File size: 9,782 Bytes
b837a10
 
ac0a18f
0885169
dc76b04
0885169
b837a10
f5893dd
0885169
f5893dd
 
0885169
f5893dd
 
c1e64ce
b837a10
 
0885169
b837a10
f5893dd
ac0a18f
0885169
 
f5893dd
0885169
f5893dd
 
 
 
 
 
 
0885169
f5893dd
 
 
dc76b04
 
0885169
 
b837a10
f5893dd
 
 
 
 
0885169
f5893dd
 
b837a10
f5893dd
 
dc76b04
 
 
 
 
 
 
f5893dd
dc76b04
 
 
 
 
 
f5893dd
0885169
f5893dd
 
0885169
 
f5893dd
 
 
 
 
 
 
 
 
0885169
f5893dd
 
 
b837a10
f5893dd
 
 
 
 
 
 
 
b837a10
dc76b04
f5893dd
dc76b04
0885169
b837a10
f5893dd
dc76b04
 
 
b837a10
f5893dd
b837a10
dc76b04
 
 
 
 
f5893dd
dc76b04
 
 
f5893dd
dc76b04
 
f5893dd
dc76b04
f5893dd
dc76b04
0885169
 
 
dc76b04
 
f5893dd
 
 
dc76b04
 
 
 
0885169
 
 
 
2970d8e
0885169
 
dc76b04
0885169
b837a10
 
 
0885169
 
 
 
b837a10
0885169
f5893dd
 
 
 
 
 
 
0885169
f5893dd
 
b837a10
f5893dd
b837a10
 
0885169
 
b837a10
f5893dd
b837a10
f5893dd
 
0885169
f5893dd
 
b837a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7159c31
 
 
 
b837a10
0885169
b837a10
 
 
0885169
 
b837a10
 
0885169
 
 
 
 
 
b837a10
0885169
b837a10
 
 
0885169
 
 
 
 
 
 
 
 
 
b837a10
 
 
 
0885169
 
 
b837a10
 
 
0885169
 
 
 
 
 
 
b837a10
 
 
 
 
 
0885169
 
 
 
 
 
 
b837a10
 
 
 
0885169
 
 
 
 
 
 
b837a10
 
0885169
 
 
 
 
b837a10
0885169
 
 
 
 
 
 
b837a10
 
 
 
 
 
0885169
 
 
 
 
 
 
b837a10
 
f5893dd
 
0885169
f5893dd
 
 
0885169
f5893dd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import language_tool_python
import numpy as np
import en_core_web_sm
import torch
import wordfreq
from transformers import AutoModelForMaskedLM, AutoTokenizer

# setup global variables on import (bad practice, but whatever)
# --------------------------------------------------------------

# grammar checker
tool = language_tool_python.LanguageTool("en-US")

# masked language model and tokenizer from huggingface
model_name = "xlm-roberta-base"
model = AutoModelForMaskedLM.from_pretrained(model_name)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)  # tokenizer

# spacy model for parsing
nlp = en_core_web_sm.load()

def __get_rarity(word: str, lang: str = "en") -> float:
    """
    Returns the rarity of a word in the given language. word_freq retuns a value
    between 0 and 1, where 1 is the most common word. Therefore, taking the log results
    in a value between 0 (log 1 = 0) and -27.63 (log 1e-12). We then negate it so super
    rare words have a high score and common words have a low score.

    Parameters:
        word (str): The word to check.
        lang (str): The language to check. Default is "en".

    Returns:
        float: The rarity of the word.
    """
    return -np.log(wordfreq.word_frequency(word, lang) + 1e-12)


def __produce_groupings(offset_mapping: list, input_ids: list) -> list:
    """
    Produce groupings of tokens that are part of the same word.

    Parameters:
        offset_mapping (list): The offset mapping of the tokens.
        input_ids (list): The input ids of the tokens.

    Returns:
        list: A list of groupings of tokens.
    """
    # Produce groupings of tokens that are part of the same word
    res = []
    current_group = []
    prev_end = None
    for i, (start, end) in enumerate(offset_mapping):
        if input_ids[i] in tokenizer.all_special_ids:
            continue  # skip special tokens like [CLS] and [SEP]
        if prev_end is not None and start > prev_end:
            # Word boundary detected → start new group
            res.append(current_group)
            current_group = [i]
        else:
            current_group.append(i)
        prev_end = end
    # Append final group
    if current_group:
        res.append(current_group)

    return res


def pseudo_perplexity(text: str, threshold: int = 4, max_len: int = 128) -> dict:
    """
    Calculate the pseudo-perplexity of a text using a masked language model. Return all
    words that exceed a threshold of "adjusted awkwardness". The threshold is a measure
    in terms of log probability of the word.

    Parameters:
        text (str): The text to check.
        threshold (float): The threshold for awkwardness. Default is 4.
        max_len (int): The maximum length of the text. Default is 128.

    Returns:
        dict: A dictionary containing the score and errors.
    """

    # Tokenize the text and produce groupings
    encoding = tokenizer(text, return_tensors="pt", return_offsets_mapping=True)
    input_ids = encoding["input_ids"][0]
    offset_mapping = encoding["offset_mapping"][0]
    tokens = tokenizer.convert_ids_to_tokens(input_ids)
    word_groups = __produce_groupings(offset_mapping, input_ids)

    # Calculate the loss for each word group
    loss_values = []
    for group in word_groups:
        # Skip special tokens (CLS and SEP)
        if group[0] == 0 or group[-1] == len(input_ids) - 1:
            continue

        # Mask the word group
        masked = input_ids.clone()
        for i in group:
            masked[i] = tokenizer.mask_token_id

        # Get the model output distribution
        with torch.no_grad():
            outputs = model(masked.unsqueeze(0))
            logits = outputs.logits[0]

        log_probs = []
        for i in group:
            # Get the probability of the true token
            probs = torch.softmax(logits[i], dim=-1)
            true_token_id = input_ids[i].item()
            prob = probs[true_token_id].item()
            # Append the loss of the true token
            log_probs.append(np.log(prob + 1e-12))

        # Calculate the loss for the entire word group
        word_loss = -np.sum(log_probs) / len(log_probs)
        # Adjust the loss based on the rarity of the word
        word = tokenizer.decode(input_ids[group[0]])
        word_loss -= 0.6 * __get_rarity(
            word
        )  # subtract rarity (rare words reduce loss)
        loss_values.append(word_loss)

    # Structure the results for output
    average_loss = np.mean(loss_values)

    errors = []
    for i, l in enumerate(loss_values):
        if l < threshold:
            continue
        errors.append(
            {
                "start": i,
                "end": i,
                "message": f"Adjusted liklihood {round(l, 2)} over threshold {threshold} for word {text.split()[i]}",
            }
        )

    res = {"score": __fluency_score(average_loss), "errors": errors}

    return res


def __fluency_score(
    loss: float, midpoint: float = 5.0, steepness: float = 0.3
) -> float:
    """
    Transform the loss into a score from 0 to 100. Steepness controls how quickly the
    score drops as loss increases and midpoint controls the loss at which the score is
    50.

    Parameters:
        loss (float): The loss to transform.
        midpoint (float): The loss at which the score is 50. Default is 5.
        steepness (float): The steepness of the curve. Default is 0.3.

    Returns:
        float: The score from 0 to 100.
    """
    score = 100 / (1 + np.exp(steepness * (loss - midpoint)))
    return round(score, 2)


def grammar_errors(text: str) -> dict:
    """
    Check the grammar of a text using a grammar checker and a structural grammar check.

    Parameters:
        text (str): The text to check.

    Returns:
        dict: A dictionary containing the score and errors.
    """
    matches = tool.check(text)

    r = []
    for match in matches:
        words = text.split()
        char_to_word = []
        current_char = 0

        for i, word in enumerate(words):
            for _ in range(len(word)):
                char_to_word.append(i)
            current_char += len(word)
            if current_char < len(text):  # Account for spaces between words
                char_to_word.append(i)
                current_char += 1

        start = char_to_word[match.offset]
        end = char_to_word[match.offset + match.errorLength - 1] + 1
        r.append({"start": start, "end": end, "message": match.message})

    struct_err = __check_structural_grammar(text)
    for e in struct_err:
        r.append(e)

    grammar_score = len(r) / len(text.split())

    res = {"score": __grammar_score_from_prob(grammar_score), "errors": r}

    return res


def __grammar_score_from_prob(error_ratio: float) -> float:
    """
    Transform the number of errors divided by words into a score from 0 to 100.

    Parameters:
        error_ratio (float): The ratio of errors to words.

    Returns:
        float: The score from 0 to 100.
    """
    score = 100 * (1 - error_ratio)
    return round(score, 2)


def __check_structural_grammar(text: str) -> list:
    """
    Check the structural grammar of a text using spaCy.

    Parameters:
        text (str): The text to check.

    Returns:
        list: A list of structural grammar errors.
    """
    doc = nlp(text)
    issues = []

    # 1. Missing main verb (ROOT)
    root_verbs = [
        tok for tok in doc if tok.dep_ == "ROOT" and tok.pos_ in {"VERB", "AUX"}
    ]
    if not root_verbs:
        root_root = [tok for tok in doc if tok.dep_ == "ROOT"]
        token = root_root[0] if root_root else doc[0]
        issues.append(
            {
                "start": token.i,
                "end": token.i + 1,
                "message": "Sentence is missing a main verb (no ROOT verb).",
            }
        )

    # 2. Verb(s) present but no subject
    verbs = [tok for tok in doc if tok.pos_ in {"VERB", "AUX"}]
    subjects = [tok for tok in doc if tok.dep_ in {"nsubj", "nsubjpass"}]
    if verbs and not subjects:
        for verb in verbs:
            issues.append(
                {
                    "start": verb.i,
                    "end": verb.i + 1,
                    "message": "Sentence has verb(s) but no subject (possible fragment).",
                }
            )

    # 3. Dangling prepositions
    for tok in doc:
        if tok.pos_ == "ADP" and len(list(tok.children)) == 0:
            issues.append(
                {
                    "start": tok.i,
                    "end": tok.i + 1,
                    "message": f"Dangling preposition '{tok.text}' (no object or complement).",
                }
            )

    # 4. Noun pile-up (no verbs, all tokens are nominal)
    if not any(tok.pos_ in {"VERB", "AUX"} for tok in doc) and all(
        tok.pos_ in {"NOUN", "PROPN", "ADJ", "DET", "NUM"}
        for tok in doc
        if tok.is_alpha
    ):
        token = doc[0]
        issues.append(
            {
                "start": token.i,
                "end": token.i + 1,
                "message": "Sentence lacks a verb or any verbal structure (nominal phrase pile-up).",
            }
        )

    # 5. Multiple ROOTs (possible run-on)
    root_count = sum(1 for tok in doc if tok.dep_ == "ROOT")
    if root_count > 1:
        for tok in doc:
            if tok.dep_ == "ROOT":
                issues.append(
                    {
                        "start": tok.i,
                        "end": tok.i + 1,
                        "message": "Sentence has multiple ROOTs — possible run-on sentence.",
                    }
                )

    return issues


# Unit tests can go here eventually
def main():
    pass


if __name__ == "__main__":
    main()