Aidan Phillips
commited on
Commit
·
b837a10
1
Parent(s):
0de83a5
init
Browse files- categories/fluency.py +203 -0
- requirements.txt +3 -0
- scorer.ipynb +110 -0
categories/fluency.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import language_tool_python
|
2 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import spacy
|
6 |
+
|
7 |
+
tool = language_tool_python.LanguageTool('en-US')
|
8 |
+
model_name="distilbert-base-multilingual-cased"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForMaskedLM.from_pretrained(model_name)
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
nlp = spacy.load("en_core_web_sm")
|
14 |
+
|
15 |
+
def pseudo_perplexity(text, max_len=128):
|
16 |
+
"""
|
17 |
+
We want to return
|
18 |
+
{
|
19 |
+
"score": normalized value from 0 to 100,
|
20 |
+
"errors": [
|
21 |
+
{
|
22 |
+
"start": word index,
|
23 |
+
"end": word index,
|
24 |
+
"message": "error message"
|
25 |
+
}
|
26 |
+
]
|
27 |
+
}
|
28 |
+
"""
|
29 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")[0]
|
30 |
+
|
31 |
+
if len(input_ids) > max_len:
|
32 |
+
raise ValueError(f"Input too long for model (>{max_len} tokens).")
|
33 |
+
|
34 |
+
loss_values = []
|
35 |
+
|
36 |
+
for i in range(1, len(input_ids) - 1): # skip [CLS] and [SEP]
|
37 |
+
masked_input = input_ids.clone()
|
38 |
+
masked_input[i] = tokenizer.mask_token_id
|
39 |
+
|
40 |
+
with torch.no_grad():
|
41 |
+
outputs = model(masked_input.unsqueeze(0))
|
42 |
+
logits = outputs.logits[0, i]
|
43 |
+
probs = torch.softmax(logits, dim=-1)
|
44 |
+
|
45 |
+
true_token_id = input_ids[i].item()
|
46 |
+
prob_true_token = probs[true_token_id].item()
|
47 |
+
log_prob = np.log(prob_true_token + 1e-12)
|
48 |
+
loss_values.append(-log_prob)
|
49 |
+
|
50 |
+
# get longest sequence of tokens with perplexity over some threshold
|
51 |
+
threshold = 12 # Define a perplexity threshold
|
52 |
+
longest_start, longest_end = 0, 0
|
53 |
+
current_start, current_end = 0, 0
|
54 |
+
max_length = 0
|
55 |
+
curr_loss = 0
|
56 |
+
|
57 |
+
for i, loss in enumerate(loss_values):
|
58 |
+
if loss > threshold:
|
59 |
+
if current_start == current_end: # Start a new sequence
|
60 |
+
current_start = i
|
61 |
+
current_end = i + 1
|
62 |
+
curr_loss = loss
|
63 |
+
else:
|
64 |
+
if current_end - current_start > max_length:
|
65 |
+
longest_start, longest_end = current_start, current_end
|
66 |
+
max_length = current_end - current_start
|
67 |
+
current_start, current_end = 0, 0
|
68 |
+
|
69 |
+
if current_end - current_start > max_length: # Check the last sequence
|
70 |
+
longest_start, longest_end = current_start, current_end
|
71 |
+
|
72 |
+
longest_sequence = (longest_start, longest_end)
|
73 |
+
|
74 |
+
ppl = np.exp(np.mean(loss_values))
|
75 |
+
|
76 |
+
res = {
|
77 |
+
"score": __fluency_score_from_ppl(ppl),
|
78 |
+
"errors": [
|
79 |
+
{
|
80 |
+
"start": longest_sequence[0],
|
81 |
+
"end": longest_sequence[1],
|
82 |
+
"message": f"Perplexity above threshold: {curr_loss}"
|
83 |
+
}
|
84 |
+
]
|
85 |
+
}
|
86 |
+
|
87 |
+
return res
|
88 |
+
|
89 |
+
def __fluency_score_from_ppl(ppl, midpoint=20, steepness=0.3):
|
90 |
+
"""
|
91 |
+
Use a logistic function to map perplexity to 0–100.
|
92 |
+
Midpoint is the PPL where score is 50.
|
93 |
+
Steepness controls curve sharpness.
|
94 |
+
"""
|
95 |
+
score = 100 / (1 + np.exp(steepness * (ppl - midpoint)))
|
96 |
+
return round(score, 2)
|
97 |
+
|
98 |
+
def grammar_errors(text) -> tuple[int, list[str]]:
|
99 |
+
"""
|
100 |
+
|
101 |
+
Returns
|
102 |
+
int: number of grammar errors
|
103 |
+
list: grammar errors
|
104 |
+
tuple: (start, end, error message)
|
105 |
+
"""
|
106 |
+
|
107 |
+
matches = tool.check(text)
|
108 |
+
grammar_score = len(matches)/len(text.split())
|
109 |
+
|
110 |
+
r = []
|
111 |
+
for match in matches:
|
112 |
+
words = text.split()
|
113 |
+
char_to_word = []
|
114 |
+
current_char = 0
|
115 |
+
|
116 |
+
for i, word in enumerate(words):
|
117 |
+
for _ in range(len(word)):
|
118 |
+
char_to_word.append(i)
|
119 |
+
current_char += len(word)
|
120 |
+
if current_char < len(text): # Account for spaces between words
|
121 |
+
char_to_word.append(i)
|
122 |
+
current_char += 1
|
123 |
+
|
124 |
+
start = char_to_word[match.offset]
|
125 |
+
end = char_to_word[match.offset + match.errorLength - 1] + 1
|
126 |
+
r.append({"start": start, "end": end, "message": match.message})
|
127 |
+
|
128 |
+
struct_err = __check_structural_grammar(text)
|
129 |
+
r.extend(struct_err)
|
130 |
+
|
131 |
+
res = {
|
132 |
+
"score": __grammar_score_from_prob(grammar_score),
|
133 |
+
"errors": r
|
134 |
+
}
|
135 |
+
|
136 |
+
return res
|
137 |
+
|
138 |
+
def __grammar_score_from_prob(error_ratio, steepness=10):
|
139 |
+
"""
|
140 |
+
Transform the number of errors divided by words into a score from 0 to 100.
|
141 |
+
Steepness controls how quickly the score drops as errors increase.
|
142 |
+
"""
|
143 |
+
score = 100 / (1 + np.exp(steepness * error_ratio))
|
144 |
+
return round(score, 2)
|
145 |
+
|
146 |
+
|
147 |
+
def __check_structural_grammar(text):
|
148 |
+
doc = nlp(text)
|
149 |
+
issues = []
|
150 |
+
|
151 |
+
# 1. Missing main verb (ROOT)
|
152 |
+
root_verbs = [tok for tok in doc if tok.dep_ == "ROOT" and tok.pos_ in {"VERB", "AUX"}]
|
153 |
+
if not root_verbs:
|
154 |
+
root_root = [tok for tok in doc if tok.dep_ == "ROOT"]
|
155 |
+
token = root_root[0] if root_root else doc[0]
|
156 |
+
issues.append({
|
157 |
+
"start": token.i,
|
158 |
+
"end": token.i + 1,
|
159 |
+
"message": "Sentence is missing a main verb (no ROOT verb)."
|
160 |
+
})
|
161 |
+
|
162 |
+
# 2. Verb(s) present but no subject
|
163 |
+
verbs = [tok for tok in doc if tok.pos_ in {"VERB", "AUX"}]
|
164 |
+
subjects = [tok for tok in doc if tok.dep_ in {"nsubj", "nsubjpass"}]
|
165 |
+
if verbs and not subjects:
|
166 |
+
for verb in verbs:
|
167 |
+
issues.append({
|
168 |
+
"start": verb.i,
|
169 |
+
"end": verb.i + 1,
|
170 |
+
"message": "Sentence has verb(s) but no subject (possible fragment)."
|
171 |
+
})
|
172 |
+
|
173 |
+
# 3. Dangling prepositions
|
174 |
+
for tok in doc:
|
175 |
+
if tok.pos_ == "ADP" and len(list(tok.children)) == 0:
|
176 |
+
issues.append({
|
177 |
+
"start": tok.i,
|
178 |
+
"end": tok.i + 1,
|
179 |
+
"message": f"Dangling preposition '{tok.text}' (no object or complement)."
|
180 |
+
})
|
181 |
+
|
182 |
+
# 4. Noun pile-up (no verbs, all tokens are nominal)
|
183 |
+
if not any(tok.pos_ in {"VERB", "AUX"} for tok in doc) and \
|
184 |
+
all(tok.pos_ in {"NOUN", "PROPN", "ADJ", "DET", "NUM"} for tok in doc if tok.is_alpha):
|
185 |
+
token = doc[0]
|
186 |
+
issues.append({
|
187 |
+
"start": token.i,
|
188 |
+
"end": token.i + 1,
|
189 |
+
"message": "Sentence lacks a verb or any verbal structure (nominal phrase pile-up)."
|
190 |
+
})
|
191 |
+
|
192 |
+
# 5. Multiple ROOTs (possible run-on)
|
193 |
+
root_count = sum(1 for tok in doc if tok.dep_ == "ROOT")
|
194 |
+
if root_count > 1:
|
195 |
+
for tok in doc:
|
196 |
+
if tok.dep_ == "ROOT":
|
197 |
+
issues.append({
|
198 |
+
"start": tok.i,
|
199 |
+
"end": tok.i + 1,
|
200 |
+
"message": "Sentence has multiple ROOTs — possible run-on sentence."
|
201 |
+
})
|
202 |
+
|
203 |
+
return issues
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
language_tool_python
|
2 |
+
transformers
|
3 |
+
torch
|
scorer.ipynb
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stderr",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"/opt/anaconda3/envs/teach-bs/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
13 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"from categories.fluency import *"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 2,
|
24 |
+
"metadata": {},
|
25 |
+
"outputs": [
|
26 |
+
{
|
27 |
+
"name": "stdout",
|
28 |
+
"output_type": "stream",
|
29 |
+
"text": [
|
30 |
+
"Sentence: The car hit the cone.\n"
|
31 |
+
]
|
32 |
+
}
|
33 |
+
],
|
34 |
+
"source": [
|
35 |
+
"s = input(\"Enter a sentence: \") # Prompt the user to enter a sentence\n",
|
36 |
+
"\n",
|
37 |
+
"if s == \"\":\n",
|
38 |
+
" s = \"The cat sat the quickly up apples banana.\"\n",
|
39 |
+
"\n",
|
40 |
+
"print(\"Sentence:\", s) # Print the input sentence\n",
|
41 |
+
"\n",
|
42 |
+
"err = grammar_errors(s) # Call the function to execute the grammar error checking\n",
|
43 |
+
"flu = pseudo_perplexity(s) # Call the function to execute the fluency checking"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "code",
|
48 |
+
"execution_count": 3,
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [
|
51 |
+
{
|
52 |
+
"name": "stdout",
|
53 |
+
"output_type": "stream",
|
54 |
+
"text": [
|
55 |
+
"Perplexity above threshold: 0: The\n",
|
56 |
+
"[{'start': 0, 'end': 0, 'message': 'Perplexity above threshold: 0'}]\n"
|
57 |
+
]
|
58 |
+
}
|
59 |
+
],
|
60 |
+
"source": [
|
61 |
+
"combined_err = err[\"errors\"] + flu[\"errors\"] # Combine the error counts from both functions\n",
|
62 |
+
"\n",
|
63 |
+
"for e in combined_err:\n",
|
64 |
+
" substr = \" \".join(s.split(\" \")[e[\"start\"]:e[\"end\"]+1])\n",
|
65 |
+
" print(f\"{e['message']}: {substr}\") # Print the error messages\n",
|
66 |
+
"\n",
|
67 |
+
"print(combined_err)\n"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "code",
|
72 |
+
"execution_count": 4,
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [
|
75 |
+
{
|
76 |
+
"name": "stdout",
|
77 |
+
"output_type": "stream",
|
78 |
+
"text": [
|
79 |
+
"Fluency Score: 30.0\n"
|
80 |
+
]
|
81 |
+
}
|
82 |
+
],
|
83 |
+
"source": [
|
84 |
+
"fluency_score = 0.6 * err[\"score\"] + 0.4 * flu[\"score\"] # Calculate the fluency score\n",
|
85 |
+
"print(\"Fluency Score:\", fluency_score) # Print the fluency score"
|
86 |
+
]
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"metadata": {
|
90 |
+
"kernelspec": {
|
91 |
+
"display_name": "teach-bs",
|
92 |
+
"language": "python",
|
93 |
+
"name": "python3"
|
94 |
+
},
|
95 |
+
"language_info": {
|
96 |
+
"codemirror_mode": {
|
97 |
+
"name": "ipython",
|
98 |
+
"version": 3
|
99 |
+
},
|
100 |
+
"file_extension": ".py",
|
101 |
+
"mimetype": "text/x-python",
|
102 |
+
"name": "python",
|
103 |
+
"nbconvert_exporter": "python",
|
104 |
+
"pygments_lexer": "ipython3",
|
105 |
+
"version": "3.11.11"
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"nbformat": 4,
|
109 |
+
"nbformat_minor": 2
|
110 |
+
}
|