples = nn.ModuleList()
426
+ self.to_rgbs = nn.ModuleList()
427
+ self.noises = nn.Module()
428
+
429
+ in_channel = self.channels[4]
430
+
431
+ for layer_idx in range(self.num_layers):
432
+ res = (layer_idx + 5) // 2
433
+ shape = [1, 1, 2 ** res, 2 ** res]
434
+ self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape))
435
+
436
+ for i in range(3, self.log_size + 1):
437
+ out_channel = self.channels[2 ** i]
438
+
439
+ self.convs.append(
440
+ StyledConv(
441
+ in_channel,
442
+ out_channel,
443
+ 3,
444
+ style_dim,
445
+ upsample=True,
446
+ blur_kernel=blur_kernel,
447
+ )
448
+ )
449
+
450
+ self.convs.append(
451
+ StyledConv(
452
+ out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
453
+ )
454
+ )
455
+
456
+ self.to_rgbs.append(ToRGB(out_channel, style_dim))
457
+
458
+ in_channel = out_channel
459
+
460
+ self.n_latent = self.log_size * 2 - 2
461
+
462
+ self.add_weight = nn.Parameter(torch.ones(1, self.n_latent, 1))
463
+
464
+ def make_noise(self):
465
+ device = self.input.input.device
466
+
467
+ noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
468
+
469
+ for i in range(3, self.log_size + 1):
470
+ for _ in range(2):
471
+ noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
472
+
473
+ return noises
474
+
475
+ def mean_latent(self, n_latent):
476
+ latent_in = torch.randn(
477
+ n_latent, self.style_dim, device=self.input.input.device
478
+ )
479
+ latent = self.style(latent_in).mean(0, keepdim=True)
480
+
481
+ return latent
482
+
483
+ def get_latent(self, input):
484
+ return self.style(input)
485
+
486
+ def get_z_embed(self, image):
487
+ self.embedder.eval()
488
+ with torch.no_grad():
489
+ z_embed = self.embedder(image) # [N, 512]
490
+ return z_embed
491
+
492
+ def forward(
493
+ self,
494
+ styles=None,
495
+ return_latents=False,
496
+ inject_index=None,
497
+ truncation=1,
498
+ truncation_latent=None,
499
+ input_is_latent=False,
500
+ noise=None,
501
+ randomize_noise=True,
502
+ style_image=None,
503
+ z_embed=None,
504
+ only_return_z_embed=False,
505
+ add_weight_index=None,
506
+ ):
507
+ if only_return_z_embed and style_image is not None:
508
+ return self.get_z_embed(style_image)
509
+
510
+ if not input_is_latent:
511
+ styles = [self.style(s) for s in styles]
512
+
513
+ if noise is None:
514
+ if randomize_noise:
515
+ noise = [None] * self.num_layers
516
+ else:
517
+ noise = [
518
+ getattr(self.noises, f'noise_{i}') for i in range(self.num_layers)
519
+ ]
520
+
521
+ if truncation < 1:
522
+ style_t = []
523
+
524
+ for style in styles:
525
+ style_t.append(
526
+ truncation_latent + truncation * (style - truncation_latent)
527
+ )
528
+
529
+ styles = style_t
530
+
531
+ if len(styles) < 2:
532
+ inject_index = self.n_latent
533
+
534
+ if styles[0].ndim < 3:
535
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
536
+
537
+ else:
538
+ latent = styles[0]
539
+
540
+ else:
541
+ if inject_index is None:
542
+ inject_index = random.randint(1, self.n_latent - 1)
543
+
544
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
545
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
546
+
547
+ latent = torch.cat([latent, latent2], 1) # [N, 18, 512]
548
+
549
+ if z_embed is not None:
550
+ latent_style = self.embedding(z_embed)
551
+ latent_style = latent_style.unsqueeze(1).repeat(1, self.n_latent, 1) # [N, 18, 512]
552
+ elif style_image is not None:
553
+ z_embed = self.get_z_embed(style_image) # [N, 512]
554
+ latent_style = self.embedding(z_embed)
555
+ latent_style = latent_style.unsqueeze(1).repeat(1, self.n_latent, 1) # [N, 18, 512]
556
+ else:
557
+ latent_style = None
558
+
559
+ if latent_style is not None:
560
+ self.add_weight.data = self.add_weight.data.clamp(0.0, 1.0)
561
+ if add_weight_index is not None:
562
+ add_weight_new = self.add_weight.clone()
563
+ add_weight_new[:, :add_weight_index, :] = 1.0
564
+ latent = latent * add_weight_new + latent_style * (1 - add_weight_new)
565
+ else:
566
+ latent = latent * self.add_weight + latent_style * (1 - self.add_weight)
567
+
568
+ out = self.input(latent)
569
+ out = self.conv1(out, latent[:, 0], noise=noise[0])
570
+
571
+ skip = self.to_rgb1(out, latent[:, 1])
572
+
573
+ i = 1
574
+ for conv1, conv2, noise1, noise2, to_rgb in zip(
575
+ self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
576
+ ):
577
+ out = conv1(out, latent[:, i], noise=noise1)
578
+ out = conv2(out, latent[:, i + 1], noise=noise2)
579
+ skip = to_rgb(out, latent[:, i + 2], skip)
580
+
581
+ i += 2
582
+
583
+ image = skip
584
+
585
+ if return_latents:
586
+ if style_image is not None or z_embed is not None:
587
+ return image, latent, z_embed
588
+ else:
589
+ return image, latent
590
+
591
+ else:
592
+ return image, None
593
+
594
+
595
+ class ConvLayer(nn.Sequential):
596
+ def __init__(
597
+ self,
598
+ in_channel,
599
+ out_channel,
600
+ kernel_size,
601
+ downsample=False,
602
+ blur_kernel=[1, 3, 3, 1],
603
+ bias=True,
604
+ activate=True,
605
+ ):
606
+ layers = []
607
+
608
+ if downsample:
609
+ factor = 2
610
+ p = (len(blur_kernel) - factor) + (kernel_size - 1)
611
+ pad0 = (p + 1) // 2
612
+ pad1 = p // 2
613
+
614
+ layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
615
+
616
+ stride = 2
617
+ self.padding = 0
618
+
619
+ else:
620
+ stride = 1
621
+ self.padding = kernel_size // 2
622
+
623
+ layers.append(
624
+ EqualConv2d(
625
+ in_channel,
626
+ out_channel,
627
+ kernel_size,
628
+ padding=self.padding,
629
+ stride=stride,
630
+ bias=bias and not activate,
631
+ )
632
+ )
633
+
634
+ if activate:
635
+ if bias:
636
+ layers.append(FusedLeakyReLU(out_channel))
637
+
638
+ else:
639
+ layers.append(ScaledLeakyReLU(0.2))
640
+
641
+ super().__init__(*layers)
642
+
643
+
644
+ class ResBlock(nn.Module):
645
+ def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
646
+ super().__init__()
647
+
648
+ self.conv1 = ConvLayer(in_channel, in_channel, 3)
649
+ self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
650
+
651
+ self.skip = ConvLayer(
652
+ in_channel, out_channel, 1, downsample=True, activate=False, bias=False
653
+ )
654
+
655
+ def forward(self, input):
656
+ out = self.conv1(input)
657
+ out = self.conv2(out)
658
+
659
+ skip = self.skip(input)
660
+ out = (out + skip) / math.sqrt(2)
661
+
662
+ return out
663
+
664
+
665
+ class Discriminator(nn.Module):
666
+ def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
667
+ super().__init__()
668
+
669
+ channels = {
670
+ 4: 512,
671
+ 8: 512,
672
+ 16: 512,
673
+ 32: 512,
674
+ 64: 256 * channel_multiplier,
675
+ 128: 128 * channel_multiplier,
676
+ 256: 64 * channel_multiplier,
677
+ 512: 32 * channel_multiplier,
678
+ 1024: 16 * channel_multiplier,
679
+ }
680
+
681
+ convs = [ConvLayer(3, channels[size], 1)]
682
+
683
+ log_size = int(math.log(size, 2))
684
+
685
+ in_channel = channels[size]
686
+
687
+ for i in range(log_size, 2, -1):
688
+ out_channel = channels[2 ** (i - 1)]
689
+
690
+ convs.append(ResBlock(in_channel, out_channel, blur_kernel))
691
+
692
+ in_channel = out_channel
693
+
694
+ self.convs = nn.Sequential(*convs)
695
+
696
+ self.stddev_group = 4
697
+ self.stddev_feat = 1
698
+
699
+ self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
700
+ self.final_linear = nn.Sequential(
701
+ EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'),
702
+ EqualLinear(channels[4], 1),
703
+ )
704
+
705
+ def forward(self, input):
706
+ out = self.convs(input)
707
+
708
+ batch, channel, height, width = out.shape
709
+ group = min(batch, self.stddev_group)
710
+ stddev = out.view(
711
+ group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
712
+ )
713
+ stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
714
+ stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
715
+ stddev = stddev.repeat(group, 1, height, width)
716
+ out = torch.cat([out, stddev], 1)
717
+
718
+ out = self.final_conv(out)
719
+
720
+ out = out.view(batch, -1)
721
+ out = self.final_linear(out)
722
+
723
+ return out
724
+
725
+
726
+ class ProjectionDiscriminator(nn.Module):
727
+ def __init__(self, size, style_dim=512, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
728
+ super().__init__()
729
+
730
+ channels = {
731
+ 4: 512,
732
+ 8: 512,
733
+ 16: 512,
734
+ 32: 512,
735
+ 64: 256 * channel_multiplier,
736
+ 128: 128 * channel_multiplier,
737
+ 256: 64 * channel_multiplier,
738
+ 512: 32 * channel_multiplier,
739
+ 1024: 16 * channel_multiplier,
740
+ }
741
+
742
+ convs = [ConvLayer(3, channels[size], 1)]
743
+
744
+ log_size = int(math.log(size, 2))
745
+
746
+ in_channel = channels[size]
747
+
748
+ for i in range(log_size, 2, -1):
749
+ out_channel = channels[2 ** (i - 1)]
750
+ convs.append(ResBlock(in_channel, out_channel, blur_kernel))
751
+ in_channel = out_channel
752
+
753
+ self.convs = nn.Sequential(*convs)
754
+
755
+ self.stddev_group = 4
756
+ self.stddev_feat = 1
757
+
758
+ self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
759
+
760
+ self.l_out = EqualLinear(in_channel, 1)
761
+ self.l_style = EqualLinear(style_dim, in_channel)
762
+
763
+ def forward(self, input, style):
764
+ out = self.convs(input)
765
+
766
+ batch, channel, height, width = out.shape
767
+ group = min(batch, self.stddev_group)
768
+ stddev = out.view(
769
+ group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
770
+ )
771
+ stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
772
+ stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
773
+ stddev = stddev.repeat(group, 1, height, width)
774
+ out = torch.cat([out, stddev], 1)
775
+
776
+ out = self.final_conv(out)
777
+
778
+ h = torch.sum(out, dim=(2, 3))
779
+ output = self.l_out(h)
780
+ output += torch.sum(self.l_style(style) * h, dim=1, keepdim=True)
781
+
782
+ return output
model_encoder.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ from collections import namedtuple
4
+
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ import torchvision.models.vgg as vgg
10
+
11
+ from op import fused_leaky_relu
12
+
13
+
14
+ FeatureOutput = namedtuple(
15
+ "FeatureOutput", ["relu1", "relu2", "relu3", "relu4", "relu5"])
16
+
17
+
18
+ def gram_matrix(y):
19
+ (b, ch, h, w) = y.size()
20
+ features = y.view(b, ch, w * h)
21
+ features_t = features.transpose(1, 2)
22
+ gram = features.bmm(features_t) / (ch * h * w)
23
+ return gram
24
+
25
+
26
+ class FeatureExtractor(nn.Module):
27
+ """Reference:
28
+ https://discuss.pytorch.org/t/how-to-extract-features-of-an-image-from-a-trained-model/119/3
29
+ """
30
+
31
+ def __init__(self):
32
+ super(FeatureExtractor, self).__init__()
33
+ self.vgg_layers = vgg.vgg19(pretrained=True).features
34
+ self.layer_name_mapping = {
35
+ '3': "relu1",
36
+ '8': "relu2",
37
+ '17': "relu3",
38
+ '26': "relu4",
39
+ '35': "relu5",
40
+ }
41
+
42
+ def forward(self, x):
43
+ output = {}
44
+ for name, module in self.vgg_layers._modules.items():
45
+ x = module(x)
46
+ if name in self.layer_name_mapping:
47
+ output[self.layer_name_mapping[name]] = x
48
+ return FeatureOutput(**output)
49
+
50
+
51
+ class StyleEmbedder(nn.Module):
52
+ def __init__(self):
53
+ super(StyleEmbedder, self).__init__()
54
+ self.feature_extractor = FeatureExtractor()
55
+ self.feature_extractor.eval()
56
+ self.avg_pool = torch.nn.AdaptiveAvgPool2d((256, 256))
57
+
58
+ def forward(self, img):
59
+ N = img.shape[0]
60
+ features = self.feature_extractor(self.avg_pool(img))
61
+
62
+ grams = []
63
+ for feature in features:
64
+ gram = gram_matrix(feature)
65
+ grams.append(gram.view(N, -1))
66
+ out = torch.cat(grams, dim=1)
67
+ return out
68
+
69
+
70
+ class PixelNorm(nn.Module):
71
+ def __init__(self):
72
+ super().__init__()
73
+
74
+ def forward(self, input):
75
+ return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
76
+
77
+
78
+ class EqualLinear(nn.Module):
79
+ def __init__(
80
+ self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
81
+ ):
82
+ super().__init__()
83
+
84
+ self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
85
+
86
+ if bias:
87
+ self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
88
+
89
+ else:
90
+ self.bias = None
91
+
92
+ self.activation = activation
93
+
94
+ self.scale = (1 / math.sqrt(in_dim)) * lr_mul
95
+ self.lr_mul = lr_mul
96
+
97
+ def forward(self, input):
98
+ if self.activation:
99
+ out = F.linear(input, self.weight * self.scale)
100
+ out = fused_leaky_relu(out, self.bias * self.lr_mul)
101
+
102
+ else:
103
+ out = F.linear(
104
+ input, self.weight * self.scale, bias=self.bias * self.lr_mul
105
+ )
106
+
107
+ return out
108
+
109
+ def __repr__(self):
110
+ return (
111
+ f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
112
+ )
113
+
114
+
115
+ class StyleEncoder(nn.Module):
116
+ def __init__(
117
+ self,
118
+ style_dim=512,
119
+ n_mlp=4,
120
+ ):
121
+ super().__init__()
122
+
123
+ self.style_dim = style_dim
124
+
125
+ e_dim = 610304
126
+ self.embedder = StyleEmbedder()
127
+
128
+ layers = []
129
+
130
+ layers.append(EqualLinear(e_dim, style_dim, lr_mul=1, activation='fused_lrelu'))
131
+ for i in range(n_mlp - 2):
132
+ layers.append(
133
+ EqualLinear(
134
+ style_dim, style_dim, lr_mul=1, activation='fused_lrelu'
135
+ )
136
+ )
137
+ layers.append(EqualLinear(style_dim, style_dim, lr_mul=1, activation=None))
138
+ self.embedder_mlp = nn.Sequential(*layers)
139
+
140
+ def forward(self, image):
141
+ z_embed = self.embedder_mlp(self.embedder(image)) # [N, 512]
142
+ return z_embed
143
+
144
+
145
+ class Projector(nn.Module):
146
+ def __init__(self, style_dim=512, n_mlp=4):
147
+ super().__init__()
148
+
149
+ layers = []
150
+ for i in range(n_mlp - 1):
151
+ layers.append(
152
+ EqualLinear(
153
+ style_dim, style_dim, lr_mul=1, activation='fused_lrelu'
154
+ )
155
+ )
156
+ layers.append(EqualLinear(style_dim, style_dim, lr_mul=1, activation=None))
157
+ self.projector = nn.Sequential(*layers)
158
+
159
+ def forward(self, x):
160
+ return self.projector(x)
op/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
1
+ from .fused_act import FusedLeakyReLU, fused_leaky_relu
2
+ from .upfirdn2d import upfirdn2d
op/fused_act.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+ from torch.autograd import Function
7
+ from torch.utils.cpp_extension import load
8
+
9
+
10
+ module_path = os.path.dirname(__file__)
11
+
12
+ cuda_available = torch.cuda.is_available()
13
+
14
+ if cuda_available:
15
+ fused = load(
16
+ "fused",
17
+ sources=[
18
+ os.path.join(module_path, "fused_bias_act.cpp"),
19
+ os.path.join(module_path, "fused_bias_act_kernel.cu"),
20
+ ],
21
+ )
22
+ else:
23
+ fused = None
24
+ print("fused_act.py is running on cpu")
25
+
26
+
27
+ class FusedLeakyReLUFunctionBackward(Function):
28
+ @staticmethod
29
+ def forward(ctx, grad_output, out, negative_slope, scale):
30
+ ctx.save_for_backward(out)
31
+ ctx.negative_slope = negative_slope
32
+ ctx.scale = scale
33
+
34
+ empty = grad_output.new_empty(0)
35
+
36
+ grad_input = fused.fused_bias_act(
37
+ grad_output, empty, out, 3, 1, negative_slope, scale
38
+ )
39
+
40
+ dim = [0]
41
+
42
+ if grad_input.ndim > 2:
43
+ dim += list(range(2, grad_input.ndim))
44
+
45
+ grad_bias = grad_input.sum(dim).detach()
46
+
47
+ return grad_input, grad_bias
48
+
49
+ @staticmethod
50
+ def backward(ctx, gradgrad_input, gradgrad_bias):
51
+ out, = ctx.saved_tensors
52
+ gradgrad_out = fused.fused_bias_act(
53
+ gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
54
+ )
55
+
56
+ return gradgrad_out, None, None, None
57
+
58
+
59
+ class FusedLeakyReLUFunction(Function):
60
+ @staticmethod
61
+ def forward(ctx, input, bias, negative_slope, scale):
62
+ empty = input.new_empty(0)
63
+ out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
64
+ ctx.save_for_backward(out)
65
+ ctx.negative_slope = negative_slope
66
+ ctx.scale = scale
67
+
68
+ return out
69
+
70
+ @staticmethod
71
+ def backward(ctx, grad_output):
72
+ out, = ctx.saved_tensors
73
+
74
+ grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
75
+ grad_output, out, ctx.negative_slope, ctx.scale
76
+ )
77
+
78
+ return grad_input, grad_bias, None, None
79
+
80
+
81
+ class FusedLeakyReLU(nn.Module):
82
+ def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
83
+ super().__init__()
84
+
85
+ self.bias = nn.Parameter(torch.zeros(channel))
86
+ self.negative_slope = negative_slope
87
+ self.scale = scale
88
+
89
+ def forward(self, input):
90
+ return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
91
+
92
+
93
+ def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
94
+ if input.device.type == "cpu":
95
+ rest_dim = [1] * (input.ndim - bias.ndim - 1)
96
+ return (
97
+ F.leaky_relu(
98
+ input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
99
+ )
100
+ * scale
101
+ )
102
+
103
+ else:
104
+ return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
op/fused_bias_act.cpp ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <torch/extension.h>
2
+
3
+
4
+ torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
5
+ int act, int grad, float alpha, float scale);
6
+
7
+ #define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
8
+ #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
9
+ #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
10
+
11
+ torch::Tensor fused_bias_act(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
12
+ int act, int grad, float alpha, float scale) {
13
+ CHECK_CUDA(input);
14
+ CHECK_CUDA(bias);
15
+
16
+ return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
17
+ }
18
+
19
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
20
+ m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
21
+ }
op/fused_bias_act_kernel.cu ADDED
@@ -0,0 +1,99 @@