File size: 6,541 Bytes
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc373eb
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import random
import torch
from torch import nn
import numpy as np
import re
from einops import rearrange
from dataclasses import dataclass
from torchvision import transforms
from diffusers.models.modeling_utils import ModelMixin

from transformers.utils import ModelOutput
from typing import Iterable, Optional, Union, List

import step1x3d_geometry
from step1x3d_geometry.utils.typing import *
from step1x3d_geometry.utils.misc import get_device

from .base import BaseLabelEncoder

DEFAULT_POSE = 0  # "unknown", "t-pose", "a-pose", uncond
NUM_POSE_CLASSES = 3
POSE_MAPPING = {"unknown": 0, "t-pose": 1, "a-pose": 2, "uncond": 3}

DEFAULT_SYMMETRY_TYPE = 0  # "asymmetry", "x", uncond
NUM_SYMMETRY_TYPE_CLASSES = 2
SYMMETRY_TYPE_MAPPING = {"asymmetry": 0, "x": 1, "y": 0, "z": 0, "uncond": 2}

DEFAULT_GEOMETRY_QUALITY = 0  # "normal", "smooth", "sharp", uncond,
NUM_GEOMETRY_QUALITY_CLASSES = 3
GEOMETRY_QUALITY_MAPPING = {"normal": 0, "smooth": 1, "sharp": 2, "uncod": 3}


@step1x3d_geometry.register("label-encoder")
class LabelEncoder(BaseLabelEncoder, ModelMixin):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.

    Args:
        num_classes (`int`): The number of classes.
        hidden_size (`int`): The size of the vector embeddings.
    """

    def configure(self) -> None:
        super().configure()

        if self.cfg.zero_uncond_embeds:
            self.embedding_table_tpose = nn.Embedding(
                NUM_POSE_CLASSES, self.cfg.hidden_size
            )
            self.embedding_table_symmetry_type = nn.Embedding(
                NUM_SYMMETRY_TYPE_CLASSES, self.cfg.hidden_size
            )
            self.embedding_table_geometry_quality = nn.Embedding(
                NUM_GEOMETRY_QUALITY_CLASSES, self.cfg.hidden_size
            )
        else:
            self.embedding_table_tpose = nn.Embedding(
                NUM_POSE_CLASSES + 1, self.cfg.hidden_size
            )
            self.embedding_table_symmetry_type = nn.Embedding(
                NUM_SYMMETRY_TYPE_CLASSES + 1, self.cfg.hidden_size
            )
            self.embedding_table_geometry_quality = nn.Embedding(
                NUM_GEOMETRY_QUALITY_CLASSES + 1, self.cfg.hidden_size
            )

        if self.cfg.zero_uncond_embeds:
            self.empty_label_embeds = torch.zeros((1, 3, self.cfg.hidden_size)).detach()
        else:
            self.empty_label_embeds = (
                self.encode_label(  # the last class label is for the uncond
                    [{"pose": "", "symetry": "", "geometry_type": ""}]
                ).detach()
            )

        # load pretrained_model_name_or_path
        if self.cfg.pretrained_model_name_or_path is not None:
            print(f"Loading ckpt from {self.cfg.pretrained_model_name_or_path}")
            ckpt = torch.load(
                self.cfg.pretrained_model_name_or_path, map_location="cpu"
            )["state_dict"]
            pretrained_model_ckpt = {}
            for k, v in ckpt.items():
                if k.startswith("label_condition."):
                    pretrained_model_ckpt[k.replace("label_condition.", "")] = v
            self.load_state_dict(pretrained_model_ckpt, strict=True)

    def encode_label(self, labels: List[dict]) -> torch.FloatTensor:
        tpose_label_embeds = []
        symmetry_type_label_embeds = []
        geometry_quality_label_embeds = []

        for label in labels:
            if "pose" in label.keys():
                if label["pose"] is None or label["pose"] == "":
                    tpose_label_embeds.append(
                        torch.zeros(self.cfg.hidden_size).detach().to(get_device())
                    )
                else:
                    tpose_label_embeds.append(
                        self.embedding_table_symmetry_type(
                            torch.tensor(POSE_MAPPING[label["pose"][0]]).to(
                                get_device()
                            )
                        )
                    )
            else:
                tpose_label_embeds.append(
                    self.embedding_table_tpose(
                        torch.tensor(DEFAULT_POSE).to(get_device())
                    )
                )

            if "symmetry" in label.keys():
                if label["symmetry"] is None or label["symmetry"] == "":
                    symmetry_type_label_embeds.append(
                        torch.zeros(self.cfg.hidden_size).detach().to(get_device())
                    )
                else:
                    symmetry_type_label_embeds.append(
                        self.embedding_table_symmetry_type(
                            torch.tensor(
                                SYMMETRY_TYPE_MAPPING[label["symmetry"]]
                            ).to(get_device())
                        )
                    )
            else:
                symmetry_type_label_embeds.append(
                    self.embedding_table_symmetry_type(
                        torch.tensor(DEFAULT_SYMMETRY_TYPE).to(get_device())
                    )
                )

            if "geometry_type" in label.keys():
                if label["geometry_type"] is None or label["geometry_type"] == "":
                    geometry_quality_label_embeds.append(
                        torch.zeros(self.cfg.hidden_size).detach().to(get_device())
                    )
                else:
                    geometry_quality_label_embeds.append(
                        self.embedding_table_geometry_quality(
                            torch.tensor(
                                GEOMETRY_QUALITY_MAPPING[label["geometry_type"][0]]
                            ).to(get_device())
                        )
                    )
            else:
                geometry_quality_label_embeds.append(
                    self.embedding_table_geometry_quality(
                        torch.tensor(DEFAULT_GEOMETRY_QUALITY).to(get_device())
                    )
                )

        tpose_label_embeds = torch.stack(tpose_label_embeds)
        symmetry_type_label_embeds = torch.stack(symmetry_type_label_embeds)
        geometry_quality_label_embeds = torch.stack(geometry_quality_label_embeds)

        label_embeds = torch.stack(
            [
                tpose_label_embeds,
                symmetry_type_label_embeds,
                geometry_quality_label_embeds,
            ],
            dim=1,
        ).to(self.dtype)

        return label_embeds