This view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- .gitignore +11 -0
- app.py +135 -0
- examples/images/000.png +3 -0
- examples/images/001.png +3 -0
- examples/images/004.png +3 -0
- examples/images/008.png +3 -0
- examples/images/028.png +3 -0
- examples/images/032.png +3 -0
- examples/images/061.png +3 -0
- examples/images/107.png +3 -0
- requirements.txt +50 -0
- step1x3d_geometry/__init__.py +52 -0
- step1x3d_geometry/data/Objaverse.py +73 -0
- step1x3d_geometry/data/__init__.py +1 -0
- step1x3d_geometry/data/base.py +350 -0
- step1x3d_geometry/models/__init__.py +1 -0
- step1x3d_geometry/models/attention.py +776 -0
- step1x3d_geometry/models/attention_processor.py +482 -0
- step1x3d_geometry/models/autoencoders/__init__.py +3 -0
- step1x3d_geometry/models/autoencoders/michelangelo_autoencoder.py +765 -0
- step1x3d_geometry/models/autoencoders/surface_extractors.py +137 -0
- step1x3d_geometry/models/autoencoders/transformers/attention.py +286 -0
- step1x3d_geometry/models/autoencoders/transformers/perceiver_1d.py +50 -0
- step1x3d_geometry/models/autoencoders/transformers/utils.py +21 -0
- step1x3d_geometry/models/autoencoders/volume_decoders.py +327 -0
- step1x3d_geometry/models/conditional_encoders/__init__.py +6 -0
- step1x3d_geometry/models/conditional_encoders/base.py +202 -0
- step1x3d_geometry/models/conditional_encoders/clip/modeling_clip.py +1597 -0
- step1x3d_geometry/models/conditional_encoders/clip/modeling_conditional_clip.py +443 -0
- step1x3d_geometry/models/conditional_encoders/dinov2/modeling_conditional_dinov2.py +248 -0
- step1x3d_geometry/models/conditional_encoders/dinov2/modeling_dinov2.py +978 -0
- step1x3d_geometry/models/conditional_encoders/dinov2_clip_encoder.py +514 -0
- step1x3d_geometry/models/conditional_encoders/dinov2_encoder.py +296 -0
- step1x3d_geometry/models/conditional_encoders/dinov2_with_registers/modeling_dinov2_with_registers.py +1088 -0
- step1x3d_geometry/models/conditional_encoders/label_encoder.py +167 -0
- step1x3d_geometry/models/conditional_encoders/t5_encoder.py +271 -0
- step1x3d_geometry/models/pipelines/pipeline.py +513 -0
- step1x3d_geometry/models/pipelines/pipeline_utils.py +404 -0
- step1x3d_geometry/models/transformers/__init__.py +1 -0
- step1x3d_geometry/models/transformers/flux_transformer_1d.py +600 -0
- step1x3d_geometry/models/transformers/pixart_transformer_1d.py +574 -0
- step1x3d_geometry/systems/__init__.py +1 -0
- step1x3d_geometry/systems/base.py +210 -0
- step1x3d_geometry/systems/shape_autoencoder.py +151 -0
- step1x3d_geometry/systems/shape_diffusion.py +425 -0
- step1x3d_geometry/systems/shape_rectified_flow.py +474 -0
- step1x3d_geometry/systems/utils.py +391 -0
- step1x3d_geometry/utils/__init__.py +1 -0
- step1x3d_geometry/utils/base.py +215 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
output
|
2 |
+
outputs
|
3 |
+
**__pycache__
|
4 |
+
.DS_Store
|
5 |
+
cache
|
6 |
+
step1x3d_texture/custom_rasterizer/build
|
7 |
+
step1x3d_texture/custom_rasterizer/dist
|
8 |
+
step1x3d_texture/custom_rasterizer/custom_rasterizer.egg-info
|
9 |
+
step1x3d_texture/differentiable_renderer/build
|
10 |
+
step1x3d_texture/differentiable_renderer/dist
|
11 |
+
step1x3d_texture/differentiable_renderer/mesh_processor.egg-info
|
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import uuid
|
4 |
+
import torch
|
5 |
+
import trimesh
|
6 |
+
import argparse
|
7 |
+
import numpy as np
|
8 |
+
import gradio as gr
|
9 |
+
from step1x3d_geometry.models.pipelines.pipeline import Step1X3DGeometryPipeline
|
10 |
+
from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import (
|
11 |
+
Step1X3DTexturePipeline,
|
12 |
+
)
|
13 |
+
from step1x3d_texture.utils.shape_post_process import (
|
14 |
+
FaceReducer,
|
15 |
+
DegenerateFaceRemover,
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
def generate_func(
|
20 |
+
input_image_path, guidance_scale, inference_steps, max_facenum, symmetry, edge_type
|
21 |
+
):
|
22 |
+
if "Label" in args.geometry_model:
|
23 |
+
out = geometry_model(
|
24 |
+
input_image_path,
|
25 |
+
label={"symmetry": symmetry, "edge_type": edge_type},
|
26 |
+
guidance_scale=float(guidance_scale),
|
27 |
+
octree_resolution=384,
|
28 |
+
max_facenum=int(max_facenum),
|
29 |
+
num_inference_steps=int(inference_steps),
|
30 |
+
)
|
31 |
+
else:
|
32 |
+
out = geometry_model(
|
33 |
+
input_image_path,
|
34 |
+
guidance_scale=float(guidance_scale),
|
35 |
+
num_inference_steps=int(inference_steps),
|
36 |
+
max_facenum=int(max_facenum),
|
37 |
+
)
|
38 |
+
|
39 |
+
save_name = str(uuid.uuid4())
|
40 |
+
print(save_name)
|
41 |
+
geometry_save_path = f"{args.cache_dir}/{save_name}.glb"
|
42 |
+
geometry_mesh = out.mesh[0]
|
43 |
+
geometry_mesh.export(geometry_save_path)
|
44 |
+
|
45 |
+
geometry_mesh = DegenerateFaceRemover()(geometry_mesh)
|
46 |
+
geometry_mesh = FaceReducer()(geometry_mesh)
|
47 |
+
textured_mesh = texture_model(input_image_path, geometry_mesh)
|
48 |
+
textured_save_path = f"{args.cache_dir}/{save_name}-textured.glb"
|
49 |
+
textured_mesh.export(textured_save_path)
|
50 |
+
|
51 |
+
torch.cuda.empty_cache()
|
52 |
+
print("Generate finish")
|
53 |
+
return geometry_save_path, textured_save_path
|
54 |
+
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
parser = argparse.ArgumentParser()
|
58 |
+
parser.add_argument(
|
59 |
+
"--geometry_model", type=str, default="Step1X-3D-Geometry-Label-1300m"
|
60 |
+
)
|
61 |
+
parser.add_argument(
|
62 |
+
"--texture_model", type=str, default="Step1X-3D-Texture"
|
63 |
+
)
|
64 |
+
parser.add_argument("--cache_dir", type=str, default="cache")
|
65 |
+
parser.add_argument("--port", type=int, default=7861)
|
66 |
+
parser.add_argument("--host", type=str, default="0.0.0.0")
|
67 |
+
args = parser.parse_args()
|
68 |
+
|
69 |
+
os.makedirs(args.cache_dir, exist_ok=True)
|
70 |
+
|
71 |
+
geometry_model = Step1X3DGeometryPipeline.from_pretrained(
|
72 |
+
"stepfun-ai/Step1X-3D", subfolder=args.geometry_model
|
73 |
+
).to("cuda")
|
74 |
+
|
75 |
+
texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model)
|
76 |
+
|
77 |
+
with gr.Blocks(title="Step1X-3D demo") as demo:
|
78 |
+
gr.Markdown("# Step1X-3D")
|
79 |
+
with gr.Row():
|
80 |
+
with gr.Column(scale=2):
|
81 |
+
input_image = gr.Image(
|
82 |
+
label="Image", type="filepath", image_mode="RGBA"
|
83 |
+
)
|
84 |
+
guidance_scale = gr.Number(label="Guidance Scale", value="7.5")
|
85 |
+
inference_steps = gr.Slider(
|
86 |
+
label="Inferece Steps", minimum=1, maximum=100, value=50
|
87 |
+
)
|
88 |
+
max_facenum = gr.Number(label="Max Face Num", value="400000")
|
89 |
+
symmetry = gr.Radio(
|
90 |
+
choices=["x", "asymmetry"],
|
91 |
+
label="Symmetry Type",
|
92 |
+
value="x",
|
93 |
+
type="value",
|
94 |
+
)
|
95 |
+
edge_type = gr.Radio(
|
96 |
+
choices=["sharp", "normal", "smooth"],
|
97 |
+
label="Edge Type",
|
98 |
+
value="sharp",
|
99 |
+
type="value",
|
100 |
+
)
|
101 |
+
btn = gr.Button("Start")
|
102 |
+
with gr.Column(scale=4):
|
103 |
+
textured_preview = gr.Model3D(label="Textured", height=380)
|
104 |
+
geometry_preview = gr.Model3D(label="Geometry", height=380)
|
105 |
+
with gr.Column(scale=1):
|
106 |
+
gr.Examples(
|
107 |
+
examples=[
|
108 |
+
["examples/images/000.png"],
|
109 |
+
["examples/images/001.png"],
|
110 |
+
["examples/images/004.png"],
|
111 |
+
["examples/images/008.png"],
|
112 |
+
["examples/images/028.png"],
|
113 |
+
["examples/images/032.png"],
|
114 |
+
["examples/images/061.png"],
|
115 |
+
["examples/images/107.png"],
|
116 |
+
],
|
117 |
+
inputs=[input_image],
|
118 |
+
cache_examples=False,
|
119 |
+
)
|
120 |
+
|
121 |
+
btn.click(
|
122 |
+
generate_func,
|
123 |
+
inputs=[
|
124 |
+
input_image,
|
125 |
+
guidance_scale,
|
126 |
+
inference_steps,
|
127 |
+
max_facenum,
|
128 |
+
symmetry,
|
129 |
+
edge_type,
|
130 |
+
],
|
131 |
+
outputs=[geometry_preview, textured_preview],
|
132 |
+
)
|
133 |
+
|
134 |
+
demo.launch(server_name=args.host, server_port=args.port)
|
135 |
+
demo.queue(concurrency_count=3)
|
examples/images/000.png
ADDED
![]() |
Git LFS Details
|
examples/images/001.png
ADDED
![]() |
Git LFS Details
|
examples/images/004.png
ADDED
![]() |
Git LFS Details
|
examples/images/008.png
ADDED
![]() |
Git LFS Details
|
examples/images/028.png
ADDED
![]() |
Git LFS Details
|
examples/images/032.png
ADDED
![]() |
Git LFS Details
|
examples/images/061.png
ADDED
![]() |
Git LFS Details
|
examples/images/107.png
ADDED
![]() |
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets==2.19.0
|
2 |
+
diffusers==0.32.2
|
3 |
+
einops==0.8.0
|
4 |
+
huggingface-hub==0.26.2
|
5 |
+
imageio==2.34.1
|
6 |
+
jaxtyping==0.2.28
|
7 |
+
joblib==1.4.0
|
8 |
+
lightning-utilities==0.11.2
|
9 |
+
matplotlib==3.8.4
|
10 |
+
numpy==1.26.4
|
11 |
+
omegaconf==2.3.0
|
12 |
+
opencv-python-headless==4.10.0.84
|
13 |
+
pandas==2.2.2
|
14 |
+
pillow==10.3.0
|
15 |
+
plyfile==1.0.3
|
16 |
+
PyMCubes==0.1.4
|
17 |
+
pyparsing==3.1.2
|
18 |
+
pytorch-lightning==2.2.4
|
19 |
+
PyYAML==6.0.1
|
20 |
+
safetensors==0.4.3
|
21 |
+
scikit-image==0.23.2
|
22 |
+
scipy==1.13.0
|
23 |
+
tensorboard==2.16.2
|
24 |
+
tensorboardX==2.6.2.2
|
25 |
+
timm==0.9.16
|
26 |
+
tokenizers==0.21.0
|
27 |
+
tqdm==4.66.2
|
28 |
+
transformers==4.48.0
|
29 |
+
trimesh==4.3.2
|
30 |
+
spaces==0.28.3
|
31 |
+
accelerate==1.5.2
|
32 |
+
rembg==2.0.65
|
33 |
+
gradio==5.5.0
|
34 |
+
wandb==0.18.6
|
35 |
+
deepspeed==0.16.4
|
36 |
+
sageattention==1.0.6
|
37 |
+
mosaicml-streaming==0.11.0
|
38 |
+
easydict==1.13
|
39 |
+
open3d==0.19.0
|
40 |
+
prodigyopt==1.1.2
|
41 |
+
peft==0.15.1
|
42 |
+
sentencepiece==0.2.0
|
43 |
+
pymeshlab==2023.12.post3
|
44 |
+
onnxruntime==1.21.0
|
45 |
+
bs4==0.0.2
|
46 |
+
xatlas==0.0.10
|
47 |
+
pybind11==2.13.6
|
48 |
+
pygltflib==1.16.4
|
49 |
+
kornia==0.8.0
|
50 |
+
git+https://github.com/NVlabs/nvdiffrast.git
|
step1x3d_geometry/__init__.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
|
3 |
+
__modules__ = {}
|
4 |
+
|
5 |
+
|
6 |
+
def register(name):
|
7 |
+
def decorator(cls):
|
8 |
+
if name in __modules__:
|
9 |
+
raise ValueError(
|
10 |
+
f"Module {name} already exists! Names of extensions conflict!"
|
11 |
+
)
|
12 |
+
else:
|
13 |
+
__modules__[name] = cls
|
14 |
+
return cls
|
15 |
+
|
16 |
+
return decorator
|
17 |
+
|
18 |
+
|
19 |
+
def find(name):
|
20 |
+
if name in __modules__:
|
21 |
+
return __modules__[name]
|
22 |
+
else:
|
23 |
+
try:
|
24 |
+
module_string = ".".join(name.split(".")[:-1])
|
25 |
+
cls_name = name.split(".")[-1]
|
26 |
+
module = importlib.import_module(module_string, package=None)
|
27 |
+
return getattr(module, cls_name)
|
28 |
+
except Exception as e:
|
29 |
+
raise ValueError(f"Module {name} not found!")
|
30 |
+
|
31 |
+
|
32 |
+
### grammar sugar for logging utilities ###
|
33 |
+
import logging
|
34 |
+
|
35 |
+
logger = logging.getLogger("pytorch_lightning")
|
36 |
+
|
37 |
+
from pytorch_lightning.utilities.rank_zero import (
|
38 |
+
rank_zero_debug,
|
39 |
+
rank_zero_info,
|
40 |
+
rank_zero_only,
|
41 |
+
)
|
42 |
+
|
43 |
+
debug = rank_zero_debug
|
44 |
+
info = rank_zero_info
|
45 |
+
|
46 |
+
|
47 |
+
@rank_zero_only
|
48 |
+
def warn(*args, **kwargs):
|
49 |
+
logger.warn(*args, **kwargs)
|
50 |
+
|
51 |
+
|
52 |
+
from . import data, models, systems
|
step1x3d_geometry/data/Objaverse.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import re
|
5 |
+
import cv2
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
|
8 |
+
import pytorch_lightning as pl
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
+
from step1x3d_geometry import register
|
13 |
+
from step1x3d_geometry.utils.typing import *
|
14 |
+
from step1x3d_geometry.utils.config import parse_structured
|
15 |
+
|
16 |
+
from streaming import StreamingDataLoader
|
17 |
+
from .base import BaseDataModuleConfig, BaseDataset
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class ObjaverseDataModuleConfig(BaseDataModuleConfig):
|
22 |
+
pass
|
23 |
+
|
24 |
+
|
25 |
+
class ObjaverseDataset(BaseDataset):
|
26 |
+
pass
|
27 |
+
|
28 |
+
|
29 |
+
@register("Objaverse-datamodule")
|
30 |
+
class ObjaverseDataModule(pl.LightningDataModule):
|
31 |
+
cfg: ObjaverseDataModuleConfig
|
32 |
+
|
33 |
+
def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None:
|
34 |
+
super().__init__()
|
35 |
+
self.cfg = parse_structured(ObjaverseDataModuleConfig, cfg)
|
36 |
+
|
37 |
+
def setup(self, stage=None) -> None:
|
38 |
+
if stage in [None, "fit"]:
|
39 |
+
self.train_dataset = ObjaverseDataset(self.cfg, "train")
|
40 |
+
if stage in [None, "fit", "validate"]:
|
41 |
+
self.val_dataset = ObjaverseDataset(self.cfg, "val")
|
42 |
+
if stage in [None, "test", "predict"]:
|
43 |
+
self.test_dataset = ObjaverseDataset(self.cfg, "test")
|
44 |
+
|
45 |
+
def prepare_data(self):
|
46 |
+
pass
|
47 |
+
|
48 |
+
def general_loader(
|
49 |
+
self, dataset, batch_size, collate_fn=None, num_workers=0
|
50 |
+
) -> DataLoader:
|
51 |
+
return DataLoader(
|
52 |
+
dataset,
|
53 |
+
batch_size=batch_size,
|
54 |
+
collate_fn=collate_fn,
|
55 |
+
num_workers=num_workers,
|
56 |
+
)
|
57 |
+
|
58 |
+
def train_dataloader(self) -> DataLoader:
|
59 |
+
return self.general_loader(
|
60 |
+
self.train_dataset,
|
61 |
+
batch_size=self.cfg.batch_size,
|
62 |
+
collate_fn=self.train_dataset.collate,
|
63 |
+
num_workers=self.cfg.num_workers,
|
64 |
+
)
|
65 |
+
|
66 |
+
def val_dataloader(self) -> DataLoader:
|
67 |
+
return self.general_loader(self.val_dataset, batch_size=1)
|
68 |
+
|
69 |
+
def test_dataloader(self) -> DataLoader:
|
70 |
+
return self.general_loader(self.test_dataset, batch_size=1)
|
71 |
+
|
72 |
+
def predict_dataloader(self) -> DataLoader:
|
73 |
+
return self.general_loader(self.test_dataset, batch_size=1)
|
step1x3d_geometry/data/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from . import Objaverse
|
step1x3d_geometry/data/base.py
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import re
|
5 |
+
import cv2
|
6 |
+
from dataclasses import dataclass, field
|
7 |
+
|
8 |
+
import random
|
9 |
+
import imageio
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import torchvision.transforms as transforms
|
14 |
+
from torch.utils.data import DataLoader, Dataset
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
from step1x3d_geometry.utils.typing import *
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class BaseDataModuleConfig:
|
22 |
+
root_dir: str = None
|
23 |
+
batch_size: int = 4
|
24 |
+
num_workers: int = 8
|
25 |
+
|
26 |
+
################################# General argumentation #################################
|
27 |
+
random_flip: bool = (
|
28 |
+
False # whether to randomly flip the input point cloud and the input images
|
29 |
+
)
|
30 |
+
|
31 |
+
################################# Geometry part #################################
|
32 |
+
load_geometry: bool = True # whether to load geometry data
|
33 |
+
with_sharp_data: bool = False
|
34 |
+
geo_data_type: str = "sdf" # occupancy, sdf
|
35 |
+
# for occupancy or sdf supervision
|
36 |
+
n_samples: int = 4096 # number of points in input point cloud
|
37 |
+
upsample_ratio: int = 1 # upsample ratio for input point cloud
|
38 |
+
sampling_strategy: Optional[str] = (
|
39 |
+
"random" # sampling strategy for input point cloud
|
40 |
+
)
|
41 |
+
scale: float = 1.0 # scale of the input point cloud and target supervision
|
42 |
+
noise_sigma: float = 0.0 # noise level of the input point cloud
|
43 |
+
rotate_points: bool = (
|
44 |
+
False # whether to rotate the input point cloud and the supervision, for VAE aug.
|
45 |
+
)
|
46 |
+
load_geometry_supervision: bool = False # whether to load supervision
|
47 |
+
supervision_type: str = "sdf" # occupancy, sdf, tsdf, tsdf_w_surface
|
48 |
+
n_supervision: int = 10000 # number of points in supervision
|
49 |
+
tsdf_threshold: float = (
|
50 |
+
0.01 # threshold for truncating sdf values, used when input is sdf
|
51 |
+
)
|
52 |
+
|
53 |
+
################################# Image part #################################
|
54 |
+
load_image: bool = False # whether to load images
|
55 |
+
image_type: str = "rgb" # rgb, normal, rgb_or_normal
|
56 |
+
image_file_type: str = "png" # png, jpeg
|
57 |
+
image_type_ratio: float = (
|
58 |
+
1.0 # ratio of rgb for each dataset when image_type is "rgb_or_normal"
|
59 |
+
)
|
60 |
+
crop_image: bool = True # whether to crop the input image
|
61 |
+
random_color_jitter: bool = (
|
62 |
+
False # whether to randomly color jitter the input images
|
63 |
+
)
|
64 |
+
random_rotate: bool = (
|
65 |
+
False # whether to randomly rotate the input images, default [-10 deg, 10 deg]
|
66 |
+
)
|
67 |
+
random_mask: bool = False # whether to add random mask to the input image
|
68 |
+
background_color: Tuple[int, int, int] = field(
|
69 |
+
default_factory=lambda: (255, 255, 255)
|
70 |
+
)
|
71 |
+
idx: Optional[List[int]] = None # index of the image to load
|
72 |
+
n_views: int = 1 # number of views
|
73 |
+
foreground_ratio: Optional[float] = 0.90
|
74 |
+
|
75 |
+
################################# Caption part #################################
|
76 |
+
load_caption: bool = False # whether to load captions
|
77 |
+
load_label: bool = False # whether to load labels
|
78 |
+
|
79 |
+
|
80 |
+
class BaseDataset(Dataset):
|
81 |
+
def __init__(self, cfg: Any, split: str) -> None:
|
82 |
+
super().__init__()
|
83 |
+
self.cfg: BaseDataModuleConfig = cfg
|
84 |
+
self.split = split
|
85 |
+
|
86 |
+
self.uids = json.load(open(f"{cfg.root_dir}/{split}.json"))
|
87 |
+
print(f"Loaded {len(self.uids)} {split} uids")
|
88 |
+
|
89 |
+
# add ColorJitter transforms for input images
|
90 |
+
if self.cfg.random_color_jitter:
|
91 |
+
self.color_jitter = transforms.ColorJitter(
|
92 |
+
brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2
|
93 |
+
)
|
94 |
+
|
95 |
+
# add RandomRotation transforms for input images
|
96 |
+
if self.cfg.random_rotate:
|
97 |
+
self.rotate = transforms.RandomRotation(
|
98 |
+
degrees=10, fill=(*self.cfg.background_color, 0.0)
|
99 |
+
) # by default 10 deg
|
100 |
+
|
101 |
+
def __len__(self):
|
102 |
+
return len(self.uids)
|
103 |
+
|
104 |
+
def _load_shape_from_occupancy_or_sdf(self, index: int) -> Dict[str, Any]:
|
105 |
+
if self.cfg.geo_data_type == "sdf":
|
106 |
+
data = np.load(f"{self.cfg.root_dir}/surfaces/{self.uids[index]}.npz")
|
107 |
+
# for input point cloud
|
108 |
+
surface = data["surface"]
|
109 |
+
if self.cfg.with_sharp_data:
|
110 |
+
sharp_surface = data["sharp_surface"]
|
111 |
+
else:
|
112 |
+
raise NotImplementedError(
|
113 |
+
f"Data type {self.cfg.geo_data_type} not implemented"
|
114 |
+
)
|
115 |
+
|
116 |
+
# random sampling
|
117 |
+
if self.cfg.sampling_strategy == "random":
|
118 |
+
rng = np.random.default_rng()
|
119 |
+
ind = rng.choice(
|
120 |
+
surface.shape[0],
|
121 |
+
self.cfg.upsample_ratio * self.cfg.n_samples,
|
122 |
+
replace=True,
|
123 |
+
)
|
124 |
+
surface = surface[ind]
|
125 |
+
if self.cfg.with_sharp_data:
|
126 |
+
sharp_surface = sharp_surface[ind]
|
127 |
+
elif self.cfg.sampling_strategy == "fps":
|
128 |
+
import fpsample
|
129 |
+
|
130 |
+
kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling(
|
131 |
+
surface[:, :3], self.cfg.n_samples, h=5
|
132 |
+
)
|
133 |
+
surface = surface[kdline_fps_samples_idx]
|
134 |
+
if self.cfg.with_sharp_data:
|
135 |
+
kdline_fps_samples_idx = fpsample.bucket_fps_kdline_sampling(
|
136 |
+
sharp_surface[:, :3], self.cfg.n_samples, h=5
|
137 |
+
)
|
138 |
+
sharp_surface = sharp_surface[kdline_fps_samples_idx]
|
139 |
+
else:
|
140 |
+
raise NotImplementedError(
|
141 |
+
f"sampling strategy {self.cfg.sampling_strategy} not implemented"
|
142 |
+
)
|
143 |
+
|
144 |
+
# rescale data
|
145 |
+
surface[:, :3] = surface[:, :3] * self.cfg.scale # target scale
|
146 |
+
if self.cfg.with_sharp_data:
|
147 |
+
sharp_surface[:, :3] = sharp_surface[:, :3] * self.cfg.scale # target scale
|
148 |
+
ret = {
|
149 |
+
"uid": self.uids[index].split("/")[-1],
|
150 |
+
"surface": surface.astype(np.float32),
|
151 |
+
"sharp_surface": sharp_surface.astype(np.float32),
|
152 |
+
}
|
153 |
+
else:
|
154 |
+
ret = {
|
155 |
+
"uid": self.uids[index].split("/")[-1],
|
156 |
+
"surface": surface.astype(np.float32),
|
157 |
+
}
|
158 |
+
|
159 |
+
return ret
|
160 |
+
|
161 |
+
def _load_shape_supervision_occupancy_or_sdf(self, index: int) -> Dict[str, Any]:
|
162 |
+
# for supervision
|
163 |
+
ret = {}
|
164 |
+
if self.cfg.geo_data_type == "sdf":
|
165 |
+
data = np.load(f"{self.cfg.root_dir}/surfaces/{self.uids[index]}.npz")
|
166 |
+
data = np.concatenate(
|
167 |
+
[data["volume_rand_points"], data["near_surface_points"]], axis=0
|
168 |
+
)
|
169 |
+
rand_points, sdfs = data[:, :3], data[:, 3:]
|
170 |
+
else:
|
171 |
+
raise NotImplementedError(
|
172 |
+
f"Data type {self.cfg.geo_data_type} not implemented"
|
173 |
+
)
|
174 |
+
|
175 |
+
# random sampling
|
176 |
+
rng = np.random.default_rng()
|
177 |
+
ind = rng.choice(rand_points.shape[0], self.cfg.n_supervision, replace=False)
|
178 |
+
rand_points = rand_points[ind]
|
179 |
+
rand_points = rand_points * self.cfg.scale
|
180 |
+
ret["rand_points"] = rand_points.astype(np.float32)
|
181 |
+
|
182 |
+
if self.cfg.geo_data_type == "sdf":
|
183 |
+
if self.cfg.supervision_type == "sdf":
|
184 |
+
ret["sdf"] = sdfs[ind].flatten().astype(np.float32)
|
185 |
+
elif self.cfg.supervision_type == "occupancy":
|
186 |
+
ret["occupancies"] = np.where(sdfs[ind].flatten() < 1e-3, 0, 1).astype(
|
187 |
+
np.float32
|
188 |
+
)
|
189 |
+
elif self.cfg.supervision_type == "tsdf":
|
190 |
+
ret["sdf"] = (
|
191 |
+
sdfs[ind]
|
192 |
+
.flatten()
|
193 |
+
.astype(np.float32)
|
194 |
+
.clip(-self.cfg.tsdf_threshold, self.cfg.tsdf_threshold)
|
195 |
+
/ self.cfg.tsdf_threshold
|
196 |
+
)
|
197 |
+
else:
|
198 |
+
raise NotImplementedError(
|
199 |
+
f"Supervision type {self.cfg.supervision_type} not implemented"
|
200 |
+
)
|
201 |
+
|
202 |
+
return ret
|
203 |
+
|
204 |
+
def _load_image(self, index: int) -> Dict[str, Any]:
|
205 |
+
def _process_img(image, background_color=(255, 255, 255), foreground_ratio=0.9):
|
206 |
+
alpha = image.getchannel("A")
|
207 |
+
background = Image.new("RGBA", image.size, (*background_color, 255))
|
208 |
+
image = Image.alpha_composite(background, image)
|
209 |
+
image = image.crop(alpha.getbbox())
|
210 |
+
|
211 |
+
new_size = tuple(int(dim * foreground_ratio) for dim in image.size)
|
212 |
+
resized_image = image.resize(new_size)
|
213 |
+
padded_image = Image.new("RGBA", image.size, (*background_color, 255))
|
214 |
+
paste_position = (
|
215 |
+
(image.width - resized_image.width) // 2,
|
216 |
+
(image.height - resized_image.height) // 2,
|
217 |
+
)
|
218 |
+
padded_image.paste(resized_image, paste_position)
|
219 |
+
|
220 |
+
# Expand image to 1:1
|
221 |
+
max_dim = max(padded_image.size)
|
222 |
+
image = Image.new("RGBA", (max_dim, max_dim), (*background_color, 255))
|
223 |
+
paste_position = (
|
224 |
+
(max_dim - padded_image.width) // 2,
|
225 |
+
(max_dim - padded_image.height) // 2,
|
226 |
+
)
|
227 |
+
image.paste(padded_image, paste_position)
|
228 |
+
image = image.resize((512, 512))
|
229 |
+
return image.convert("RGB"), alpha
|
230 |
+
|
231 |
+
ret = {}
|
232 |
+
if self.cfg.image_type == "rgb" or self.cfg.image_type == "normal":
|
233 |
+
assert (
|
234 |
+
self.cfg.n_views == 1
|
235 |
+
), "Only single view is supported for single image"
|
236 |
+
sel_idx = random.choice(self.cfg.idx)
|
237 |
+
ret["sel_image_idx"] = sel_idx
|
238 |
+
if self.cfg.image_type == "rgb":
|
239 |
+
img_path = (
|
240 |
+
f"{self.cfg.root_dir}/images/"
|
241 |
+
+ "/".join(self.uids[index].split("/")[-2:])
|
242 |
+
+ f"/{'{:04d}'.format(sel_idx)}_rgb.{self.cfg.image_file_type}"
|
243 |
+
)
|
244 |
+
elif self.cfg.image_type == "normal":
|
245 |
+
img_path = (
|
246 |
+
f"{self.cfg.root_dir}/images/"
|
247 |
+
+ "/".join(self.uids[index].split("/")[-2:])
|
248 |
+
+ f"/{'{:04d}'.format(sel_idx)}_normal.{self.cfg.image_file_type}"
|
249 |
+
)
|
250 |
+
image = Image.open(img_path).copy()
|
251 |
+
|
252 |
+
# add random color jitter
|
253 |
+
if self.cfg.random_color_jitter:
|
254 |
+
rgb = self.color_jitter(image.convert("RGB"))
|
255 |
+
image = Image.merge("RGBA", (*rgb.split(), image.getchannel("A")))
|
256 |
+
|
257 |
+
# add random rotation
|
258 |
+
if self.cfg.random_rotate:
|
259 |
+
image = self.rotate(image)
|
260 |
+
|
261 |
+
# add crop
|
262 |
+
if self.cfg.crop_image:
|
263 |
+
background_color = (
|
264 |
+
torch.randint(0, 256, (3,))
|
265 |
+
if self.cfg.background_color is None
|
266 |
+
else torch.as_tensor(self.cfg.background_color)
|
267 |
+
)
|
268 |
+
image, alpha = _process_img(
|
269 |
+
image, background_color, self.cfg.foreground_ratio
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
alpha = image.getchannel("A")
|
273 |
+
background = Image.new("RGBA", image.size, background_color)
|
274 |
+
image = Image.alpha_composite(background, image).convert("RGB")
|
275 |
+
|
276 |
+
ret["image"] = torch.from_numpy(np.array(image) / 255.0)
|
277 |
+
ret["mask"] = torch.from_numpy(np.array(alpha) / 255.0).unsqueeze(0)
|
278 |
+
else:
|
279 |
+
raise NotImplementedError(
|
280 |
+
f"Image type {self.cfg.image_type} not implemented"
|
281 |
+
)
|
282 |
+
|
283 |
+
return ret
|
284 |
+
|
285 |
+
def _get_data(self, index):
|
286 |
+
ret = {"uid": self.uids[index]}
|
287 |
+
|
288 |
+
# random flip
|
289 |
+
flip = np.random.rand() < 0.5 if self.cfg.random_flip else False
|
290 |
+
|
291 |
+
# load geometry
|
292 |
+
if self.cfg.load_geometry:
|
293 |
+
if self.cfg.geo_data_type == "occupancy" or self.cfg.geo_data_type == "sdf":
|
294 |
+
# load shape
|
295 |
+
ret = self._load_shape_from_occupancy_or_sdf(index)
|
296 |
+
# load supervision for shape
|
297 |
+
if self.cfg.load_geometry_supervision:
|
298 |
+
ret.update(self._load_shape_supervision_occupancy_or_sdf(index))
|
299 |
+
else:
|
300 |
+
raise NotImplementedError(
|
301 |
+
f"Geo data type {self.cfg.geo_data_type} not implemented"
|
302 |
+
)
|
303 |
+
|
304 |
+
if flip: # random flip the input point cloud and the supervision
|
305 |
+
for key in ret.keys():
|
306 |
+
if key in ["surface", "sharp_surface"]: # N x (xyz + normal)
|
307 |
+
ret[key][:, 0] = -ret[key][:, 0]
|
308 |
+
ret[key][:, 3] = -ret[key][:, 3]
|
309 |
+
elif key in ["rand_points"]:
|
310 |
+
ret[key][:, 0] = -ret[key][:, 0]
|
311 |
+
|
312 |
+
# load image
|
313 |
+
if self.cfg.load_image:
|
314 |
+
ret.update(self._load_image(index))
|
315 |
+
if flip: # random flip the input image
|
316 |
+
for key in ret.keys():
|
317 |
+
if key in ["image"]: # random flip the input image
|
318 |
+
ret[key] = torch.flip(ret[key], [2])
|
319 |
+
if key in ["mask"]: # random flip the input image
|
320 |
+
ret[key] = torch.flip(ret[key], [2])
|
321 |
+
|
322 |
+
# load caption
|
323 |
+
meta = None
|
324 |
+
if self.cfg.load_caption:
|
325 |
+
with open(f"{self.cfg.root_dir}/metas/{self.uids[index]}.json", "r") as f:
|
326 |
+
meta = json.load(f)
|
327 |
+
ret.update({"caption": meta["caption"]})
|
328 |
+
|
329 |
+
# load label
|
330 |
+
if self.cfg.load_label:
|
331 |
+
if meta is None:
|
332 |
+
with open(
|
333 |
+
f"{self.cfg.root_dir}/metas/{self.uids[index]}.json", "r"
|
334 |
+
) as f:
|
335 |
+
meta = json.load(f)
|
336 |
+
ret.update({"label": [meta["label"]]})
|
337 |
+
|
338 |
+
return ret
|
339 |
+
|
340 |
+
def __getitem__(self, index):
|
341 |
+
try:
|
342 |
+
return self._get_data(index)
|
343 |
+
except Exception as e:
|
344 |
+
print(f"Error in {self.uids[index]}: {e}")
|
345 |
+
return self.__getitem__(np.random.randint(len(self)))
|
346 |
+
|
347 |
+
def collate(self, batch):
|
348 |
+
from torch.utils.data._utils.collate import default_collate_fn_map
|
349 |
+
|
350 |
+
return torch.utils.data.default_collate(batch)
|
step1x3d_geometry/models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from . import autoencoders, conditional_encoders, transformers
|
step1x3d_geometry/models/attention.py
ADDED
@@ -0,0 +1,776 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
15 |
+
import collections.abc
|
16 |
+
from itertools import repeat
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import torch.distributed as dist
|
22 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
23 |
+
from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available
|
24 |
+
from diffusers.models.attention import FeedForward
|
25 |
+
from diffusers.models.attention_processor import Attention, AttentionProcessor
|
26 |
+
from diffusers.models.normalization import (
|
27 |
+
AdaLayerNormContinuous,
|
28 |
+
AdaLayerNormZero,
|
29 |
+
AdaLayerNormZeroSingle,
|
30 |
+
FP32LayerNorm,
|
31 |
+
LayerNorm,
|
32 |
+
)
|
33 |
+
|
34 |
+
from .attention_processor import FluxAttnProcessor2_0, AttnProcessor2_0
|
35 |
+
|
36 |
+
|
37 |
+
@maybe_allow_in_graph
|
38 |
+
class MultiCondBasicTransformerBlock(nn.Module):
|
39 |
+
r"""
|
40 |
+
A basic Transformer block.
|
41 |
+
|
42 |
+
Parameters:
|
43 |
+
dim (`int`): The number of channels in the input and output.
|
44 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
45 |
+
attention_head_dim (`int`): The number of channels in each head.
|
46 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
47 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
48 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
49 |
+
num_embeds_ada_norm (:
|
50 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
51 |
+
attention_bias (:
|
52 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
53 |
+
only_cross_attention (`bool`, *optional*):
|
54 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
55 |
+
double_self_attention (`bool`, *optional*):
|
56 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
57 |
+
upcast_attention (`bool`, *optional*):
|
58 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
59 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
60 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
61 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
62 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
63 |
+
final_dropout (`bool` *optional*, defaults to False):
|
64 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
65 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
66 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
67 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
68 |
+
The type of positional embeddings to apply to.
|
69 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
70 |
+
The maximum number of positional embeddings to apply.
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
dim: int,
|
76 |
+
num_attention_heads: int,
|
77 |
+
use_self_attention: bool = True,
|
78 |
+
use_cross_attention: bool = False,
|
79 |
+
self_attention_norm_type: Optional[
|
80 |
+
str
|
81 |
+
] = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
82 |
+
cross_attention_dim: Optional[int] = None,
|
83 |
+
cross_attention_norm_type: Optional[str] = None,
|
84 |
+
# parallel second cross attention
|
85 |
+
use_cross_attention_2: bool = False,
|
86 |
+
cross_attention_2_dim: Optional[int] = None,
|
87 |
+
cross_attention_2_norm_type: Optional[str] = None,
|
88 |
+
# parallel third cross attention
|
89 |
+
use_cross_attention_3: bool = False,
|
90 |
+
cross_attention_3_dim: Optional[int] = None,
|
91 |
+
cross_attention_3_norm_type: Optional[str] = None,
|
92 |
+
dropout=0.0,
|
93 |
+
activation_fn: str = "geglu",
|
94 |
+
num_embeds_ada_norm: Optional[int] = None,
|
95 |
+
attention_bias: bool = False,
|
96 |
+
only_cross_attention: bool = False,
|
97 |
+
double_self_attention: bool = False,
|
98 |
+
upcast_attention: bool = False,
|
99 |
+
norm_elementwise_affine: bool = True,
|
100 |
+
norm_eps: float = 1e-5,
|
101 |
+
final_dropout: bool = False,
|
102 |
+
attention_type: str = "default",
|
103 |
+
positional_embeddings: Optional[str] = None,
|
104 |
+
num_positional_embeddings: Optional[int] = None,
|
105 |
+
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
|
106 |
+
ada_norm_bias: Optional[int] = None,
|
107 |
+
ff_inner_dim: Optional[int] = None,
|
108 |
+
ff_bias: bool = True,
|
109 |
+
attention_out_bias: bool = True,
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
self.dim = dim
|
113 |
+
self.num_attention_heads = num_attention_heads
|
114 |
+
self.use_self_attention = use_self_attention
|
115 |
+
self.use_cross_attention = use_cross_attention
|
116 |
+
self.self_attention_norm_type = self_attention_norm_type
|
117 |
+
self.cross_attention_dim = cross_attention_dim
|
118 |
+
self.cross_attention_norm_type = cross_attention_norm_type
|
119 |
+
self.use_cross_attention_2 = use_cross_attention_2
|
120 |
+
self.cross_attention_2_dim = cross_attention_2_dim
|
121 |
+
self.cross_attention_2_norm_type = cross_attention_2_norm_type
|
122 |
+
self.use_cross_attention_3 = use_cross_attention_3
|
123 |
+
self.cross_attention_3_dim = cross_attention_3_dim
|
124 |
+
self.cross_attention_3_norm_type = cross_attention_3_norm_type
|
125 |
+
self.dropout = dropout
|
126 |
+
self.cross_attention_dim = cross_attention_dim
|
127 |
+
self.activation_fn = activation_fn
|
128 |
+
self.attention_bias = attention_bias
|
129 |
+
self.double_self_attention = double_self_attention
|
130 |
+
self.norm_elementwise_affine = norm_elementwise_affine
|
131 |
+
self.positional_embeddings = positional_embeddings
|
132 |
+
self.num_positional_embeddings = num_positional_embeddings
|
133 |
+
self.only_cross_attention = only_cross_attention
|
134 |
+
|
135 |
+
# We keep these boolean flags for backward-compatibility.
|
136 |
+
self.use_ada_layer_norm_zero = (
|
137 |
+
num_embeds_ada_norm is not None
|
138 |
+
) and self_attention_norm_type == "ada_norm_zero"
|
139 |
+
self.use_ada_layer_norm = (
|
140 |
+
num_embeds_ada_norm is not None
|
141 |
+
) and self_attention_norm_type == "ada_norm"
|
142 |
+
self.use_ada_layer_norm_single = self_attention_norm_type == "ada_norm_single"
|
143 |
+
self.use_layer_norm = self_attention_norm_type == "layer_norm"
|
144 |
+
self.use_ada_layer_norm_continuous = (
|
145 |
+
self_attention_norm_type == "ada_norm_continuous"
|
146 |
+
)
|
147 |
+
|
148 |
+
if (
|
149 |
+
self_attention_norm_type in ("ada_norm", "ada_norm_zero")
|
150 |
+
and num_embeds_ada_norm is None
|
151 |
+
):
|
152 |
+
raise ValueError(
|
153 |
+
f"`self_attention_norm_type` is set to {self_attention_norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
154 |
+
f" define `num_embeds_ada_norm` if setting `self_attention_norm_type` to {self_attention_norm_type}."
|
155 |
+
)
|
156 |
+
|
157 |
+
self.self_attention_norm_type = self_attention_norm_type
|
158 |
+
self.num_embeds_ada_norm = num_embeds_ada_norm
|
159 |
+
|
160 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
161 |
+
raise ValueError(
|
162 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
163 |
+
)
|
164 |
+
|
165 |
+
if positional_embeddings == "sinusoidal":
|
166 |
+
self.pos_embed = SinusoidalPositionalEmbedding(
|
167 |
+
dim, max_seq_length=num_positional_embeddings
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
self.pos_embed = None
|
171 |
+
|
172 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
173 |
+
if use_self_attention:
|
174 |
+
# 1. Self-Attn
|
175 |
+
if self_attention_norm_type == "ada_norm":
|
176 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
177 |
+
elif self_attention_norm_type == "ada_norm_zero":
|
178 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
179 |
+
elif self_attention_norm_type == "ada_norm_continuous":
|
180 |
+
self.norm1 = AdaLayerNormContinuous(
|
181 |
+
dim,
|
182 |
+
ada_norm_continous_conditioning_embedding_dim,
|
183 |
+
norm_elementwise_affine,
|
184 |
+
norm_eps,
|
185 |
+
ada_norm_bias,
|
186 |
+
"rms_norm",
|
187 |
+
)
|
188 |
+
elif (
|
189 |
+
self_attention_norm_type == "fp32_layer_norm"
|
190 |
+
or self_attention_norm_type is None
|
191 |
+
):
|
192 |
+
self.norm1 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
193 |
+
else:
|
194 |
+
self.norm1 = nn.RMSNorm(
|
195 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
196 |
+
)
|
197 |
+
|
198 |
+
self.attn1 = Attention(
|
199 |
+
query_dim=dim,
|
200 |
+
heads=num_attention_heads,
|
201 |
+
dim_head=dim // num_attention_heads,
|
202 |
+
dropout=dropout,
|
203 |
+
bias=attention_bias,
|
204 |
+
cross_attention_dim=(
|
205 |
+
cross_attention_dim if only_cross_attention else None
|
206 |
+
),
|
207 |
+
upcast_attention=upcast_attention,
|
208 |
+
out_bias=attention_out_bias,
|
209 |
+
processor=AttnProcessor2_0(),
|
210 |
+
)
|
211 |
+
|
212 |
+
# 2. Cross-Attn
|
213 |
+
if use_cross_attention or double_self_attention:
|
214 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
215 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
216 |
+
# the second cross attention block.
|
217 |
+
if cross_attention_norm_type == "ada_norm":
|
218 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
219 |
+
elif cross_attention_norm_type == "ada_norm_continuous":
|
220 |
+
self.norm2 = AdaLayerNormContinuous(
|
221 |
+
dim,
|
222 |
+
ada_norm_continous_conditioning_embedding_dim,
|
223 |
+
norm_elementwise_affine,
|
224 |
+
norm_eps,
|
225 |
+
ada_norm_bias,
|
226 |
+
"rms_norm",
|
227 |
+
)
|
228 |
+
elif (
|
229 |
+
cross_attention_norm_type == "fp32_layer_norm"
|
230 |
+
or cross_attention_norm_type is None
|
231 |
+
):
|
232 |
+
self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
233 |
+
else:
|
234 |
+
self.norm2 = nn.RMSNorm(
|
235 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
236 |
+
)
|
237 |
+
|
238 |
+
self.attn2 = Attention(
|
239 |
+
query_dim=dim,
|
240 |
+
cross_attention_dim=(
|
241 |
+
cross_attention_dim if not double_self_attention else None
|
242 |
+
),
|
243 |
+
heads=num_attention_heads,
|
244 |
+
dim_head=dim // num_attention_heads,
|
245 |
+
dropout=dropout,
|
246 |
+
bias=attention_bias,
|
247 |
+
upcast_attention=upcast_attention,
|
248 |
+
out_bias=attention_out_bias,
|
249 |
+
processor=AttnProcessor2_0(),
|
250 |
+
) # is self-attn if encoder_hidden_states is none
|
251 |
+
else:
|
252 |
+
self.norm2 = None
|
253 |
+
self.attn2 = None
|
254 |
+
|
255 |
+
# 2'. Parallel Second Cross-Attn
|
256 |
+
if use_cross_attention_2:
|
257 |
+
assert cross_attention_2_dim is not None
|
258 |
+
if cross_attention_2_norm_type == "ada_norm":
|
259 |
+
self.norm2_2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
260 |
+
elif cross_attention_2_norm_type == "ada_norm_continuous":
|
261 |
+
self.norm2_2 = AdaLayerNormContinuous(
|
262 |
+
dim,
|
263 |
+
ada_norm_continous_conditioning_embedding_dim,
|
264 |
+
norm_elementwise_affine,
|
265 |
+
norm_eps,
|
266 |
+
ada_norm_bias,
|
267 |
+
"rms_norm",
|
268 |
+
)
|
269 |
+
elif (
|
270 |
+
cross_attention_2_norm_type == "fp32_layer_norm"
|
271 |
+
or cross_attention_2_norm_type is None
|
272 |
+
):
|
273 |
+
self.norm2_2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
274 |
+
else:
|
275 |
+
self.norm2_2 = nn.RMSNorm(
|
276 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
277 |
+
)
|
278 |
+
|
279 |
+
self.attn2_2 = Attention(
|
280 |
+
query_dim=dim,
|
281 |
+
cross_attention_dim=cross_attention_2_dim,
|
282 |
+
heads=num_attention_heads,
|
283 |
+
dim_head=dim // num_attention_heads,
|
284 |
+
dropout=dropout,
|
285 |
+
bias=attention_bias,
|
286 |
+
upcast_attention=upcast_attention,
|
287 |
+
out_bias=attention_out_bias,
|
288 |
+
processor=AttnProcessor2_0(),
|
289 |
+
)
|
290 |
+
|
291 |
+
# self.attn2_2 = Attention(
|
292 |
+
# query_dim=dim,
|
293 |
+
# cross_attention_dim=cross_attention_2_dim,
|
294 |
+
# dim_head=dim // num_attention_heads,
|
295 |
+
# heads=num_attention_heads,
|
296 |
+
# qk_norm="rms_norm" if qk_norm else None,
|
297 |
+
# cross_attention_norm=cross_attention_2_norm_type,
|
298 |
+
# eps=1e-6,
|
299 |
+
# bias=qkv_bias,
|
300 |
+
# processor=AttnProcessor2_0(),
|
301 |
+
# )
|
302 |
+
else:
|
303 |
+
self.norm2_2 = None
|
304 |
+
self.attn2_2 = None
|
305 |
+
|
306 |
+
# 2'. Parallel Third Cross-Attn
|
307 |
+
if use_cross_attention_3:
|
308 |
+
assert cross_attention_3_dim is not None
|
309 |
+
if cross_attention_3_norm_type == "ada_norm":
|
310 |
+
self.norm2_3 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
311 |
+
elif cross_attention_3_norm_type == "ada_norm_continuous":
|
312 |
+
self.norm2_3 = AdaLayerNormContinuous(
|
313 |
+
dim,
|
314 |
+
ada_norm_continous_conditioning_embedding_dim,
|
315 |
+
norm_elementwise_affine,
|
316 |
+
norm_eps,
|
317 |
+
ada_norm_bias,
|
318 |
+
"rms_norm",
|
319 |
+
)
|
320 |
+
elif (
|
321 |
+
cross_attention_3_norm_type == "fp32_layer_norm"
|
322 |
+
or cross_attention_3_norm_type is None
|
323 |
+
):
|
324 |
+
self.norm2_3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
325 |
+
else:
|
326 |
+
self.norm2_3 = nn.RMSNorm(
|
327 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
328 |
+
)
|
329 |
+
|
330 |
+
self.attn2_3 = Attention(
|
331 |
+
query_dim=dim,
|
332 |
+
cross_attention_dim=cross_attention_3_dim,
|
333 |
+
heads=num_attention_heads,
|
334 |
+
dim_head=dim // num_attention_heads,
|
335 |
+
dropout=dropout,
|
336 |
+
bias=attention_bias,
|
337 |
+
upcast_attention=upcast_attention,
|
338 |
+
out_bias=attention_out_bias,
|
339 |
+
processor=AttnProcessor2_0(),
|
340 |
+
)
|
341 |
+
else:
|
342 |
+
self.norm2_3 = None
|
343 |
+
self.attn2_3 = None
|
344 |
+
|
345 |
+
# 3. Feed-forward
|
346 |
+
if self_attention_norm_type == "ada_norm_continuous":
|
347 |
+
self.norm3 = AdaLayerNormContinuous(
|
348 |
+
dim,
|
349 |
+
ada_norm_continous_conditioning_embedding_dim,
|
350 |
+
norm_elementwise_affine,
|
351 |
+
norm_eps,
|
352 |
+
ada_norm_bias,
|
353 |
+
"layer_norm",
|
354 |
+
)
|
355 |
+
|
356 |
+
elif self_attention_norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]:
|
357 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
358 |
+
elif self_attention_norm_type == "layer_norm_i2vgen":
|
359 |
+
self.norm3 = None
|
360 |
+
|
361 |
+
self.ff = FeedForward(
|
362 |
+
dim,
|
363 |
+
dropout=dropout,
|
364 |
+
activation_fn=activation_fn,
|
365 |
+
final_dropout=final_dropout,
|
366 |
+
inner_dim=ff_inner_dim,
|
367 |
+
bias=ff_bias,
|
368 |
+
)
|
369 |
+
|
370 |
+
# 4. Fuser
|
371 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
372 |
+
self.fuser = GatedSelfAttentionDense(
|
373 |
+
dim, cross_attention_dim, num_attention_heads, attention_head_dim
|
374 |
+
)
|
375 |
+
|
376 |
+
# 5. Scale-shift for PixArt-Alpha.
|
377 |
+
if self_attention_norm_type == "ada_norm_single":
|
378 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
379 |
+
|
380 |
+
# let chunk size default to None
|
381 |
+
self._chunk_size = None
|
382 |
+
self._chunk_dim = 0
|
383 |
+
|
384 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
385 |
+
# Sets chunk feed-forward
|
386 |
+
self._chunk_size = chunk_size
|
387 |
+
self._chunk_dim = dim
|
388 |
+
|
389 |
+
def forward(
|
390 |
+
self,
|
391 |
+
hidden_states: torch.Tensor,
|
392 |
+
attention_mask: Optional[torch.Tensor] = None,
|
393 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
394 |
+
encoder_hidden_states_2: Optional[torch.Tensor] = None,
|
395 |
+
encoder_hidden_states_3: Optional[torch.Tensor] = None,
|
396 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
397 |
+
encoder_attention_mask_2: Optional[torch.Tensor] = None,
|
398 |
+
encoder_attention_mask_3: Optional[torch.Tensor] = None,
|
399 |
+
timestep: Optional[torch.LongTensor] = None,
|
400 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
401 |
+
class_labels: Optional[torch.LongTensor] = None,
|
402 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
403 |
+
) -> torch.Tensor:
|
404 |
+
if cross_attention_kwargs is not None:
|
405 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
406 |
+
logger.warning(
|
407 |
+
"Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored."
|
408 |
+
)
|
409 |
+
|
410 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
411 |
+
# 0. Self-Attention
|
412 |
+
batch_size = hidden_states.shape[0]
|
413 |
+
|
414 |
+
if self.self_attention_norm_type == "ada_norm":
|
415 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
416 |
+
elif self.self_attention_norm_type == "ada_norm_zero":
|
417 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
418 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
419 |
+
)
|
420 |
+
elif self.self_attention_norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
421 |
+
norm_hidden_states = self.norm1(hidden_states)
|
422 |
+
elif self.self_attention_norm_type == "ada_norm_continuous":
|
423 |
+
norm_hidden_states = self.norm1(
|
424 |
+
hidden_states, added_cond_kwargs["pooled_text_emb"]
|
425 |
+
)
|
426 |
+
elif self.self_attention_norm_type == "ada_norm_single":
|
427 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
428 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
429 |
+
).chunk(6, dim=1)
|
430 |
+
norm_hidden_states = self.norm1(hidden_states)
|
431 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
432 |
+
else:
|
433 |
+
raise ValueError("Incorrect norm used")
|
434 |
+
|
435 |
+
if self.pos_embed is not None:
|
436 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
437 |
+
|
438 |
+
# 1. Prepare GLIGEN inputs
|
439 |
+
cross_attention_kwargs = (
|
440 |
+
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
441 |
+
)
|
442 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
443 |
+
|
444 |
+
attn_output = self.attn1(
|
445 |
+
norm_hidden_states,
|
446 |
+
encoder_hidden_states=(
|
447 |
+
encoder_hidden_states if self.only_cross_attention else None
|
448 |
+
),
|
449 |
+
attention_mask=attention_mask,
|
450 |
+
**cross_attention_kwargs,
|
451 |
+
)
|
452 |
+
|
453 |
+
if self.self_attention_norm_type == "ada_norm_zero":
|
454 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
455 |
+
elif self.self_attention_norm_type == "ada_norm_single":
|
456 |
+
attn_output = gate_msa * attn_output
|
457 |
+
|
458 |
+
hidden_states = attn_output + hidden_states
|
459 |
+
if hidden_states.ndim == 4:
|
460 |
+
hidden_states = hidden_states.squeeze(1)
|
461 |
+
|
462 |
+
# 1.2 GLIGEN Control
|
463 |
+
if gligen_kwargs is not None:
|
464 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
465 |
+
|
466 |
+
# 3. Cross-Attention
|
467 |
+
if self.attn2 is not None:
|
468 |
+
if self.cross_attention_norm_type == "ada_norm":
|
469 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
470 |
+
elif self.cross_attention_norm_type in [
|
471 |
+
"ada_norm_zero",
|
472 |
+
"layer_norm",
|
473 |
+
"layer_norm_i2vgen",
|
474 |
+
]:
|
475 |
+
norm_hidden_states = self.norm2(hidden_states)
|
476 |
+
elif self.cross_attention_norm_type == "ada_norm_single":
|
477 |
+
# For PixArt norm2 isn't applied here:
|
478 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
479 |
+
norm_hidden_states = hidden_states
|
480 |
+
elif self.cross_attention_norm_type == "ada_norm_continuous":
|
481 |
+
norm_hidden_states = self.norm2(
|
482 |
+
hidden_states, added_cond_kwargs["pooled_text_emb"]
|
483 |
+
)
|
484 |
+
else:
|
485 |
+
raise ValueError("Incorrect norm")
|
486 |
+
|
487 |
+
if (
|
488 |
+
self.pos_embed is not None
|
489 |
+
and self.cross_attention_norm_type != "ada_norm_single"
|
490 |
+
):
|
491 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
492 |
+
|
493 |
+
attn_output = self.attn2(
|
494 |
+
norm_hidden_states,
|
495 |
+
encoder_hidden_states=encoder_hidden_states,
|
496 |
+
attention_mask=encoder_attention_mask,
|
497 |
+
**cross_attention_kwargs,
|
498 |
+
)
|
499 |
+
hidden_states = attn_output + hidden_states
|
500 |
+
|
501 |
+
# 3.1 Parallel Second Cross-Attention
|
502 |
+
if self.attn2_2 is not None:
|
503 |
+
if self.cross_attention_2_norm_type == "ada_norm":
|
504 |
+
norm_hidden_states = self.norm2_2(hidden_states, timestep)
|
505 |
+
elif self.cross_attention_2_norm_type in [
|
506 |
+
"ada_norm_zero",
|
507 |
+
"layer_norm",
|
508 |
+
"layer_norm_i2vgen",
|
509 |
+
]:
|
510 |
+
norm_hidden_states = self.norm2_2(hidden_states)
|
511 |
+
elif self.cross_attention_2_norm_type == "ada_norm_single":
|
512 |
+
# For PixArt norm2_2 isn't applied here:
|
513 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
514 |
+
norm_hidden_states = hidden_states
|
515 |
+
elif self.cross_attention_2_norm_type == "ada_norm_continuous":
|
516 |
+
norm_hidden_states = self.norm2_2(
|
517 |
+
hidden_states, added_cond_kwargs["pooled_text_emb"]
|
518 |
+
)
|
519 |
+
else:
|
520 |
+
raise ValueError("Incorrect norm")
|
521 |
+
|
522 |
+
if (
|
523 |
+
self.pos_embed is not None
|
524 |
+
and self.cross_attention_2_norm_type != "ada_norm_single"
|
525 |
+
):
|
526 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
527 |
+
|
528 |
+
attn_output_2 = self.attn2_2(
|
529 |
+
norm_hidden_states,
|
530 |
+
encoder_hidden_states=encoder_hidden_states_2,
|
531 |
+
attention_mask=encoder_attention_mask_2,
|
532 |
+
**cross_attention_kwargs,
|
533 |
+
)
|
534 |
+
hidden_states = attn_output_2 + hidden_states
|
535 |
+
|
536 |
+
# 3.2 Parallel Third Cross-Attention
|
537 |
+
if self.attn2_3 is not None:
|
538 |
+
if self.cross_attention_3_norm_type == "ada_norm":
|
539 |
+
norm_hidden_states = self.norm2_3(hidden_states, timestep)
|
540 |
+
elif self.cross_attention_3_norm_type in [
|
541 |
+
"ada_norm_zero",
|
542 |
+
"layer_norm",
|
543 |
+
"layer_norm_i2vgen",
|
544 |
+
]:
|
545 |
+
norm_hidden_states = self.norm2_3(hidden_states)
|
546 |
+
elif self.cross_attention_3_norm_type == "ada_norm_single":
|
547 |
+
# For PixArt norm2_3 isn't applied here:
|
548 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
549 |
+
norm_hidden_states = hidden_states
|
550 |
+
elif self.cross_attention_3_norm_type == "ada_norm_continuous":
|
551 |
+
norm_hidden_states = self.norm2_3(
|
552 |
+
hidden_states, added_cond_kwargs["pooled_text_emb"]
|
553 |
+
)
|
554 |
+
else:
|
555 |
+
raise ValueError("Incorrect norm")
|
556 |
+
|
557 |
+
if (
|
558 |
+
self.pos_embed is not None
|
559 |
+
and self.cross_attention_3_norm_type != "ada_norm_single"
|
560 |
+
):
|
561 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
562 |
+
|
563 |
+
attn_output_3 = self.attn2_3(
|
564 |
+
norm_hidden_states,
|
565 |
+
encoder_hidden_states=encoder_hidden_states_3,
|
566 |
+
attention_mask=encoder_attention_mask_3,
|
567 |
+
**cross_attention_kwargs,
|
568 |
+
)
|
569 |
+
hidden_states = attn_output_3 + hidden_states
|
570 |
+
|
571 |
+
# 4. Feed-forward
|
572 |
+
# i2vgen doesn't have this norm 🤷♂️
|
573 |
+
if self.self_attention_norm_type == "ada_norm_continuous":
|
574 |
+
norm_hidden_states = self.norm3(
|
575 |
+
hidden_states, added_cond_kwargs["pooled_text_emb"]
|
576 |
+
)
|
577 |
+
elif not self.self_attention_norm_type == "ada_norm_single":
|
578 |
+
norm_hidden_states = self.norm3(hidden_states)
|
579 |
+
|
580 |
+
if self.self_attention_norm_type == "ada_norm_zero":
|
581 |
+
norm_hidden_states = (
|
582 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
583 |
+
)
|
584 |
+
|
585 |
+
if self.self_attention_norm_type == "ada_norm_single":
|
586 |
+
norm_hidden_states = self.norm2(hidden_states)
|
587 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
588 |
+
|
589 |
+
if self._chunk_size is not None:
|
590 |
+
# "feed_forward_chunk_size" can be used to save memory
|
591 |
+
ff_output = _chunked_feed_forward(
|
592 |
+
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size
|
593 |
+
)
|
594 |
+
else:
|
595 |
+
ff_output = self.ff(norm_hidden_states)
|
596 |
+
|
597 |
+
if self.self_attention_norm_type == "ada_norm_zero":
|
598 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
599 |
+
elif self.self_attention_norm_type == "ada_norm_single":
|
600 |
+
ff_output = gate_mlp * ff_output
|
601 |
+
|
602 |
+
hidden_states = ff_output + hidden_states
|
603 |
+
|
604 |
+
return hidden_states
|
605 |
+
|
606 |
+
|
607 |
+
@maybe_allow_in_graph
|
608 |
+
class FluxSingleTransformerBlock(nn.Module):
|
609 |
+
def __init__(
|
610 |
+
self,
|
611 |
+
dim: int,
|
612 |
+
num_attention_heads: int,
|
613 |
+
attention_head_dim: int,
|
614 |
+
mlp_ratio: float = 4.0,
|
615 |
+
):
|
616 |
+
super().__init__()
|
617 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
618 |
+
|
619 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
620 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
621 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
622 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
623 |
+
|
624 |
+
if is_torch_npu_available():
|
625 |
+
deprecation_message = (
|
626 |
+
"Defaulting to FluxAttnProcessor2_0_NPU for NPU devices will be removed. Attention processors "
|
627 |
+
"should be set explicitly using the `set_attn_processor` method."
|
628 |
+
)
|
629 |
+
deprecate("npu_processor", "0.34.0", deprecation_message)
|
630 |
+
processor = FluxAttnProcessor2_0_NPU()
|
631 |
+
else:
|
632 |
+
processor = FluxAttnProcessor2_0()
|
633 |
+
|
634 |
+
self.attn = Attention(
|
635 |
+
query_dim=dim,
|
636 |
+
cross_attention_dim=None,
|
637 |
+
dim_head=attention_head_dim,
|
638 |
+
heads=num_attention_heads,
|
639 |
+
out_dim=dim,
|
640 |
+
bias=True,
|
641 |
+
processor=processor,
|
642 |
+
qk_norm="rms_norm",
|
643 |
+
eps=1e-6,
|
644 |
+
pre_only=True,
|
645 |
+
)
|
646 |
+
|
647 |
+
def forward(
|
648 |
+
self,
|
649 |
+
hidden_states: torch.Tensor,
|
650 |
+
temb: torch.Tensor,
|
651 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
652 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
653 |
+
) -> torch.Tensor:
|
654 |
+
residual = hidden_states
|
655 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
656 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
657 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
658 |
+
attn_output = self.attn(
|
659 |
+
hidden_states=norm_hidden_states,
|
660 |
+
image_rotary_emb=image_rotary_emb,
|
661 |
+
**joint_attention_kwargs,
|
662 |
+
)
|
663 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
664 |
+
gate = gate.unsqueeze(1)
|
665 |
+
|
666 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
667 |
+
hidden_states = residual + hidden_states
|
668 |
+
if hidden_states.dtype == torch.float16:
|
669 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
670 |
+
|
671 |
+
return hidden_states
|
672 |
+
|
673 |
+
|
674 |
+
@maybe_allow_in_graph
|
675 |
+
class FluxTransformerBlock(nn.Module):
|
676 |
+
def __init__(
|
677 |
+
self,
|
678 |
+
dim: int,
|
679 |
+
num_attention_heads: int,
|
680 |
+
attention_head_dim: int,
|
681 |
+
qk_norm: str = "rms_norm",
|
682 |
+
eps: float = 1e-6,
|
683 |
+
):
|
684 |
+
super().__init__()
|
685 |
+
|
686 |
+
self.norm1 = AdaLayerNormZero(dim)
|
687 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
688 |
+
|
689 |
+
self.attn = Attention(
|
690 |
+
query_dim=dim,
|
691 |
+
cross_attention_dim=None,
|
692 |
+
added_kv_proj_dim=dim,
|
693 |
+
dim_head=attention_head_dim,
|
694 |
+
heads=num_attention_heads,
|
695 |
+
out_dim=dim,
|
696 |
+
context_pre_only=False,
|
697 |
+
bias=True,
|
698 |
+
processor=FluxAttnProcessor2_0(),
|
699 |
+
qk_norm=qk_norm,
|
700 |
+
eps=eps,
|
701 |
+
)
|
702 |
+
|
703 |
+
mlp_ratio = 4.0
|
704 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
705 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
706 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
707 |
+
|
708 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
709 |
+
self.ff_context = FeedForward(
|
710 |
+
dim=dim, dim_out=dim, activation_fn="gelu-approximate"
|
711 |
+
)
|
712 |
+
|
713 |
+
def forward(
|
714 |
+
self,
|
715 |
+
hidden_states: torch.Tensor,
|
716 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
717 |
+
temb: Optional[torch.Tensor] = None,
|
718 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
719 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
720 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
721 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
722 |
+
hidden_states, emb=temb
|
723 |
+
)
|
724 |
+
|
725 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
|
726 |
+
self.norm1_context(encoder_hidden_states, emb=temb)
|
727 |
+
)
|
728 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
729 |
+
# Attention.
|
730 |
+
attention_outputs = self.attn(
|
731 |
+
hidden_states=norm_hidden_states,
|
732 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
733 |
+
image_rotary_emb=image_rotary_emb,
|
734 |
+
**joint_attention_kwargs,
|
735 |
+
)
|
736 |
+
|
737 |
+
if len(attention_outputs) == 2:
|
738 |
+
attn_output, context_attn_output = attention_outputs
|
739 |
+
elif len(attention_outputs) == 3:
|
740 |
+
attn_output, context_attn_output, ip_attn_output = attention_outputs
|
741 |
+
|
742 |
+
# Process attention outputs for the `hidden_states`.
|
743 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
744 |
+
hidden_states = hidden_states + attn_output
|
745 |
+
|
746 |
+
norm_hidden_states = self.norm2(hidden_states)
|
747 |
+
norm_hidden_states = (
|
748 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
749 |
+
)
|
750 |
+
|
751 |
+
ff_output = self.ff(norm_hidden_states)
|
752 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
753 |
+
|
754 |
+
hidden_states = hidden_states + ff_output
|
755 |
+
if len(attention_outputs) == 3:
|
756 |
+
hidden_states = hidden_states + ip_attn_output
|
757 |
+
|
758 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
759 |
+
|
760 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
761 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
762 |
+
|
763 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
764 |
+
norm_encoder_hidden_states = (
|
765 |
+
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
|
766 |
+
+ c_shift_mlp[:, None]
|
767 |
+
)
|
768 |
+
|
769 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
770 |
+
encoder_hidden_states = (
|
771 |
+
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
772 |
+
)
|
773 |
+
if encoder_hidden_states.dtype == torch.float16:
|
774 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
775 |
+
|
776 |
+
return encoder_hidden_states, hidden_states
|
step1x3d_geometry/models/attention_processor.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Callable, List, Optional, Tuple, Union
|
15 |
+
|
16 |
+
import os
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from diffusers.models.attention_processor import Attention
|
20 |
+
from diffusers.utils import logging
|
21 |
+
from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available
|
22 |
+
from diffusers.utils.torch_utils import is_torch_version, maybe_allow_in_graph
|
23 |
+
from einops import rearrange
|
24 |
+
from torch import nn
|
25 |
+
|
26 |
+
# add sageattention support
|
27 |
+
scaled_dot_product_attention = F.scaled_dot_product_attention
|
28 |
+
if os.environ.get("USE_SAGEATTN", "0") == "1":
|
29 |
+
try:
|
30 |
+
from sageattention import sageattn
|
31 |
+
except ImportError:
|
32 |
+
raise ImportError(
|
33 |
+
'Please install the package "sageattention" to use this USE_SAGEATTN.'
|
34 |
+
)
|
35 |
+
scaled_dot_product_attention = sageattn
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38 |
+
|
39 |
+
|
40 |
+
class AttnProcessor2_0:
|
41 |
+
r"""
|
42 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self):
|
46 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
47 |
+
raise ImportError(
|
48 |
+
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
49 |
+
)
|
50 |
+
|
51 |
+
def __call__(
|
52 |
+
self,
|
53 |
+
attn: Attention,
|
54 |
+
hidden_states: torch.Tensor,
|
55 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
56 |
+
attention_mask: Optional[torch.Tensor] = None,
|
57 |
+
temb: Optional[torch.Tensor] = None,
|
58 |
+
*args,
|
59 |
+
**kwargs,
|
60 |
+
) -> torch.Tensor:
|
61 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
62 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
63 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
64 |
+
|
65 |
+
residual = hidden_states
|
66 |
+
if attn.spatial_norm is not None:
|
67 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
68 |
+
|
69 |
+
input_ndim = hidden_states.ndim
|
70 |
+
|
71 |
+
if input_ndim == 4:
|
72 |
+
batch_size, channel, height, width = hidden_states.shape
|
73 |
+
hidden_states = hidden_states.view(
|
74 |
+
batch_size, channel, height * width
|
75 |
+
).transpose(1, 2)
|
76 |
+
|
77 |
+
batch_size, sequence_length, _ = (
|
78 |
+
hidden_states.shape
|
79 |
+
if encoder_hidden_states is None
|
80 |
+
else encoder_hidden_states.shape
|
81 |
+
)
|
82 |
+
|
83 |
+
if attention_mask is not None:
|
84 |
+
attention_mask = attn.prepare_attention_mask(
|
85 |
+
attention_mask, sequence_length, batch_size
|
86 |
+
)
|
87 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
88 |
+
# (batch, heads, source_length, target_length)
|
89 |
+
attention_mask = attention_mask.view(
|
90 |
+
batch_size, attn.heads, -1, attention_mask.shape[-1]
|
91 |
+
)
|
92 |
+
|
93 |
+
if attn.group_norm is not None:
|
94 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
95 |
+
1, 2
|
96 |
+
)
|
97 |
+
|
98 |
+
query = attn.to_q(hidden_states)
|
99 |
+
|
100 |
+
if encoder_hidden_states is None:
|
101 |
+
encoder_hidden_states = hidden_states
|
102 |
+
elif attn.norm_cross:
|
103 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
104 |
+
encoder_hidden_states
|
105 |
+
)
|
106 |
+
|
107 |
+
key = attn.to_k(encoder_hidden_states)
|
108 |
+
value = attn.to_v(encoder_hidden_states)
|
109 |
+
|
110 |
+
inner_dim = key.shape[-1]
|
111 |
+
head_dim = inner_dim // attn.heads
|
112 |
+
|
113 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
114 |
+
|
115 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
116 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
117 |
+
|
118 |
+
if attn.norm_q is not None:
|
119 |
+
query = attn.norm_q(query)
|
120 |
+
if attn.norm_k is not None:
|
121 |
+
key = attn.norm_k(key)
|
122 |
+
|
123 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
124 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
125 |
+
hidden_states = scaled_dot_product_attention(
|
126 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
127 |
+
)
|
128 |
+
|
129 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
130 |
+
batch_size, -1, attn.heads * head_dim
|
131 |
+
)
|
132 |
+
hidden_states = hidden_states.to(query.dtype)
|
133 |
+
|
134 |
+
# linear proj
|
135 |
+
hidden_states = attn.to_out[0](hidden_states)
|
136 |
+
# dropout
|
137 |
+
hidden_states = attn.to_out[1](hidden_states)
|
138 |
+
|
139 |
+
if input_ndim == 4:
|
140 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
141 |
+
batch_size, channel, height, width
|
142 |
+
)
|
143 |
+
|
144 |
+
if attn.residual_connection:
|
145 |
+
hidden_states = hidden_states + residual
|
146 |
+
|
147 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
148 |
+
|
149 |
+
return hidden_states
|
150 |
+
|
151 |
+
|
152 |
+
class FusedAttnProcessor2_0:
|
153 |
+
r"""
|
154 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses
|
155 |
+
fused projection layers. For self-attention modules, all projection matrices (i.e., query, key, value) are fused.
|
156 |
+
For cross-attention modules, key and value projection matrices are fused.
|
157 |
+
|
158 |
+
<Tip warning={true}>
|
159 |
+
|
160 |
+
This API is currently 🧪 experimental in nature and can change in future.
|
161 |
+
|
162 |
+
</Tip>
|
163 |
+
"""
|
164 |
+
|
165 |
+
def __init__(self):
|
166 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
167 |
+
raise ImportError(
|
168 |
+
"FusedAttnProcessor2_0 requires at least PyTorch 2.0, to use it. Please upgrade PyTorch to > 2.0."
|
169 |
+
)
|
170 |
+
|
171 |
+
def __call__(
|
172 |
+
self,
|
173 |
+
attn: Attention,
|
174 |
+
hidden_states: torch.Tensor,
|
175 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
176 |
+
attention_mask: Optional[torch.Tensor] = None,
|
177 |
+
temb: Optional[torch.Tensor] = None,
|
178 |
+
*args,
|
179 |
+
**kwargs,
|
180 |
+
) -> torch.Tensor:
|
181 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
182 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
183 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
184 |
+
|
185 |
+
residual = hidden_states
|
186 |
+
if attn.spatial_norm is not None:
|
187 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
188 |
+
|
189 |
+
input_ndim = hidden_states.ndim
|
190 |
+
|
191 |
+
if input_ndim == 4:
|
192 |
+
batch_size, channel, height, width = hidden_states.shape
|
193 |
+
hidden_states = hidden_states.view(
|
194 |
+
batch_size, channel, height * width
|
195 |
+
).transpose(1, 2)
|
196 |
+
|
197 |
+
batch_size, sequence_length, _ = (
|
198 |
+
hidden_states.shape
|
199 |
+
if encoder_hidden_states is None
|
200 |
+
else encoder_hidden_states.shape
|
201 |
+
)
|
202 |
+
|
203 |
+
if attention_mask is not None:
|
204 |
+
attention_mask = attn.prepare_attention_mask(
|
205 |
+
attention_mask, sequence_length, batch_size
|
206 |
+
)
|
207 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
208 |
+
# (batch, heads, source_length, target_length)
|
209 |
+
attention_mask = attention_mask.view(
|
210 |
+
batch_size, attn.heads, -1, attention_mask.shape[-1]
|
211 |
+
)
|
212 |
+
|
213 |
+
if attn.group_norm is not None:
|
214 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
|
215 |
+
1, 2
|
216 |
+
)
|
217 |
+
|
218 |
+
if encoder_hidden_states is None:
|
219 |
+
qkv = attn.to_qkv(hidden_states)
|
220 |
+
split_size = qkv.shape[-1] // 3
|
221 |
+
query, key, value = torch.split(qkv, split_size, dim=-1)
|
222 |
+
else:
|
223 |
+
if attn.norm_cross:
|
224 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
225 |
+
encoder_hidden_states
|
226 |
+
)
|
227 |
+
query = attn.to_q(hidden_states)
|
228 |
+
|
229 |
+
kv = attn.to_kv(encoder_hidden_states)
|
230 |
+
split_size = kv.shape[-1] // 2
|
231 |
+
key, value = torch.split(kv, split_size, dim=-1)
|
232 |
+
|
233 |
+
inner_dim = key.shape[-1]
|
234 |
+
head_dim = inner_dim // attn.heads
|
235 |
+
|
236 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
237 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
238 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
239 |
+
|
240 |
+
if attn.norm_q is not None:
|
241 |
+
query = attn.norm_q(query)
|
242 |
+
if attn.norm_k is not None:
|
243 |
+
key = attn.norm_k(key)
|
244 |
+
|
245 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
246 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
247 |
+
hidden_states = F.scaled_dot_product_attention(
|
248 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
249 |
+
)
|
250 |
+
|
251 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
252 |
+
batch_size, -1, attn.heads * head_dim
|
253 |
+
)
|
254 |
+
hidden_states = hidden_states.to(query.dtype)
|
255 |
+
|
256 |
+
# linear proj
|
257 |
+
hidden_states = attn.to_out[0](hidden_states)
|
258 |
+
# dropout
|
259 |
+
hidden_states = attn.to_out[1](hidden_states)
|
260 |
+
|
261 |
+
if input_ndim == 4:
|
262 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
263 |
+
batch_size, channel, height, width
|
264 |
+
)
|
265 |
+
|
266 |
+
if attn.residual_connection:
|
267 |
+
hidden_states = hidden_states + residual
|
268 |
+
|
269 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
270 |
+
|
271 |
+
return hidden_states
|
272 |
+
|
273 |
+
|
274 |
+
class FluxAttnProcessor2_0:
|
275 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
276 |
+
|
277 |
+
def __init__(self):
|
278 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
279 |
+
raise ImportError(
|
280 |
+
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
281 |
+
)
|
282 |
+
|
283 |
+
def __call__(
|
284 |
+
self,
|
285 |
+
attn: Attention,
|
286 |
+
hidden_states: torch.FloatTensor,
|
287 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
288 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
289 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
290 |
+
) -> torch.FloatTensor:
|
291 |
+
batch_size, _, _ = (
|
292 |
+
hidden_states.shape
|
293 |
+
if encoder_hidden_states is None
|
294 |
+
else encoder_hidden_states.shape
|
295 |
+
)
|
296 |
+
|
297 |
+
# `sample` projections.
|
298 |
+
query = attn.to_q(hidden_states)
|
299 |
+
key = attn.to_k(hidden_states)
|
300 |
+
value = attn.to_v(hidden_states)
|
301 |
+
|
302 |
+
inner_dim = key.shape[-1]
|
303 |
+
head_dim = inner_dim // attn.heads
|
304 |
+
|
305 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
306 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
307 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
308 |
+
|
309 |
+
if attn.norm_q is not None:
|
310 |
+
query = attn.norm_q(query)
|
311 |
+
if attn.norm_k is not None:
|
312 |
+
key = attn.norm_k(key)
|
313 |
+
|
314 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
315 |
+
if encoder_hidden_states is not None:
|
316 |
+
# `context` projections.
|
317 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
318 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
319 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
320 |
+
|
321 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
322 |
+
batch_size, -1, attn.heads, head_dim
|
323 |
+
).transpose(1, 2)
|
324 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
325 |
+
batch_size, -1, attn.heads, head_dim
|
326 |
+
).transpose(1, 2)
|
327 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
328 |
+
batch_size, -1, attn.heads, head_dim
|
329 |
+
).transpose(1, 2)
|
330 |
+
|
331 |
+
if attn.norm_added_q is not None:
|
332 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
333 |
+
encoder_hidden_states_query_proj
|
334 |
+
)
|
335 |
+
if attn.norm_added_k is not None:
|
336 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
337 |
+
encoder_hidden_states_key_proj
|
338 |
+
)
|
339 |
+
|
340 |
+
# attention
|
341 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
342 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
343 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
344 |
+
|
345 |
+
if image_rotary_emb is not None:
|
346 |
+
from .embeddings import apply_rotary_emb
|
347 |
+
|
348 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
349 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
350 |
+
|
351 |
+
hidden_states = scaled_dot_product_attention(
|
352 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
353 |
+
)
|
354 |
+
|
355 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
356 |
+
batch_size, -1, attn.heads * head_dim
|
357 |
+
)
|
358 |
+
hidden_states = hidden_states.to(query.dtype)
|
359 |
+
|
360 |
+
if encoder_hidden_states is not None:
|
361 |
+
encoder_hidden_states, hidden_states = (
|
362 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
363 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
364 |
+
)
|
365 |
+
|
366 |
+
# linear proj
|
367 |
+
hidden_states = attn.to_out[0](hidden_states)
|
368 |
+
# dropout
|
369 |
+
hidden_states = attn.to_out[1](hidden_states)
|
370 |
+
|
371 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
372 |
+
|
373 |
+
return hidden_states, encoder_hidden_states
|
374 |
+
else:
|
375 |
+
return hidden_states
|
376 |
+
|
377 |
+
|
378 |
+
class FusedFluxAttnProcessor2_0:
|
379 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
380 |
+
|
381 |
+
def __init__(self):
|
382 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
383 |
+
raise ImportError(
|
384 |
+
"FusedFluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
385 |
+
)
|
386 |
+
|
387 |
+
def __call__(
|
388 |
+
self,
|
389 |
+
attn: Attention,
|
390 |
+
hidden_states: torch.FloatTensor,
|
391 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
392 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
393 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
394 |
+
) -> torch.FloatTensor:
|
395 |
+
batch_size, _, _ = (
|
396 |
+
hidden_states.shape
|
397 |
+
if encoder_hidden_states is None
|
398 |
+
else encoder_hidden_states.shape
|
399 |
+
)
|
400 |
+
|
401 |
+
# `sample` projections.
|
402 |
+
qkv = attn.to_qkv(hidden_states)
|
403 |
+
split_size = qkv.shape[-1] // 3
|
404 |
+
query, key, value = torch.split(qkv, split_size, dim=-1)
|
405 |
+
|
406 |
+
inner_dim = key.shape[-1]
|
407 |
+
head_dim = inner_dim // attn.heads
|
408 |
+
|
409 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
410 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
411 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
412 |
+
|
413 |
+
if attn.norm_q is not None:
|
414 |
+
query = attn.norm_q(query)
|
415 |
+
if attn.norm_k is not None:
|
416 |
+
key = attn.norm_k(key)
|
417 |
+
|
418 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
419 |
+
# `context` projections.
|
420 |
+
if encoder_hidden_states is not None:
|
421 |
+
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
|
422 |
+
split_size = encoder_qkv.shape[-1] // 3
|
423 |
+
(
|
424 |
+
encoder_hidden_states_query_proj,
|
425 |
+
encoder_hidden_states_key_proj,
|
426 |
+
encoder_hidden_states_value_proj,
|
427 |
+
) = torch.split(encoder_qkv, split_size, dim=-1)
|
428 |
+
|
429 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
430 |
+
batch_size, -1, attn.heads, head_dim
|
431 |
+
).transpose(1, 2)
|
432 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
433 |
+
batch_size, -1, attn.heads, head_dim
|
434 |
+
).transpose(1, 2)
|
435 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
436 |
+
batch_size, -1, attn.heads, head_dim
|
437 |
+
).transpose(1, 2)
|
438 |
+
|
439 |
+
if attn.norm_added_q is not None:
|
440 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
441 |
+
encoder_hidden_states_query_proj
|
442 |
+
)
|
443 |
+
if attn.norm_added_k is not None:
|
444 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
445 |
+
encoder_hidden_states_key_proj
|
446 |
+
)
|
447 |
+
|
448 |
+
# attention
|
449 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
450 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
451 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
452 |
+
|
453 |
+
if image_rotary_emb is not None:
|
454 |
+
from .embeddings import apply_rotary_emb
|
455 |
+
|
456 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
457 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
458 |
+
|
459 |
+
hidden_states = scaled_dot_product_attention(
|
460 |
+
query, key, value, dropout_p=0.0, is_causal=False
|
461 |
+
)
|
462 |
+
|
463 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
464 |
+
batch_size, -1, attn.heads * head_dim
|
465 |
+
)
|
466 |
+
hidden_states = hidden_states.to(query.dtype)
|
467 |
+
|
468 |
+
if encoder_hidden_states is not None:
|
469 |
+
encoder_hidden_states, hidden_states = (
|
470 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
471 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
472 |
+
)
|
473 |
+
|
474 |
+
# linear proj
|
475 |
+
hidden_states = attn.to_out[0](hidden_states)
|
476 |
+
# dropout
|
477 |
+
hidden_states = attn.to_out[1](hidden_states)
|
478 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
479 |
+
|
480 |
+
return hidden_states, encoder_hidden_states
|
481 |
+
else:
|
482 |
+
return hidden_states
|
step1x3d_geometry/models/autoencoders/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from . import (
|
2 |
+
michelangelo_autoencoder,
|
3 |
+
)
|
step1x3d_geometry/models/autoencoders/michelangelo_autoencoder.py
ADDED
@@ -0,0 +1,765 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
import time
|
8 |
+
import trimesh
|
9 |
+
import torch.nn as nn
|
10 |
+
from einops import repeat, rearrange
|
11 |
+
from tqdm import trange
|
12 |
+
from itertools import product
|
13 |
+
from diffusers.models.modeling_utils import ModelMixin
|
14 |
+
|
15 |
+
import step1x3d_geometry
|
16 |
+
from step1x3d_geometry.utils.checkpoint import checkpoint
|
17 |
+
from step1x3d_geometry.utils.base import BaseModule
|
18 |
+
from step1x3d_geometry.utils.typing import *
|
19 |
+
from step1x3d_geometry.utils.misc import get_world_size, get_device
|
20 |
+
|
21 |
+
from .transformers.perceiver_1d import Perceiver
|
22 |
+
from .transformers.attention import ResidualCrossAttentionBlock
|
23 |
+
from .volume_decoders import HierarchicalVolumeDecoder, VanillaVolumeDecoder
|
24 |
+
from .surface_extractors import MCSurfaceExtractor, DMCSurfaceExtractor
|
25 |
+
|
26 |
+
from ..pipelines.pipeline_utils import smart_load_model
|
27 |
+
from safetensors.torch import load_file
|
28 |
+
|
29 |
+
VALID_EMBED_TYPES = ["identity", "fourier", "learned_fourier", "siren"]
|
30 |
+
|
31 |
+
|
32 |
+
class FourierEmbedder(nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
num_freqs: int = 6,
|
36 |
+
logspace: bool = True,
|
37 |
+
input_dim: int = 3,
|
38 |
+
include_input: bool = True,
|
39 |
+
include_pi: bool = True,
|
40 |
+
) -> None:
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
if logspace:
|
44 |
+
frequencies = 2.0 ** torch.arange(num_freqs, dtype=torch.float32)
|
45 |
+
else:
|
46 |
+
frequencies = torch.linspace(
|
47 |
+
1.0, 2.0 ** (num_freqs - 1), num_freqs, dtype=torch.float32
|
48 |
+
)
|
49 |
+
|
50 |
+
if include_pi:
|
51 |
+
frequencies *= torch.pi
|
52 |
+
|
53 |
+
self.register_buffer("frequencies", frequencies, persistent=False)
|
54 |
+
self.include_input = include_input
|
55 |
+
self.num_freqs = num_freqs
|
56 |
+
|
57 |
+
self.out_dim = self.get_dims(input_dim)
|
58 |
+
|
59 |
+
def get_dims(self, input_dim):
|
60 |
+
temp = 1 if self.include_input or self.num_freqs == 0 else 0
|
61 |
+
out_dim = input_dim * (self.num_freqs * 2 + temp)
|
62 |
+
|
63 |
+
return out_dim
|
64 |
+
|
65 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
66 |
+
if self.num_freqs > 0:
|
67 |
+
embed = (x[..., None].contiguous() * self.frequencies).view(
|
68 |
+
*x.shape[:-1], -1
|
69 |
+
)
|
70 |
+
if self.include_input:
|
71 |
+
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
|
72 |
+
else:
|
73 |
+
return torch.cat((embed.sin(), embed.cos()), dim=-1)
|
74 |
+
else:
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
class LearnedFourierEmbedder(nn.Module):
|
79 |
+
def __init__(self, input_dim, dim):
|
80 |
+
super().__init__()
|
81 |
+
assert (dim % 2) == 0
|
82 |
+
half_dim = dim // 2
|
83 |
+
per_channel_dim = half_dim // input_dim
|
84 |
+
self.weights = nn.Parameter(torch.randn(per_channel_dim))
|
85 |
+
|
86 |
+
self.out_dim = self.get_dims(input_dim)
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
# [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d]
|
90 |
+
freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1)
|
91 |
+
fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1)
|
92 |
+
return fouriered
|
93 |
+
|
94 |
+
def get_dims(self, input_dim):
|
95 |
+
return input_dim * (self.weights.shape[0] * 2 + 1)
|
96 |
+
|
97 |
+
|
98 |
+
class Sine(nn.Module):
|
99 |
+
def __init__(self, w0=1.0):
|
100 |
+
super().__init__()
|
101 |
+
self.w0 = w0
|
102 |
+
|
103 |
+
def forward(self, x):
|
104 |
+
return torch.sin(self.w0 * x)
|
105 |
+
|
106 |
+
|
107 |
+
class Siren(nn.Module):
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
in_dim,
|
111 |
+
out_dim,
|
112 |
+
w0=1.0,
|
113 |
+
c=6.0,
|
114 |
+
is_first=False,
|
115 |
+
use_bias=True,
|
116 |
+
activation=None,
|
117 |
+
dropout=0.0,
|
118 |
+
):
|
119 |
+
super().__init__()
|
120 |
+
self.in_dim = in_dim
|
121 |
+
self.out_dim = out_dim
|
122 |
+
self.is_first = is_first
|
123 |
+
|
124 |
+
weight = torch.zeros(out_dim, in_dim)
|
125 |
+
bias = torch.zeros(out_dim) if use_bias else None
|
126 |
+
self.init_(weight, bias, c=c, w0=w0)
|
127 |
+
|
128 |
+
self.weight = nn.Parameter(weight)
|
129 |
+
self.bias = nn.Parameter(bias) if use_bias else None
|
130 |
+
self.activation = Sine(w0) if activation is None else activation
|
131 |
+
self.dropout = nn.Dropout(dropout)
|
132 |
+
|
133 |
+
def init_(self, weight, bias, c, w0):
|
134 |
+
dim = self.in_dim
|
135 |
+
|
136 |
+
w_std = (1 / dim) if self.is_first else (math.sqrt(c / dim) / w0)
|
137 |
+
weight.uniform_(-w_std, w_std)
|
138 |
+
|
139 |
+
if bias is not None:
|
140 |
+
bias.uniform_(-w_std, w_std)
|
141 |
+
|
142 |
+
def forward(self, x):
|
143 |
+
out = F.linear(x, self.weight, self.bias)
|
144 |
+
out = self.activation(out)
|
145 |
+
out = self.dropout(out)
|
146 |
+
return out
|
147 |
+
|
148 |
+
|
149 |
+
def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, include_pi=True):
|
150 |
+
if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1):
|
151 |
+
return nn.Identity(), input_dim
|
152 |
+
|
153 |
+
elif embed_type == "fourier":
|
154 |
+
embedder_obj = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
|
155 |
+
|
156 |
+
elif embed_type == "learned_fourier":
|
157 |
+
embedder_obj = LearnedFourierEmbedder(in_channels=input_dim, dim=num_freqs)
|
158 |
+
|
159 |
+
elif embed_type == "siren":
|
160 |
+
embedder_obj = Siren(
|
161 |
+
in_dim=input_dim, out_dim=num_freqs * input_dim * 2 + input_dim
|
162 |
+
)
|
163 |
+
|
164 |
+
else:
|
165 |
+
raise ValueError(
|
166 |
+
f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}"
|
167 |
+
)
|
168 |
+
return embedder_obj
|
169 |
+
|
170 |
+
|
171 |
+
###################### AutoEncoder
|
172 |
+
class DiagonalGaussianDistribution(ModelMixin, object):
|
173 |
+
def __init__(
|
174 |
+
self,
|
175 |
+
parameters: Union[torch.Tensor, List[torch.Tensor]],
|
176 |
+
deterministic=False,
|
177 |
+
feat_dim=1,
|
178 |
+
):
|
179 |
+
self.feat_dim = feat_dim
|
180 |
+
self.parameters = parameters
|
181 |
+
|
182 |
+
if isinstance(parameters, list):
|
183 |
+
self.mean = parameters[0]
|
184 |
+
self.logvar = parameters[1]
|
185 |
+
else:
|
186 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)
|
187 |
+
|
188 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
189 |
+
self.deterministic = deterministic
|
190 |
+
self.std = torch.exp(0.5 * self.logvar)
|
191 |
+
self.var = torch.exp(self.logvar)
|
192 |
+
if self.deterministic:
|
193 |
+
self.var = self.std = torch.zeros_like(self.mean)
|
194 |
+
|
195 |
+
def sample(self):
|
196 |
+
x = self.mean + self.std * torch.randn_like(self.mean)
|
197 |
+
return x
|
198 |
+
|
199 |
+
def kl(self, other=None, dims=(1, 2)):
|
200 |
+
if self.deterministic:
|
201 |
+
return torch.Tensor([0.0])
|
202 |
+
else:
|
203 |
+
if other is None:
|
204 |
+
return 0.5 * torch.mean(
|
205 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=dims
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
return 0.5 * torch.mean(
|
209 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
210 |
+
+ self.var / other.var
|
211 |
+
- 1.0
|
212 |
+
- self.logvar
|
213 |
+
+ other.logvar,
|
214 |
+
dim=dims,
|
215 |
+
)
|
216 |
+
|
217 |
+
def nll(self, sample, dims=(1, 2)):
|
218 |
+
if self.deterministic:
|
219 |
+
return torch.Tensor([0.0])
|
220 |
+
logtwopi = np.log(2.0 * np.pi)
|
221 |
+
return 0.5 * torch.sum(
|
222 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
223 |
+
dim=dims,
|
224 |
+
)
|
225 |
+
|
226 |
+
def mode(self):
|
227 |
+
return self.mean
|
228 |
+
|
229 |
+
|
230 |
+
class PerceiverCrossAttentionEncoder(ModelMixin, nn.Module):
|
231 |
+
def __init__(
|
232 |
+
self,
|
233 |
+
use_downsample: bool,
|
234 |
+
num_latents: int,
|
235 |
+
embedder: FourierEmbedder,
|
236 |
+
point_feats: int,
|
237 |
+
embed_point_feats: bool,
|
238 |
+
width: int,
|
239 |
+
heads: int,
|
240 |
+
layers: int,
|
241 |
+
init_scale: float = 0.25,
|
242 |
+
qkv_bias: bool = True,
|
243 |
+
qk_norm: bool = True,
|
244 |
+
use_ln_post: bool = False,
|
245 |
+
use_flash: bool = False,
|
246 |
+
use_checkpoint: bool = False,
|
247 |
+
use_multi_reso: bool = False,
|
248 |
+
resolutions: list = [],
|
249 |
+
sampling_prob: list = [],
|
250 |
+
with_sharp_data: bool = False,
|
251 |
+
):
|
252 |
+
|
253 |
+
super().__init__()
|
254 |
+
|
255 |
+
self.use_checkpoint = use_checkpoint
|
256 |
+
self.num_latents = num_latents
|
257 |
+
self.use_downsample = use_downsample
|
258 |
+
self.embed_point_feats = embed_point_feats
|
259 |
+
self.use_multi_reso = use_multi_reso
|
260 |
+
self.resolutions = resolutions
|
261 |
+
self.sampling_prob = sampling_prob
|
262 |
+
|
263 |
+
if not self.use_downsample:
|
264 |
+
self.query = nn.Parameter(torch.randn((num_latents, width)) * 0.02)
|
265 |
+
|
266 |
+
self.embedder = embedder
|
267 |
+
if self.embed_point_feats:
|
268 |
+
self.input_proj = nn.Linear(self.embedder.out_dim * 2, width)
|
269 |
+
else:
|
270 |
+
self.input_proj = nn.Linear(self.embedder.out_dim + point_feats, width)
|
271 |
+
|
272 |
+
self.cross_attn = ResidualCrossAttentionBlock(
|
273 |
+
width=width,
|
274 |
+
heads=heads,
|
275 |
+
init_scale=init_scale,
|
276 |
+
qkv_bias=qkv_bias,
|
277 |
+
qk_norm=qk_norm,
|
278 |
+
use_flash=use_flash,
|
279 |
+
)
|
280 |
+
|
281 |
+
self.with_sharp_data = with_sharp_data
|
282 |
+
if with_sharp_data:
|
283 |
+
self.downsmaple_num_latents = num_latents // 2
|
284 |
+
self.input_proj_sharp = nn.Linear(
|
285 |
+
self.embedder.out_dim + point_feats, width
|
286 |
+
)
|
287 |
+
self.cross_attn_sharp = ResidualCrossAttentionBlock(
|
288 |
+
width=width,
|
289 |
+
heads=heads,
|
290 |
+
init_scale=init_scale,
|
291 |
+
qkv_bias=qkv_bias,
|
292 |
+
qk_norm=qk_norm,
|
293 |
+
use_flash=use_flash,
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
self.downsmaple_num_latents = num_latents
|
297 |
+
|
298 |
+
self.self_attn = Perceiver(
|
299 |
+
n_ctx=num_latents,
|
300 |
+
width=width,
|
301 |
+
layers=layers,
|
302 |
+
heads=heads,
|
303 |
+
init_scale=init_scale,
|
304 |
+
qkv_bias=qkv_bias,
|
305 |
+
qk_norm=qk_norm,
|
306 |
+
use_flash=use_flash,
|
307 |
+
use_checkpoint=use_checkpoint,
|
308 |
+
)
|
309 |
+
|
310 |
+
if use_ln_post:
|
311 |
+
self.ln_post = nn.LayerNorm(width)
|
312 |
+
else:
|
313 |
+
self.ln_post = None
|
314 |
+
|
315 |
+
def _forward(self, pc, feats, sharp_pc=None, sharp_feat=None):
|
316 |
+
"""
|
317 |
+
|
318 |
+
Args:
|
319 |
+
pc (torch.FloatTensor): [B, N, 3]
|
320 |
+
feats (torch.FloatTensor or None): [B, N, C]
|
321 |
+
|
322 |
+
Returns:
|
323 |
+
|
324 |
+
"""
|
325 |
+
|
326 |
+
bs, N, D = pc.shape
|
327 |
+
|
328 |
+
data = self.embedder(pc)
|
329 |
+
if feats is not None:
|
330 |
+
if self.embed_point_feats:
|
331 |
+
feats = self.embedder(feats)
|
332 |
+
data = torch.cat([data, feats], dim=-1)
|
333 |
+
data = self.input_proj(data)
|
334 |
+
|
335 |
+
if self.with_sharp_data:
|
336 |
+
sharp_data = self.embedder(sharp_pc)
|
337 |
+
if sharp_feat is not None:
|
338 |
+
if self.embed_point_feats:
|
339 |
+
sharp_feat = self.embedder(sharp_feat)
|
340 |
+
sharp_data = torch.cat([sharp_data, sharp_feat], dim=-1)
|
341 |
+
sharp_data = self.input_proj_sharp(sharp_data)
|
342 |
+
|
343 |
+
if self.use_multi_reso:
|
344 |
+
resolution = random.choice(self.resolutions, size=1, p=self.sampling_prob)[
|
345 |
+
0
|
346 |
+
]
|
347 |
+
|
348 |
+
if resolution != N:
|
349 |
+
flattened = pc.view(bs * N, D) # bs*N, 64. 103,4096,3 -> 421888,3
|
350 |
+
batch = torch.arange(bs).to(pc.device) # 103
|
351 |
+
batch = torch.repeat_interleave(batch, N) # bs*N. 421888
|
352 |
+
pos = flattened.to(torch.float16)
|
353 |
+
ratio = 1.0 * resolution / N # 0.0625
|
354 |
+
idx = fps(pos, batch, ratio=ratio) # 26368
|
355 |
+
pc = pc.view(bs * N, -1)[idx].view(bs, -1, D)
|
356 |
+
bs, N, D = feats.shape
|
357 |
+
flattened1 = feats.view(bs * N, D)
|
358 |
+
feats = flattened1.view(bs * N, -1)[idx].view(bs, -1, D)
|
359 |
+
bs, N, D = pc.shape
|
360 |
+
|
361 |
+
if self.use_downsample:
|
362 |
+
###### fps
|
363 |
+
from torch_cluster import fps
|
364 |
+
|
365 |
+
flattened = pc.view(bs * N, D) # bs*N, 64
|
366 |
+
|
367 |
+
batch = torch.arange(bs).to(pc.device)
|
368 |
+
batch = torch.repeat_interleave(batch, N) # bs*N
|
369 |
+
|
370 |
+
pos = flattened.to(torch.float16)
|
371 |
+
ratio = 1.0 * self.downsmaple_num_latents / N
|
372 |
+
idx = fps(pos, batch, ratio=ratio).detach()
|
373 |
+
query = data.view(bs * N, -1)[idx].view(bs, -1, data.shape[-1])
|
374 |
+
|
375 |
+
if self.with_sharp_data:
|
376 |
+
bs, N, D = sharp_pc.shape
|
377 |
+
flattened = sharp_pc.view(bs * N, D) # bs*N, 64
|
378 |
+
pos = flattened.to(torch.float16)
|
379 |
+
ratio = 1.0 * self.downsmaple_num_latents / N
|
380 |
+
idx = fps(pos, batch, ratio=ratio).detach()
|
381 |
+
sharp_query = sharp_data.view(bs * N, -1)[idx].view(
|
382 |
+
bs, -1, sharp_data.shape[-1]
|
383 |
+
)
|
384 |
+
query = torch.cat([query, sharp_query], dim=1)
|
385 |
+
else:
|
386 |
+
query = self.query
|
387 |
+
query = repeat(query, "m c -> b m c", b=bs)
|
388 |
+
|
389 |
+
latents = self.cross_attn(query, data)
|
390 |
+
if self.with_sharp_data:
|
391 |
+
latents = latents + self.cross_attn_sharp(query, sharp_data)
|
392 |
+
latents = self.self_attn(latents)
|
393 |
+
|
394 |
+
if self.ln_post is not None:
|
395 |
+
latents = self.ln_post(latents)
|
396 |
+
|
397 |
+
return latents
|
398 |
+
|
399 |
+
def forward(
|
400 |
+
self,
|
401 |
+
pc: torch.FloatTensor,
|
402 |
+
feats: Optional[torch.FloatTensor] = None,
|
403 |
+
sharp_pc: Optional[torch.FloatTensor] = None,
|
404 |
+
sharp_feats: Optional[torch.FloatTensor] = None,
|
405 |
+
):
|
406 |
+
"""
|
407 |
+
|
408 |
+
Args:
|
409 |
+
pc (torch.FloatTensor): [B, N, 3]
|
410 |
+
feats (torch.FloatTensor or None): [B, N, C]
|
411 |
+
|
412 |
+
Returns:
|
413 |
+
dict
|
414 |
+
"""
|
415 |
+
|
416 |
+
return checkpoint(
|
417 |
+
self._forward,
|
418 |
+
(pc, feats, sharp_pc, sharp_feats),
|
419 |
+
self.parameters(),
|
420 |
+
self.use_checkpoint,
|
421 |
+
)
|
422 |
+
|
423 |
+
|
424 |
+
class PerceiverCrossAttentionDecoder(ModelMixin, nn.Module):
|
425 |
+
|
426 |
+
def __init__(
|
427 |
+
self,
|
428 |
+
num_latents: int,
|
429 |
+
out_dim: int,
|
430 |
+
embedder: FourierEmbedder,
|
431 |
+
width: int,
|
432 |
+
heads: int,
|
433 |
+
init_scale: float = 0.25,
|
434 |
+
qkv_bias: bool = True,
|
435 |
+
qk_norm: bool = True,
|
436 |
+
use_flash: bool = False,
|
437 |
+
use_checkpoint: bool = False,
|
438 |
+
):
|
439 |
+
|
440 |
+
super().__init__()
|
441 |
+
|
442 |
+
self.use_checkpoint = use_checkpoint
|
443 |
+
self.embedder = embedder
|
444 |
+
|
445 |
+
self.query_proj = nn.Linear(self.embedder.out_dim, width)
|
446 |
+
|
447 |
+
self.cross_attn_decoder = ResidualCrossAttentionBlock(
|
448 |
+
n_data=num_latents,
|
449 |
+
width=width,
|
450 |
+
heads=heads,
|
451 |
+
init_scale=init_scale,
|
452 |
+
qkv_bias=qkv_bias,
|
453 |
+
qk_norm=qk_norm,
|
454 |
+
use_flash=use_flash,
|
455 |
+
)
|
456 |
+
|
457 |
+
self.ln_post = nn.LayerNorm(width)
|
458 |
+
self.output_proj = nn.Linear(width, out_dim)
|
459 |
+
|
460 |
+
def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
461 |
+
queries = self.query_proj(self.embedder(queries))
|
462 |
+
x = self.cross_attn_decoder(queries, latents)
|
463 |
+
x = self.ln_post(x)
|
464 |
+
x = self.output_proj(x)
|
465 |
+
return x
|
466 |
+
|
467 |
+
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
468 |
+
return checkpoint(
|
469 |
+
self._forward, (queries, latents), self.parameters(), self.use_checkpoint
|
470 |
+
)
|
471 |
+
|
472 |
+
|
473 |
+
@step1x3d_geometry.register("michelangelo-autoencoder")
|
474 |
+
class MichelangeloAutoencoder(BaseModule):
|
475 |
+
r"""
|
476 |
+
A VAE model for encoding shapes into latents and decoding latent representations into shapes.
|
477 |
+
"""
|
478 |
+
|
479 |
+
@dataclass
|
480 |
+
class Config(BaseModule.Config):
|
481 |
+
pretrained_model_name_or_path: str = ""
|
482 |
+
subfolder: str = ""
|
483 |
+
n_samples: int = 4096
|
484 |
+
use_downsample: bool = False
|
485 |
+
downsample_ratio: float = 0.0625
|
486 |
+
num_latents: int = 256
|
487 |
+
point_feats: int = 0
|
488 |
+
embed_point_feats: bool = False
|
489 |
+
out_dim: int = 1
|
490 |
+
embed_dim: int = 64
|
491 |
+
embed_type: str = "fourier"
|
492 |
+
num_freqs: int = 8
|
493 |
+
include_pi: bool = True
|
494 |
+
width: int = 768
|
495 |
+
heads: int = 12
|
496 |
+
num_encoder_layers: int = 8
|
497 |
+
num_decoder_layers: int = 16
|
498 |
+
init_scale: float = 0.25
|
499 |
+
qkv_bias: bool = True
|
500 |
+
qk_norm: bool = False
|
501 |
+
use_ln_post: bool = False
|
502 |
+
use_flash: bool = False
|
503 |
+
use_checkpoint: bool = True
|
504 |
+
use_multi_reso: Optional[bool] = False
|
505 |
+
resolutions: Optional[List[int]] = None
|
506 |
+
sampling_prob: Optional[List[float]] = None
|
507 |
+
with_sharp_data: Optional[bool] = True
|
508 |
+
volume_decoder_type: str = "hierarchical"
|
509 |
+
surface_extractor_type: str = "mc"
|
510 |
+
z_scale_factor: float = 1.0
|
511 |
+
|
512 |
+
cfg: Config
|
513 |
+
|
514 |
+
def configure(self) -> None:
|
515 |
+
super().configure()
|
516 |
+
|
517 |
+
self.embedder = get_embedder(
|
518 |
+
embed_type=self.cfg.embed_type,
|
519 |
+
num_freqs=self.cfg.num_freqs,
|
520 |
+
include_pi=self.cfg.include_pi,
|
521 |
+
)
|
522 |
+
|
523 |
+
# encoder
|
524 |
+
self.cfg.init_scale = self.cfg.init_scale * math.sqrt(1.0 / self.cfg.width)
|
525 |
+
self.encoder = PerceiverCrossAttentionEncoder(
|
526 |
+
use_downsample=self.cfg.use_downsample,
|
527 |
+
embedder=self.embedder,
|
528 |
+
num_latents=self.cfg.num_latents,
|
529 |
+
point_feats=self.cfg.point_feats,
|
530 |
+
embed_point_feats=self.cfg.embed_point_feats,
|
531 |
+
width=self.cfg.width,
|
532 |
+
heads=self.cfg.heads,
|
533 |
+
layers=self.cfg.num_encoder_layers,
|
534 |
+
init_scale=self.cfg.init_scale,
|
535 |
+
qkv_bias=self.cfg.qkv_bias,
|
536 |
+
qk_norm=self.cfg.qk_norm,
|
537 |
+
use_ln_post=self.cfg.use_ln_post,
|
538 |
+
use_flash=self.cfg.use_flash,
|
539 |
+
use_checkpoint=self.cfg.use_checkpoint,
|
540 |
+
use_multi_reso=self.cfg.use_multi_reso,
|
541 |
+
resolutions=self.cfg.resolutions,
|
542 |
+
sampling_prob=self.cfg.sampling_prob,
|
543 |
+
with_sharp_data=self.cfg.with_sharp_data,
|
544 |
+
)
|
545 |
+
|
546 |
+
if self.cfg.embed_dim > 0:
|
547 |
+
# VAE embed
|
548 |
+
self.pre_kl = nn.Linear(self.cfg.width, self.cfg.embed_dim * 2)
|
549 |
+
self.post_kl = nn.Linear(self.cfg.embed_dim, self.cfg.width)
|
550 |
+
self.latent_shape = (self.cfg.num_latents, self.cfg.embed_dim)
|
551 |
+
else:
|
552 |
+
self.latent_shape = (self.cfg.num_latents, self.cfg.width)
|
553 |
+
|
554 |
+
self.transformer = Perceiver(
|
555 |
+
n_ctx=self.cfg.num_latents,
|
556 |
+
width=self.cfg.width,
|
557 |
+
layers=self.cfg.num_decoder_layers,
|
558 |
+
heads=self.cfg.heads,
|
559 |
+
init_scale=self.cfg.init_scale,
|
560 |
+
qkv_bias=self.cfg.qkv_bias,
|
561 |
+
qk_norm=self.cfg.qk_norm,
|
562 |
+
use_flash=self.cfg.use_flash,
|
563 |
+
use_checkpoint=self.cfg.use_checkpoint,
|
564 |
+
)
|
565 |
+
|
566 |
+
# decoder
|
567 |
+
self.decoder = PerceiverCrossAttentionDecoder(
|
568 |
+
embedder=self.embedder,
|
569 |
+
out_dim=self.cfg.out_dim,
|
570 |
+
num_latents=self.cfg.num_latents,
|
571 |
+
width=self.cfg.width,
|
572 |
+
heads=self.cfg.heads,
|
573 |
+
init_scale=self.cfg.init_scale,
|
574 |
+
qkv_bias=self.cfg.qkv_bias,
|
575 |
+
qk_norm=self.cfg.qk_norm,
|
576 |
+
use_flash=self.cfg.use_flash,
|
577 |
+
use_checkpoint=self.cfg.use_checkpoint,
|
578 |
+
)
|
579 |
+
|
580 |
+
# volume decoder
|
581 |
+
if self.cfg.volume_decoder_type == "hierarchical":
|
582 |
+
self.volume_decoder = HierarchicalVolumeDecoder()
|
583 |
+
else:
|
584 |
+
self.volume_decoder = VanillaVolumeDecoder()
|
585 |
+
|
586 |
+
if self.cfg.pretrained_model_name_or_path != "":
|
587 |
+
local_model_path = f"{smart_load_model(self.cfg.pretrained_model_name_or_path, self.cfg.subfolder)}/vae/diffusion_pytorch_model.safetensors"
|
588 |
+
pretrain_safetensors = load_file(local_model_path)
|
589 |
+
print(f"Loading pretrained VAE model from {local_model_path}")
|
590 |
+
|
591 |
+
if "state_dict" in pretrain_safetensors:
|
592 |
+
_pretrained_safetensors = {}
|
593 |
+
for k, v in pretrain_safetensors["state_dict"].items():
|
594 |
+
if k.startswith("shape_model."):
|
595 |
+
if "proj1" in k:
|
596 |
+
_pretrained_safetensors[
|
597 |
+
k.replace("shape_model.", "").replace(
|
598 |
+
"proj1", "proj_sharp"
|
599 |
+
)
|
600 |
+
] = v
|
601 |
+
elif "attn1" in k:
|
602 |
+
_pretrained_safetensors[
|
603 |
+
k.replace("shape_model.", "").replace(
|
604 |
+
"attn1", "attn_sharp"
|
605 |
+
)
|
606 |
+
] = v
|
607 |
+
else:
|
608 |
+
_pretrained_safetensors[k.replace("shape_model.", "")] = v
|
609 |
+
|
610 |
+
pretrain_safetensors = _pretrained_safetensors
|
611 |
+
self.load_state_dict(pretrain_safetensors, strict=True)
|
612 |
+
else:
|
613 |
+
_pretrained_safetensors = {}
|
614 |
+
for k, v in pretrain_safetensors.items():
|
615 |
+
if k.startswith("shape_model"):
|
616 |
+
final_module = self
|
617 |
+
for key in k.replace("shape_model.", "").split("."):
|
618 |
+
final_module = getattr(final_module, key)
|
619 |
+
data = final_module.data
|
620 |
+
data_zero = torch.zeros_like(data).to(v)
|
621 |
+
|
622 |
+
if data.shape != v.shape:
|
623 |
+
if data.ndim == 1:
|
624 |
+
data_zero[: v.shape[0]] = v
|
625 |
+
elif data.ndim == 2:
|
626 |
+
data_zero[: v.shape[0], : v.shape[1]] = v
|
627 |
+
v = data_zero
|
628 |
+
|
629 |
+
_pretrained_safetensors[k.replace("shape_model.", "")] = v
|
630 |
+
else:
|
631 |
+
_pretrained_safetensors[k] = v
|
632 |
+
pretrain_safetensors = _pretrained_safetensors
|
633 |
+
self.load_state_dict(pretrain_safetensors, strict=True)
|
634 |
+
print("Successed load pretrained VAE model")
|
635 |
+
|
636 |
+
def encode(
|
637 |
+
self,
|
638 |
+
surface: torch.FloatTensor,
|
639 |
+
sample_posterior: bool = True,
|
640 |
+
sharp_surface: torch.FloatTensor = None,
|
641 |
+
):
|
642 |
+
"""
|
643 |
+
Args:
|
644 |
+
surface (torch.FloatTensor): [B, N, 3+C]
|
645 |
+
sample_posterior (bool):
|
646 |
+
|
647 |
+
Returns:
|
648 |
+
shape_latents (torch.FloatTensor): [B, num_latents, width]
|
649 |
+
kl_embed (torch.FloatTensor): [B, num_latents, embed_dim]
|
650 |
+
posterior (DiagonalGaussianDistribution or None):
|
651 |
+
"""
|
652 |
+
assert (
|
653 |
+
surface.shape[-1] == 3 + self.cfg.point_feats
|
654 |
+
), f"\
|
655 |
+
Expected {3 + self.cfg.point_feats} channels, got {surface.shape[-1]}"
|
656 |
+
|
657 |
+
pc, feats = surface[..., :3], surface[..., 3:] # B, n_samples, 3
|
658 |
+
if sharp_surface is not None:
|
659 |
+
sharp_pc, sharp_feats = (
|
660 |
+
sharp_surface[..., :3],
|
661 |
+
sharp_surface[..., 3:],
|
662 |
+
) # B, n_samples, 3
|
663 |
+
else:
|
664 |
+
sharp_pc, sharp_feats = None, None
|
665 |
+
|
666 |
+
shape_embeds = self.encoder(
|
667 |
+
pc, feats, sharp_pc, sharp_feats
|
668 |
+
) # B, num_latents, width
|
669 |
+
kl_embed, posterior = self.encode_kl_embed(
|
670 |
+
shape_embeds, sample_posterior
|
671 |
+
) # B, num_latents, embed_dim
|
672 |
+
|
673 |
+
kl_embed = kl_embed * self.cfg.z_scale_factor # encode with scale
|
674 |
+
|
675 |
+
return shape_embeds, kl_embed, posterior
|
676 |
+
|
677 |
+
def decode(self, latents: torch.FloatTensor):
|
678 |
+
"""
|
679 |
+
Args:
|
680 |
+
latents (torch.FloatTensor): [B, embed_dim]
|
681 |
+
|
682 |
+
Returns:
|
683 |
+
latents (torch.FloatTensor): [B, embed_dim]
|
684 |
+
"""
|
685 |
+
latents = self.post_kl(
|
686 |
+
latents / self.cfg.z_scale_factor
|
687 |
+
) # [B, num_latents, embed_dim] -> [B, num_latents, width]
|
688 |
+
|
689 |
+
return self.transformer(latents)
|
690 |
+
|
691 |
+
def query(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
|
692 |
+
"""
|
693 |
+
Args:
|
694 |
+
queries (torch.FloatTensor): [B, N, 3]
|
695 |
+
latents (torch.FloatTensor): [B, embed_dim]
|
696 |
+
|
697 |
+
Returns:
|
698 |
+
features (torch.FloatTensor): [B, N, C], output features
|
699 |
+
"""
|
700 |
+
|
701 |
+
features = self.decoder(queries, latents)
|
702 |
+
|
703 |
+
return features
|
704 |
+
|
705 |
+
def encode_kl_embed(
|
706 |
+
self, latents: torch.FloatTensor, sample_posterior: bool = True
|
707 |
+
):
|
708 |
+
posterior = None
|
709 |
+
if self.cfg.embed_dim > 0:
|
710 |
+
moments = self.pre_kl(latents)
|
711 |
+
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
|
712 |
+
if sample_posterior:
|
713 |
+
kl_embed = posterior.sample()
|
714 |
+
else:
|
715 |
+
kl_embed = posterior.mode()
|
716 |
+
else:
|
717 |
+
kl_embed = latents
|
718 |
+
return kl_embed, posterior
|
719 |
+
|
720 |
+
def forward(
|
721 |
+
self,
|
722 |
+
surface: torch.FloatTensor,
|
723 |
+
sharp_surface: torch.FloatTensor = None,
|
724 |
+
rand_points: torch.FloatTensor = None,
|
725 |
+
sample_posterior: bool = True,
|
726 |
+
**kwargs,
|
727 |
+
):
|
728 |
+
shape_latents, kl_embed, posterior = self.encode(
|
729 |
+
surface, sample_posterior=sample_posterior, sharp_surface=sharp_surface
|
730 |
+
)
|
731 |
+
|
732 |
+
latents = self.decode(kl_embed) # [B, num_latents, width]
|
733 |
+
|
734 |
+
meshes = self.extract_geometry(latents, **kwargs)
|
735 |
+
|
736 |
+
return shape_latents, latents, posterior, meshes
|
737 |
+
|
738 |
+
def extract_geometry(self, latents: torch.FloatTensor, **kwargs):
|
739 |
+
|
740 |
+
grid_logits_list = []
|
741 |
+
for i in range(latents.shape[0]):
|
742 |
+
grid_logits = self.volume_decoder(
|
743 |
+
latents[i].unsqueeze(0), self.query, **kwargs
|
744 |
+
)
|
745 |
+
grid_logits_list.append(grid_logits)
|
746 |
+
grid_logits = torch.cat(grid_logits_list, dim=0)
|
747 |
+
|
748 |
+
# extract mesh
|
749 |
+
surface_extractor_type = (
|
750 |
+
kwargs["surface_extractor_type"]
|
751 |
+
if "surface_extractor_type" in kwargs.keys()
|
752 |
+
and kwargs["surface_extractor_type"] is not None
|
753 |
+
else self.cfg.surface_extractor_type
|
754 |
+
)
|
755 |
+
|
756 |
+
if surface_extractor_type == "mc":
|
757 |
+
surface_extractor = MCSurfaceExtractor()
|
758 |
+
meshes = surface_extractor(grid_logits, **kwargs)
|
759 |
+
elif surface_extractor_type == "dmc":
|
760 |
+
surface_extractor = DMCSurfaceExtractor()
|
761 |
+
meshes = surface_extractor(grid_logits, **kwargs)
|
762 |
+
else:
|
763 |
+
raise NotImplementedError
|
764 |
+
|
765 |
+
return meshes
|
step1x3d_geometry/models/autoencoders/surface_extractors.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union, Tuple, List
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from skimage import measure
|
6 |
+
|
7 |
+
|
8 |
+
class MeshExtractResult:
|
9 |
+
def __init__(self, verts, faces, vertex_attrs=None, res=64):
|
10 |
+
self.verts = verts
|
11 |
+
self.faces = faces.long()
|
12 |
+
self.vertex_attrs = vertex_attrs
|
13 |
+
self.face_normal = self.comput_face_normals()
|
14 |
+
self.vert_normal = self.comput_v_normals()
|
15 |
+
self.res = res
|
16 |
+
self.success = verts.shape[0] != 0 and faces.shape[0] != 0
|
17 |
+
|
18 |
+
# training only
|
19 |
+
self.tsdf_v = None
|
20 |
+
self.tsdf_s = None
|
21 |
+
self.reg_loss = None
|
22 |
+
|
23 |
+
def comput_face_normals(self):
|
24 |
+
i0 = self.faces[..., 0].long()
|
25 |
+
i1 = self.faces[..., 1].long()
|
26 |
+
i2 = self.faces[..., 2].long()
|
27 |
+
|
28 |
+
v0 = self.verts[i0, :]
|
29 |
+
v1 = self.verts[i1, :]
|
30 |
+
v2 = self.verts[i2, :]
|
31 |
+
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
|
32 |
+
face_normals = torch.nn.functional.normalize(face_normals, dim=1)
|
33 |
+
return face_normals[:, None, :].repeat(1, 3, 1)
|
34 |
+
|
35 |
+
def comput_v_normals(self):
|
36 |
+
i0 = self.faces[..., 0].long()
|
37 |
+
i1 = self.faces[..., 1].long()
|
38 |
+
i2 = self.faces[..., 2].long()
|
39 |
+
|
40 |
+
v0 = self.verts[i0, :]
|
41 |
+
v1 = self.verts[i1, :]
|
42 |
+
v2 = self.verts[i2, :]
|
43 |
+
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
|
44 |
+
v_normals = torch.zeros_like(self.verts)
|
45 |
+
v_normals.scatter_add_(0, i0[..., None].repeat(1, 3), face_normals)
|
46 |
+
v_normals.scatter_add_(0, i1[..., None].repeat(1, 3), face_normals)
|
47 |
+
v_normals.scatter_add_(0, i2[..., None].repeat(1, 3), face_normals)
|
48 |
+
|
49 |
+
v_normals = torch.nn.functional.normalize(v_normals, dim=1)
|
50 |
+
return v_normals
|
51 |
+
|
52 |
+
|
53 |
+
def center_vertices(vertices):
|
54 |
+
"""Translate the vertices so that bounding box is centered at zero."""
|
55 |
+
vert_min = vertices.min(dim=0)[0]
|
56 |
+
vert_max = vertices.max(dim=0)[0]
|
57 |
+
vert_center = 0.5 * (vert_min + vert_max)
|
58 |
+
return vertices - vert_center
|
59 |
+
|
60 |
+
|
61 |
+
class SurfaceExtractor:
|
62 |
+
def _compute_box_stat(
|
63 |
+
self, bounds: Union[Tuple[float], List[float], float], octree_resolution: int
|
64 |
+
):
|
65 |
+
if isinstance(bounds, float):
|
66 |
+
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
|
67 |
+
|
68 |
+
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
|
69 |
+
bbox_size = bbox_max - bbox_min
|
70 |
+
grid_size = [
|
71 |
+
int(octree_resolution) + 1,
|
72 |
+
int(octree_resolution) + 1,
|
73 |
+
int(octree_resolution) + 1,
|
74 |
+
]
|
75 |
+
return grid_size, bbox_min, bbox_size
|
76 |
+
|
77 |
+
def run(self, *args, **kwargs):
|
78 |
+
return NotImplementedError
|
79 |
+
|
80 |
+
def __call__(self, grid_logits, **kwargs):
|
81 |
+
outputs = []
|
82 |
+
for i in range(grid_logits.shape[0]):
|
83 |
+
try:
|
84 |
+
verts, faces = self.run(grid_logits[i], **kwargs)
|
85 |
+
outputs.append(
|
86 |
+
MeshExtractResult(
|
87 |
+
verts=verts.float(),
|
88 |
+
faces=faces,
|
89 |
+
res=kwargs["octree_resolution"],
|
90 |
+
)
|
91 |
+
)
|
92 |
+
|
93 |
+
except Exception:
|
94 |
+
import traceback
|
95 |
+
|
96 |
+
traceback.print_exc()
|
97 |
+
outputs.append(None)
|
98 |
+
|
99 |
+
return outputs
|
100 |
+
|
101 |
+
|
102 |
+
class MCSurfaceExtractor(SurfaceExtractor):
|
103 |
+
def run(self, grid_logit, *, mc_level, bounds, octree_resolution, **kwargs):
|
104 |
+
verts, faces, normals, _ = measure.marching_cubes(
|
105 |
+
grid_logit.float().cpu().numpy(), mc_level, method="lewiner"
|
106 |
+
)
|
107 |
+
grid_size, bbox_min, bbox_size = self._compute_box_stat(
|
108 |
+
bounds, octree_resolution
|
109 |
+
)
|
110 |
+
verts = verts / grid_size * bbox_size + bbox_min
|
111 |
+
verts = torch.tensor(verts, device=grid_logit.device, dtype=torch.float32)
|
112 |
+
faces = torch.tensor(
|
113 |
+
np.ascontiguousarray(faces), device=grid_logit.device, dtype=torch.long
|
114 |
+
)
|
115 |
+
faces = faces[:, [2, 1, 0]]
|
116 |
+
return verts, faces
|
117 |
+
|
118 |
+
|
119 |
+
class DMCSurfaceExtractor(SurfaceExtractor):
|
120 |
+
def run(self, grid_logit, *, octree_resolution, **kwargs):
|
121 |
+
device = grid_logit.device
|
122 |
+
if not hasattr(self, "dmc"):
|
123 |
+
try:
|
124 |
+
from diso import DiffDMC
|
125 |
+
except:
|
126 |
+
raise ImportError(
|
127 |
+
"Please install diso via `pip install diso`, or set mc_algo to 'mc'"
|
128 |
+
)
|
129 |
+
self.dmc = DiffDMC(dtype=torch.float32).to(device)
|
130 |
+
sdf = -grid_logit / octree_resolution
|
131 |
+
sdf = sdf.to(torch.float32).contiguous()
|
132 |
+
verts, faces = self.dmc(sdf, deform=None, return_quads=False, normalize=True)
|
133 |
+
grid_size, bbox_min, bbox_size = self._compute_box_stat(
|
134 |
+
kwargs["bounds"], octree_resolution
|
135 |
+
)
|
136 |
+
verts = verts * kwargs["bounds"] * 2 - kwargs["bounds"]
|
137 |
+
return verts, faces
|
step1x3d_geometry/models/autoencoders/transformers/attention.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
from step1x3d_geometry.utils.typing import *
|
7 |
+
from step1x3d_geometry.utils.checkpoint import checkpoint
|
8 |
+
|
9 |
+
from .utils import init_linear, MLP
|
10 |
+
from timm.models.vision_transformer import Attention
|
11 |
+
|
12 |
+
|
13 |
+
class MultiheadAttention(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
*,
|
17 |
+
n_ctx: int,
|
18 |
+
width: int,
|
19 |
+
heads: int,
|
20 |
+
init_scale: float,
|
21 |
+
qkv_bias: bool,
|
22 |
+
qk_norm: bool,
|
23 |
+
norm_layer=nn.LayerNorm,
|
24 |
+
use_flash: bool = False,
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
self.n_ctx = n_ctx
|
28 |
+
self.width = width
|
29 |
+
self.heads = heads
|
30 |
+
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias)
|
31 |
+
self.c_proj = nn.Linear(width, width)
|
32 |
+
self.attention = QKVMultiheadAttention(
|
33 |
+
heads=heads,
|
34 |
+
n_ctx=n_ctx,
|
35 |
+
width=width,
|
36 |
+
norm_layer=norm_layer,
|
37 |
+
qk_norm=qk_norm,
|
38 |
+
use_flash=use_flash,
|
39 |
+
)
|
40 |
+
init_linear(self.c_qkv, init_scale)
|
41 |
+
init_linear(self.c_proj, init_scale)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.c_qkv(x)
|
45 |
+
x = checkpoint(self.attention, (x,), (), True)
|
46 |
+
x = self.c_proj(x)
|
47 |
+
return x
|
48 |
+
|
49 |
+
|
50 |
+
class QKVMultiheadAttention(nn.Module):
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
*,
|
54 |
+
heads: int,
|
55 |
+
n_ctx: int,
|
56 |
+
width=None,
|
57 |
+
qk_norm: bool = False,
|
58 |
+
norm_layer=nn.LayerNorm,
|
59 |
+
use_flash: bool = False,
|
60 |
+
):
|
61 |
+
super().__init__()
|
62 |
+
self.heads = heads
|
63 |
+
self.n_ctx = n_ctx
|
64 |
+
self.use_flash = use_flash
|
65 |
+
|
66 |
+
self.q_norm = (
|
67 |
+
norm_layer(width // heads, elementwise_affine=True, eps=1e-6)
|
68 |
+
if qk_norm
|
69 |
+
else nn.Identity()
|
70 |
+
)
|
71 |
+
self.k_norm = (
|
72 |
+
norm_layer(width // heads, elementwise_affine=True, eps=1e-6)
|
73 |
+
if qk_norm
|
74 |
+
else nn.Identity()
|
75 |
+
)
|
76 |
+
|
77 |
+
def forward(self, qkv):
|
78 |
+
bs, n_ctx, width = qkv.shape
|
79 |
+
attn_ch = width // self.heads // 3
|
80 |
+
scale = 1 / math.sqrt(math.sqrt(attn_ch))
|
81 |
+
qkv = qkv.view(bs, n_ctx, self.heads, -1)
|
82 |
+
q, k, v = torch.split(qkv, attn_ch, dim=-1)
|
83 |
+
|
84 |
+
q = self.q_norm(q)
|
85 |
+
k = self.k_norm(k)
|
86 |
+
|
87 |
+
if self.use_flash:
|
88 |
+
q = q.permute(0, 2, 1, 3)
|
89 |
+
k = k.permute(0, 2, 1, 3)
|
90 |
+
v = v.permute(0, 2, 1, 3)
|
91 |
+
out = (
|
92 |
+
F.scaled_dot_product_attention(q, k, v)
|
93 |
+
.permute(0, 2, 1, 3)
|
94 |
+
.reshape(bs, n_ctx, -1)
|
95 |
+
)
|
96 |
+
else:
|
97 |
+
weight = torch.einsum(
|
98 |
+
"bthc,bshc->bhts", q * scale, k * scale
|
99 |
+
) # More stable with f16 than dividing afterwards
|
100 |
+
wdtype = weight.dtype
|
101 |
+
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
102 |
+
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
103 |
+
|
104 |
+
return out
|
105 |
+
|
106 |
+
|
107 |
+
class ResidualAttentionBlock(nn.Module):
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
*,
|
111 |
+
n_ctx: int,
|
112 |
+
width: int,
|
113 |
+
heads: int,
|
114 |
+
init_scale: float = 1.0,
|
115 |
+
qkv_bias: bool = True,
|
116 |
+
norm_layer=nn.LayerNorm,
|
117 |
+
qk_norm: bool = True,
|
118 |
+
use_flash: bool = False,
|
119 |
+
use_checkpoint: bool = False,
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
|
123 |
+
self.use_checkpoint = use_checkpoint
|
124 |
+
|
125 |
+
self.attn = MultiheadAttention(
|
126 |
+
n_ctx=n_ctx,
|
127 |
+
width=width,
|
128 |
+
heads=heads,
|
129 |
+
init_scale=init_scale,
|
130 |
+
qkv_bias=qkv_bias,
|
131 |
+
norm_layer=norm_layer,
|
132 |
+
qk_norm=qk_norm,
|
133 |
+
use_flash=use_flash,
|
134 |
+
)
|
135 |
+
self.ln_1 = nn.LayerNorm(width)
|
136 |
+
self.mlp = MLP(width=width, init_scale=init_scale)
|
137 |
+
self.ln_2 = nn.LayerNorm(width)
|
138 |
+
|
139 |
+
def _forward(self, x: torch.Tensor):
|
140 |
+
x = x + self.attn(self.ln_1(x))
|
141 |
+
x = x + self.mlp(self.ln_2(x))
|
142 |
+
return x
|
143 |
+
|
144 |
+
def forward(self, x: torch.Tensor):
|
145 |
+
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
|
146 |
+
|
147 |
+
|
148 |
+
class MultiheadCrossAttention(nn.Module):
|
149 |
+
def __init__(
|
150 |
+
self,
|
151 |
+
*,
|
152 |
+
width: int,
|
153 |
+
heads: int,
|
154 |
+
init_scale: float,
|
155 |
+
qkv_bias: bool = True,
|
156 |
+
norm_layer=nn.LayerNorm,
|
157 |
+
qk_norm: bool = True,
|
158 |
+
use_flash: bool = False,
|
159 |
+
n_data: Optional[int] = None,
|
160 |
+
data_width: Optional[int] = None,
|
161 |
+
):
|
162 |
+
super().__init__()
|
163 |
+
self.n_data = n_data
|
164 |
+
self.width = width
|
165 |
+
self.heads = heads
|
166 |
+
self.data_width = width if data_width is None else data_width
|
167 |
+
self.c_q = nn.Linear(width, width, bias=qkv_bias)
|
168 |
+
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias)
|
169 |
+
self.c_proj = nn.Linear(width, width)
|
170 |
+
self.attention = QKVMultiheadCrossAttention(
|
171 |
+
heads=heads,
|
172 |
+
n_data=n_data,
|
173 |
+
width=width,
|
174 |
+
norm_layer=norm_layer,
|
175 |
+
qk_norm=qk_norm,
|
176 |
+
use_flash=use_flash,
|
177 |
+
)
|
178 |
+
init_linear(self.c_q, init_scale)
|
179 |
+
init_linear(self.c_kv, init_scale)
|
180 |
+
init_linear(self.c_proj, init_scale)
|
181 |
+
|
182 |
+
def forward(self, x, data):
|
183 |
+
x = self.c_q(x)
|
184 |
+
data = self.c_kv(data)
|
185 |
+
x = checkpoint(self.attention, (x, data), (), True)
|
186 |
+
x = self.c_proj(x)
|
187 |
+
return x
|
188 |
+
|
189 |
+
|
190 |
+
class QKVMultiheadCrossAttention(nn.Module):
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
*,
|
194 |
+
heads: int,
|
195 |
+
n_data: Optional[int] = None,
|
196 |
+
width=None,
|
197 |
+
norm_layer=nn.LayerNorm,
|
198 |
+
qk_norm: bool = False,
|
199 |
+
use_flash: bool = False,
|
200 |
+
):
|
201 |
+
|
202 |
+
super().__init__()
|
203 |
+
self.heads = heads
|
204 |
+
self.n_data = n_data
|
205 |
+
self.use_flash = use_flash
|
206 |
+
|
207 |
+
self.q_norm = (
|
208 |
+
norm_layer(width // heads, elementwise_affine=True, eps=1e-6)
|
209 |
+
if qk_norm
|
210 |
+
else nn.Identity()
|
211 |
+
)
|
212 |
+
self.k_norm = (
|
213 |
+
norm_layer(width // heads, elementwise_affine=True, eps=1e-6)
|
214 |
+
if qk_norm
|
215 |
+
else nn.Identity()
|
216 |
+
)
|
217 |
+
|
218 |
+
def forward(self, q, kv):
|
219 |
+
_, n_ctx, _ = q.shape
|
220 |
+
bs, n_data, width = kv.shape
|
221 |
+
attn_ch = width // self.heads // 2
|
222 |
+
scale = 1 / math.sqrt(math.sqrt(attn_ch))
|
223 |
+
q = q.view(bs, n_ctx, self.heads, -1)
|
224 |
+
kv = kv.view(bs, n_data, self.heads, -1)
|
225 |
+
k, v = torch.split(kv, attn_ch, dim=-1)
|
226 |
+
|
227 |
+
q = self.q_norm(q)
|
228 |
+
k = self.k_norm(k)
|
229 |
+
|
230 |
+
if self.use_flash:
|
231 |
+
q = q.permute(0, 2, 1, 3)
|
232 |
+
k = k.permute(0, 2, 1, 3)
|
233 |
+
v = v.permute(0, 2, 1, 3)
|
234 |
+
out = (
|
235 |
+
F.scaled_dot_product_attention(q, k, v)
|
236 |
+
.permute(0, 2, 1, 3)
|
237 |
+
.reshape(bs, n_ctx, -1)
|
238 |
+
)
|
239 |
+
else:
|
240 |
+
weight = torch.einsum(
|
241 |
+
"bthc,bshc->bhts", q * scale, k * scale
|
242 |
+
) # More stable with f16 than dividing afterwards
|
243 |
+
wdtype = weight.dtype
|
244 |
+
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
|
245 |
+
out = torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
|
246 |
+
|
247 |
+
return out
|
248 |
+
|
249 |
+
|
250 |
+
class ResidualCrossAttentionBlock(nn.Module):
|
251 |
+
def __init__(
|
252 |
+
self,
|
253 |
+
*,
|
254 |
+
n_data: Optional[int] = None,
|
255 |
+
width: int,
|
256 |
+
heads: int,
|
257 |
+
data_width: Optional[int] = None,
|
258 |
+
init_scale: float = 0.25,
|
259 |
+
qkv_bias: bool = True,
|
260 |
+
qk_norm: bool = True,
|
261 |
+
use_flash: bool = False,
|
262 |
+
):
|
263 |
+
super().__init__()
|
264 |
+
|
265 |
+
if data_width is None:
|
266 |
+
data_width = width
|
267 |
+
|
268 |
+
self.attn = MultiheadCrossAttention(
|
269 |
+
n_data=n_data,
|
270 |
+
width=width,
|
271 |
+
heads=heads,
|
272 |
+
data_width=data_width,
|
273 |
+
init_scale=init_scale,
|
274 |
+
qkv_bias=qkv_bias,
|
275 |
+
qk_norm=qk_norm,
|
276 |
+
use_flash=use_flash,
|
277 |
+
)
|
278 |
+
self.ln_1 = nn.LayerNorm(width)
|
279 |
+
self.ln_2 = nn.LayerNorm(data_width)
|
280 |
+
self.mlp = MLP(width=width, init_scale=init_scale)
|
281 |
+
self.ln_3 = nn.LayerNorm(width)
|
282 |
+
|
283 |
+
def forward(self, x: torch.Tensor, data: torch.Tensor):
|
284 |
+
x = x + self.attn(self.ln_1(x), self.ln_2(data))
|
285 |
+
x = x + self.mlp(self.ln_3(x))
|
286 |
+
return x
|
step1x3d_geometry/models/autoencoders/transformers/perceiver_1d.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
from step1x3d_geometry.utils.typing import *
|
7 |
+
from step1x3d_geometry.utils.checkpoint import checkpoint
|
8 |
+
|
9 |
+
from .utils import init_linear
|
10 |
+
from .attention import ResidualAttentionBlock
|
11 |
+
|
12 |
+
|
13 |
+
class Perceiver(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
*,
|
17 |
+
n_ctx: int,
|
18 |
+
width: int,
|
19 |
+
layers: int,
|
20 |
+
heads: int,
|
21 |
+
init_scale: float = 0.25,
|
22 |
+
qkv_bias: bool = True,
|
23 |
+
qk_norm: bool = True,
|
24 |
+
use_flash: bool = False,
|
25 |
+
use_checkpoint: bool = False
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
self.n_ctx = n_ctx
|
29 |
+
self.width = width
|
30 |
+
self.layers = layers
|
31 |
+
self.resblocks = nn.ModuleList(
|
32 |
+
[
|
33 |
+
ResidualAttentionBlock(
|
34 |
+
n_ctx=n_ctx,
|
35 |
+
width=width,
|
36 |
+
heads=heads,
|
37 |
+
init_scale=init_scale,
|
38 |
+
qkv_bias=qkv_bias,
|
39 |
+
qk_norm=qk_norm,
|
40 |
+
use_flash=use_flash,
|
41 |
+
use_checkpoint=use_checkpoint,
|
42 |
+
)
|
43 |
+
for _ in range(layers)
|
44 |
+
]
|
45 |
+
)
|
46 |
+
|
47 |
+
def forward(self, x: torch.Tensor):
|
48 |
+
for block in self.resblocks:
|
49 |
+
x = block(x)
|
50 |
+
return x
|
step1x3d_geometry/models/autoencoders/transformers/utils.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
|
4 |
+
def init_linear(l, stddev):
|
5 |
+
nn.init.normal_(l.weight, std=stddev)
|
6 |
+
if l.bias is not None:
|
7 |
+
nn.init.constant_(l.bias, 0.0)
|
8 |
+
|
9 |
+
|
10 |
+
class MLP(nn.Module):
|
11 |
+
def __init__(self, *, width: int, init_scale: float):
|
12 |
+
super().__init__()
|
13 |
+
self.width = width
|
14 |
+
self.c_fc = nn.Linear(width, width * 4)
|
15 |
+
self.c_proj = nn.Linear(width * 4, width)
|
16 |
+
self.gelu = nn.GELU()
|
17 |
+
init_linear(self.c_fc, init_scale)
|
18 |
+
init_linear(self.c_proj, init_scale)
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
return self.c_proj(self.gelu(self.c_fc(x)))
|
step1x3d_geometry/models/autoencoders/volume_decoders.py
ADDED
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
2 |
+
# except for the third-party components listed below.
|
3 |
+
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
4 |
+
# in the repsective licenses of these third-party components.
|
5 |
+
# Users must comply with all terms and conditions of original licenses of these third-party
|
6 |
+
# components and must ensure that the usage of the third party components adheres to
|
7 |
+
# all relevant laws and regulations.
|
8 |
+
|
9 |
+
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
10 |
+
# their software and algorithms, including trained model weights, parameters (including
|
11 |
+
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
12 |
+
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
13 |
+
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
14 |
+
|
15 |
+
from typing import Union, Tuple, List, Callable
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from einops import repeat
|
22 |
+
from tqdm import tqdm
|
23 |
+
|
24 |
+
cube_corners = torch.tensor(
|
25 |
+
[
|
26 |
+
[0, 0, 0],
|
27 |
+
[1, 0, 0],
|
28 |
+
[0, 1, 0],
|
29 |
+
[1, 1, 0],
|
30 |
+
[0, 0, 1],
|
31 |
+
[1, 0, 1],
|
32 |
+
[0, 1, 1],
|
33 |
+
[1, 1, 1],
|
34 |
+
],
|
35 |
+
dtype=torch.int,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def extract_near_surface_volume_fn(input_tensor: torch.Tensor, alpha: float):
|
40 |
+
device = input_tensor.device
|
41 |
+
D = input_tensor.shape[0]
|
42 |
+
signed_val = 0.0
|
43 |
+
|
44 |
+
# 添加偏移并处理无效值
|
45 |
+
val = input_tensor + alpha
|
46 |
+
valid_mask = val > -9000 # 假设-9000是无效值
|
47 |
+
|
48 |
+
# 改进的邻居获取函数(保持维度一致)
|
49 |
+
def get_neighbor(t, shift, axis):
|
50 |
+
"""根据指定轴进行位移并保持维度一致"""
|
51 |
+
if shift == 0:
|
52 |
+
return t.clone()
|
53 |
+
|
54 |
+
# 确定填充轴(输入为[D, D, D]对应z,y,x轴)
|
55 |
+
pad_dims = [0, 0, 0, 0, 0, 0] # 格式:[x前,x后,y前,y后,z前,z后]
|
56 |
+
|
57 |
+
# 根据轴类型设置填充
|
58 |
+
if axis == 0: # x轴(最后一个维度)
|
59 |
+
pad_idx = 0 if shift > 0 else 1
|
60 |
+
pad_dims[pad_idx] = abs(shift)
|
61 |
+
elif axis == 1: # y轴(中间维度)
|
62 |
+
pad_idx = 2 if shift > 0 else 3
|
63 |
+
pad_dims[pad_idx] = abs(shift)
|
64 |
+
elif axis == 2: # z轴(第一个维度)
|
65 |
+
pad_idx = 4 if shift > 0 else 5
|
66 |
+
pad_dims[pad_idx] = abs(shift)
|
67 |
+
|
68 |
+
# 执行填充(添加batch和channel维度适配F.pad)
|
69 |
+
padded = F.pad(
|
70 |
+
t.unsqueeze(0).unsqueeze(0), pad_dims[::-1], mode="replicate"
|
71 |
+
) # 反转顺序适配F.pad
|
72 |
+
|
73 |
+
# 构建动态切片索引
|
74 |
+
slice_dims = [slice(None)] * 3 # 初始化为全切片
|
75 |
+
if axis == 0: # x轴(dim=2)
|
76 |
+
if shift > 0:
|
77 |
+
slice_dims[0] = slice(shift, None)
|
78 |
+
else:
|
79 |
+
slice_dims[0] = slice(None, shift)
|
80 |
+
elif axis == 1: # y轴(dim=1)
|
81 |
+
if shift > 0:
|
82 |
+
slice_dims[1] = slice(shift, None)
|
83 |
+
else:
|
84 |
+
slice_dims[1] = slice(None, shift)
|
85 |
+
elif axis == 2: # z轴(dim=0)
|
86 |
+
if shift > 0:
|
87 |
+
slice_dims[2] = slice(shift, None)
|
88 |
+
else:
|
89 |
+
slice_dims[2] = slice(None, shift)
|
90 |
+
|
91 |
+
# 应用切片并恢复维度
|
92 |
+
padded = padded.squeeze(0).squeeze(0)
|
93 |
+
sliced = padded[slice_dims]
|
94 |
+
return sliced
|
95 |
+
|
96 |
+
# 获取各方向邻居(确保维度一致)
|
97 |
+
left = get_neighbor(val, 1, axis=0) # x方向
|
98 |
+
right = get_neighbor(val, -1, axis=0)
|
99 |
+
back = get_neighbor(val, 1, axis=1) # y方向
|
100 |
+
front = get_neighbor(val, -1, axis=1)
|
101 |
+
down = get_neighbor(val, 1, axis=2) # z方向
|
102 |
+
up = get_neighbor(val, -1, axis=2)
|
103 |
+
|
104 |
+
# 处理边界无效值(使用where保持维度一致)
|
105 |
+
def safe_where(neighbor):
|
106 |
+
return torch.where(neighbor > -9000, neighbor, val)
|
107 |
+
|
108 |
+
left = safe_where(left)
|
109 |
+
right = safe_where(right)
|
110 |
+
back = safe_where(back)
|
111 |
+
front = safe_where(front)
|
112 |
+
down = safe_where(down)
|
113 |
+
up = safe_where(up)
|
114 |
+
|
115 |
+
# 计算符号一致性(转换为float32确保精度)
|
116 |
+
sign = torch.sign(val.to(torch.float32))
|
117 |
+
neighbors_sign = torch.stack(
|
118 |
+
[
|
119 |
+
torch.sign(left.to(torch.float32)),
|
120 |
+
torch.sign(right.to(torch.float32)),
|
121 |
+
torch.sign(back.to(torch.float32)),
|
122 |
+
torch.sign(front.to(torch.float32)),
|
123 |
+
torch.sign(down.to(torch.float32)),
|
124 |
+
torch.sign(up.to(torch.float32)),
|
125 |
+
],
|
126 |
+
dim=0,
|
127 |
+
)
|
128 |
+
|
129 |
+
# 检查所有符号是否一致
|
130 |
+
same_sign = torch.all(neighbors_sign == sign, dim=0)
|
131 |
+
|
132 |
+
# 生成最终掩码
|
133 |
+
mask = (~same_sign).to(torch.int32)
|
134 |
+
return mask * valid_mask.to(torch.int32)
|
135 |
+
|
136 |
+
|
137 |
+
def generate_dense_grid_points(
|
138 |
+
bbox_min: np.ndarray,
|
139 |
+
bbox_max: np.ndarray,
|
140 |
+
octree_resolution: int,
|
141 |
+
indexing: str = "ij",
|
142 |
+
):
|
143 |
+
length = bbox_max - bbox_min
|
144 |
+
num_cells = octree_resolution
|
145 |
+
|
146 |
+
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
|
147 |
+
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
|
148 |
+
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
|
149 |
+
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
|
150 |
+
xyz = np.stack((xs, ys, zs), axis=-1)
|
151 |
+
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
|
152 |
+
|
153 |
+
return xyz, grid_size, length
|
154 |
+
|
155 |
+
|
156 |
+
class VanillaVolumeDecoder:
|
157 |
+
@torch.no_grad()
|
158 |
+
def __call__(
|
159 |
+
self,
|
160 |
+
latents: torch.FloatTensor,
|
161 |
+
geo_decoder: Callable,
|
162 |
+
bounds: Union[Tuple[float], List[float], float] = 1.01,
|
163 |
+
num_chunks: int = 10000,
|
164 |
+
octree_resolution: int = 384,
|
165 |
+
enable_pbar: bool = True,
|
166 |
+
**kwargs,
|
167 |
+
):
|
168 |
+
device = latents.device
|
169 |
+
dtype = latents.dtype
|
170 |
+
batch_size = latents.shape[0]
|
171 |
+
|
172 |
+
# 1. generate query points
|
173 |
+
if isinstance(bounds, float):
|
174 |
+
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
|
175 |
+
|
176 |
+
bbox_min, bbox_max = np.array(bounds[0:3]), np.array(bounds[3:6])
|
177 |
+
xyz_samples, grid_size, length = generate_dense_grid_points(
|
178 |
+
bbox_min=bbox_min,
|
179 |
+
bbox_max=bbox_max,
|
180 |
+
octree_resolution=octree_resolution,
|
181 |
+
indexing="ij",
|
182 |
+
)
|
183 |
+
xyz_samples = (
|
184 |
+
torch.from_numpy(xyz_samples)
|
185 |
+
.to(device, dtype=dtype)
|
186 |
+
.contiguous()
|
187 |
+
.reshape(-1, 3)
|
188 |
+
)
|
189 |
+
|
190 |
+
# 2. latents to 3d volume
|
191 |
+
batch_features = []
|
192 |
+
for start in tqdm(
|
193 |
+
range(0, xyz_samples.shape[0], num_chunks),
|
194 |
+
desc=f"Volume Decoding",
|
195 |
+
disable=not enable_pbar,
|
196 |
+
):
|
197 |
+
chunk_queries = xyz_samples[start : start + num_chunks, :]
|
198 |
+
chunk_queries = repeat(chunk_queries, "p c -> b p c", b=batch_size)
|
199 |
+
features = geo_decoder(queries=chunk_queries, latents=latents)
|
200 |
+
batch_features.append(features)
|
201 |
+
|
202 |
+
grid_features = torch.cat(batch_features, dim=1)
|
203 |
+
grid_logits, grid_features = grid_features[..., 0:1], grid_features[..., 1:]
|
204 |
+
grid_logits = grid_logits.view((batch_size, *grid_size)).float()
|
205 |
+
|
206 |
+
return grid_logits, xyz_samples, grid_features, None
|
207 |
+
|
208 |
+
|
209 |
+
class HierarchicalVolumeDecoder:
|
210 |
+
@torch.no_grad()
|
211 |
+
def __call__(
|
212 |
+
self,
|
213 |
+
latents: torch.FloatTensor,
|
214 |
+
geo_decoder: Callable,
|
215 |
+
bounds: Union[Tuple[float], List[float], float] = 1.01,
|
216 |
+
num_chunks: int = 65536,
|
217 |
+
mc_level: float = 0.0,
|
218 |
+
octree_resolution: int = 384,
|
219 |
+
min_resolution: int = 63,
|
220 |
+
enable_pbar: bool = True,
|
221 |
+
empty_value: float = float("nan"),
|
222 |
+
**kwargs,
|
223 |
+
):
|
224 |
+
device = latents.device
|
225 |
+
dtype = latents.dtype
|
226 |
+
|
227 |
+
resolutions = []
|
228 |
+
if octree_resolution < min_resolution:
|
229 |
+
resolutions.append(octree_resolution)
|
230 |
+
while octree_resolution >= min_resolution:
|
231 |
+
resolutions.append(octree_resolution)
|
232 |
+
octree_resolution = octree_resolution // 2
|
233 |
+
resolutions.reverse()
|
234 |
+
|
235 |
+
# 1. generate query points
|
236 |
+
if isinstance(bounds, float):
|
237 |
+
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
|
238 |
+
bbox_min = np.array(bounds[0:3])
|
239 |
+
bbox_max = np.array(bounds[3:6])
|
240 |
+
bbox_size = bbox_max - bbox_min
|
241 |
+
|
242 |
+
xyz_samples, grid_size, length = generate_dense_grid_points(
|
243 |
+
bbox_min=bbox_min,
|
244 |
+
bbox_max=bbox_max,
|
245 |
+
octree_resolution=resolutions[0],
|
246 |
+
indexing="ij",
|
247 |
+
)
|
248 |
+
|
249 |
+
dilate = nn.Conv3d(1, 1, 3, padding=1, bias=False, device=device, dtype=dtype)
|
250 |
+
dilate.weight = torch.nn.Parameter(
|
251 |
+
torch.ones(dilate.weight.shape, dtype=dtype, device=device)
|
252 |
+
)
|
253 |
+
|
254 |
+
grid_size = np.array(grid_size)
|
255 |
+
xyz_samples = (
|
256 |
+
torch.from_numpy(xyz_samples)
|
257 |
+
.to(device, dtype=dtype)
|
258 |
+
.contiguous()
|
259 |
+
.reshape(-1, 3)
|
260 |
+
)
|
261 |
+
|
262 |
+
# 2. latents to 3d volume
|
263 |
+
batch_features = []
|
264 |
+
batch_size = latents.shape[0]
|
265 |
+
for start in tqdm(
|
266 |
+
range(0, xyz_samples.shape[0], num_chunks),
|
267 |
+
desc=f"Hierarchical Volume Decoding [r{resolutions[0] + 1}]",
|
268 |
+
disable=not enable_pbar,
|
269 |
+
):
|
270 |
+
queries = xyz_samples[start : start + num_chunks, :]
|
271 |
+
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
|
272 |
+
features = geo_decoder(queries=batch_queries, latents=latents)
|
273 |
+
batch_features.append(features)
|
274 |
+
|
275 |
+
grid_features = torch.cat(batch_features, dim=1).view(
|
276 |
+
(batch_size, grid_size[0], grid_size[1], grid_size[2], -1)
|
277 |
+
)
|
278 |
+
grid_logits = grid_features[..., 0] # assume the first element is the logits
|
279 |
+
|
280 |
+
for octree_depth_now in resolutions[1:]:
|
281 |
+
grid_size = np.array([octree_depth_now + 1] * 3)
|
282 |
+
resolution = bbox_size / octree_depth_now
|
283 |
+
next_index = torch.zeros(tuple(grid_size), dtype=dtype, device=device)
|
284 |
+
next_logits = torch.full(
|
285 |
+
next_index.shape, -10000.0, dtype=dtype, device=device
|
286 |
+
)
|
287 |
+
curr_points = extract_near_surface_volume_fn(
|
288 |
+
grid_logits.squeeze(0), mc_level
|
289 |
+
)
|
290 |
+
curr_points += grid_logits.squeeze(0).abs() < 0.95
|
291 |
+
|
292 |
+
if octree_depth_now == resolutions[-1]:
|
293 |
+
expand_num = 0
|
294 |
+
else:
|
295 |
+
expand_num = 1
|
296 |
+
for i in range(expand_num):
|
297 |
+
curr_points = dilate(curr_points.unsqueeze(0).to(dtype)).squeeze(0)
|
298 |
+
(cidx_x, cidx_y, cidx_z) = torch.where(curr_points > 0)
|
299 |
+
next_index[cidx_x * 2, cidx_y * 2, cidx_z * 2] = 1
|
300 |
+
for i in range(2 - expand_num):
|
301 |
+
next_index = dilate(next_index.unsqueeze(0)).squeeze(0)
|
302 |
+
nidx = torch.where(next_index > 0)
|
303 |
+
|
304 |
+
next_points = torch.stack(nidx, dim=1)
|
305 |
+
next_points = next_points * torch.tensor(
|
306 |
+
resolution, dtype=latents.dtype, device=device
|
307 |
+
) + torch.tensor(bbox_min, dtype=latents.dtype, device=device)
|
308 |
+
|
309 |
+
batch_features = []
|
310 |
+
for start in tqdm(
|
311 |
+
range(0, next_points.shape[0], num_chunks),
|
312 |
+
desc=f"Hierarchical Volume Decoding [r{octree_depth_now + 1}]",
|
313 |
+
disable=not enable_pbar,
|
314 |
+
):
|
315 |
+
queries = next_points[start : start + num_chunks, :]
|
316 |
+
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
|
317 |
+
features = geo_decoder(
|
318 |
+
queries=batch_queries.to(latents.dtype), latents=latents
|
319 |
+
)
|
320 |
+
batch_features.append(features)
|
321 |
+
grid_features = torch.cat(batch_features, dim=1)
|
322 |
+
grid_logits = grid_features[..., 0:1]
|
323 |
+
next_logits[nidx] = grid_logits[0, ..., 0]
|
324 |
+
grid_logits = next_logits.unsqueeze(0)
|
325 |
+
grid_logits[grid_logits == -10000.0] = empty_value
|
326 |
+
|
327 |
+
return grid_logits
|
step1x3d_geometry/models/conditional_encoders/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import (
|
2 |
+
dinov2_encoder,
|
3 |
+
dinov2_clip_encoder,
|
4 |
+
t5_encoder,
|
5 |
+
label_encoder,
|
6 |
+
)
|
step1x3d_geometry/models/conditional_encoders/base.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from torchvision.transforms import Normalize
|
8 |
+
from torchvision.transforms import InterpolationMode
|
9 |
+
from torchvision.transforms.transforms import _interpolation_modes_from_int
|
10 |
+
|
11 |
+
from transformers import CLIPModel, CLIPTokenizer, CLIPImageProcessor
|
12 |
+
from transformers.utils import ModelOutput
|
13 |
+
from typing import Iterable, Optional, Union, List
|
14 |
+
|
15 |
+
import step1x3d_geometry
|
16 |
+
from step1x3d_geometry.utils.base import BaseModule
|
17 |
+
from step1x3d_geometry.utils.typing import *
|
18 |
+
|
19 |
+
ImageType = Union[np.ndarray, torch.Tensor, Image.Image]
|
20 |
+
|
21 |
+
|
22 |
+
class BaseVisualEncoder(BaseModule):
|
23 |
+
@dataclass
|
24 |
+
class Config(BaseModule.Config):
|
25 |
+
pretrained_model_name_or_path: Optional[str] = (
|
26 |
+
None # the pretrained model name or path
|
27 |
+
)
|
28 |
+
|
29 |
+
encode_camera: bool = False # whether to encode camera
|
30 |
+
camera_embeds_type: str = "sincos" # the type of camera embeds
|
31 |
+
camera_embeds_dim: Optional[int] = None # the dimension of camera embeds
|
32 |
+
n_views: int = 1 # the number of views
|
33 |
+
|
34 |
+
empty_embeds_ratio: float = 0.1 # the ratio of empty embeds
|
35 |
+
normalize_embeds: bool = False # whether to normalize the embeds
|
36 |
+
zero_uncond_embeds: bool = True
|
37 |
+
|
38 |
+
cfg: Config
|
39 |
+
|
40 |
+
def configure(self) -> None:
|
41 |
+
super().configure()
|
42 |
+
|
43 |
+
if self.cfg.encode_camera:
|
44 |
+
self.distance = 1.0
|
45 |
+
self.register_buffer(
|
46 |
+
"cameras",
|
47 |
+
torch.as_tensor(
|
48 |
+
[
|
49 |
+
[
|
50 |
+
[1, 0, 0, 0],
|
51 |
+
[0, 0, -1, -self.distance],
|
52 |
+
[0, 1, 0, 0],
|
53 |
+
[0, 0, 0, 1],
|
54 |
+
], # front to back
|
55 |
+
[
|
56 |
+
[0, 0, 1, self.distance],
|
57 |
+
[1, 0, 0, 0],
|
58 |
+
[0, 1, 0, 0],
|
59 |
+
[0, 0, 0, 1],
|
60 |
+
], # right to left
|
61 |
+
[
|
62 |
+
[-1, 0, 0, 0],
|
63 |
+
[0, 0, 1, self.distance],
|
64 |
+
[0, 1, 0, 0],
|
65 |
+
[0, 0, 0, 1],
|
66 |
+
], # back to front
|
67 |
+
[
|
68 |
+
[0, 0, -1, -self.distance],
|
69 |
+
[-1, 0, 0, 0],
|
70 |
+
[0, 1, 0, 0],
|
71 |
+
[0, 0, 0, 1],
|
72 |
+
], # left to right
|
73 |
+
],
|
74 |
+
dtype=torch.float32,
|
75 |
+
),
|
76 |
+
)
|
77 |
+
|
78 |
+
def encode_image(
|
79 |
+
self,
|
80 |
+
images: Iterable[Optional[ImageType]],
|
81 |
+
camera_embeds: Optional[torch.Tensor] = None,
|
82 |
+
**kwargs,
|
83 |
+
) -> torch.FloatTensor:
|
84 |
+
raise NotImplementedError
|
85 |
+
|
86 |
+
def encode_camera(self, c2ws: torch.Tensor):
|
87 |
+
if self.cfg.camera_embeds_type == "sincos":
|
88 |
+
assert (
|
89 |
+
c2ws.shape[-1] == 4 and c2ws.shape[-2] == 4
|
90 |
+
), f"Invalid c2ws shape: {c2ws.shape}"
|
91 |
+
c2ws = c2ws.view(-1, 16)
|
92 |
+
return torch.cat([torch.sin(c2ws), torch.cos(c2ws)], dim=-1)
|
93 |
+
else:
|
94 |
+
raise NotImplementedError(
|
95 |
+
f"Unknown camera_embeds_type: {self.cfg.camera_embeds_type}"
|
96 |
+
)
|
97 |
+
|
98 |
+
def forward(self, batch):
|
99 |
+
assert (
|
100 |
+
"image" in batch or "mvimages" in batch
|
101 |
+
), "image or mvimages is required for visual embeds"
|
102 |
+
if batch["image"].dim() == 5:
|
103 |
+
bs = batch["image"].shape[0] * batch["image"].shape[1]
|
104 |
+
else:
|
105 |
+
bs = batch["image"].shape[0]
|
106 |
+
|
107 |
+
if random.random() < self.cfg.empty_embeds_ratio:
|
108 |
+
if "image" in batch or "image_embeds" in batch:
|
109 |
+
visual_embeds = self.empty_image_embeds.repeat(bs, 1, 1)
|
110 |
+
elif "mvimages" in batch or "mvimage_embeds" in batch:
|
111 |
+
visual_embeds = self.empty_image_embeds.unsqueeze(1).repeat(bs, 1, 1, 1)
|
112 |
+
else:
|
113 |
+
# for visual inputs
|
114 |
+
if "image" in batch:
|
115 |
+
if self.cfg.encode_camera:
|
116 |
+
visual_embeds = self.encode_image(
|
117 |
+
batch["image"], cameras=batch["c2w"]
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
visual_embeds = self.encode_image(batch["image"])
|
121 |
+
elif "mvimages" in batch:
|
122 |
+
n_views = batch["mvimages"].shape[1]
|
123 |
+
if self.cfg.encode_camera:
|
124 |
+
visual_embeds = self.encode_image(
|
125 |
+
batch["mvimages"].view(-1, *batch["mvimages"].shape[-3:]),
|
126 |
+
cameras=batch["c2ws"],
|
127 |
+
).view(bs, n_views, *self.empty_image_embeds.shape[-2:])
|
128 |
+
else:
|
129 |
+
visual_embeds = self.encode_image(
|
130 |
+
batch["mvimages"].view(-1, *batch["mvimages"].shape[-3:])
|
131 |
+
).view(bs, n_views, *self.empty_image_embeds.shape[-2:])
|
132 |
+
|
133 |
+
if self.cfg.normalize_embeds: # post-process the visual embeds
|
134 |
+
visual_embeds = visual_embeds / visual_embeds.norm(dim=-1, keepdim=True)
|
135 |
+
|
136 |
+
return visual_embeds
|
137 |
+
|
138 |
+
|
139 |
+
class BaseCaptionEncoder(BaseModule):
|
140 |
+
@dataclass
|
141 |
+
class Config(BaseModule.Config):
|
142 |
+
pretrained_model_name_or_path: Optional[str] = (
|
143 |
+
None # the pretrained model name or path
|
144 |
+
)
|
145 |
+
|
146 |
+
text_max_length: int = 77
|
147 |
+
|
148 |
+
empty_embeds_ratio: float = 0.1 # the ratio of empty embeds
|
149 |
+
normalize_embeds: bool = False # whether to normalize the embeds
|
150 |
+
zero_uncond_embeds: bool = True
|
151 |
+
|
152 |
+
cfg: Config
|
153 |
+
|
154 |
+
def configure(self) -> None:
|
155 |
+
super().configure()
|
156 |
+
|
157 |
+
def forward(self, batch, force_drop_ids=None):
|
158 |
+
assert "caption" in batch, "caption is required for caption embeds"
|
159 |
+
|
160 |
+
bs = len(batch["label"])
|
161 |
+
if random.random() < self.cfg.empty_embeds_ratio:
|
162 |
+
caption_embeds = self.empty_text_embeds.repeat(bs, 1, 1)
|
163 |
+
else:
|
164 |
+
caption_embeds = self.encode_text(batch["caption"])
|
165 |
+
|
166 |
+
if self.cfg.normalize_embeds: # post-process the label embeds
|
167 |
+
caption_embeds = caption_embeds / caption_embeds.norm(dim=-1, keepdim=True)
|
168 |
+
|
169 |
+
return caption_embeds
|
170 |
+
|
171 |
+
|
172 |
+
class BaseLabelEncoder(BaseModule):
|
173 |
+
@dataclass
|
174 |
+
class Config(BaseModule.Config):
|
175 |
+
pretrained_model_name_or_path: Optional[str] = (
|
176 |
+
None # the pretrained model name or path
|
177 |
+
)
|
178 |
+
|
179 |
+
hidden_size: int = 1024
|
180 |
+
|
181 |
+
empty_embeds_ratio: float = 0.1 # the ratio of empty embeds
|
182 |
+
normalize_embeds: bool = False # whether to normalize the embeds
|
183 |
+
zero_uncond_embeds: bool = True
|
184 |
+
|
185 |
+
cfg: Config
|
186 |
+
|
187 |
+
def configure(self) -> None:
|
188 |
+
super().configure()
|
189 |
+
|
190 |
+
def forward(self, batch, force_drop_ids=None):
|
191 |
+
assert "label" in batch, "label is required for label embeds"
|
192 |
+
|
193 |
+
bs = len(batch["label"])
|
194 |
+
if random.random() < self.cfg.empty_embeds_ratio:
|
195 |
+
label_embeds = self.empty_label_embeds.repeat(bs, 1, 1)
|
196 |
+
else:
|
197 |
+
label_embeds = self.encode_label(batch["label"])
|
198 |
+
|
199 |
+
if self.cfg.normalize_embeds: # post-process the label embeds
|
200 |
+
label_embeds = label_embeds / label_embeds.norm(dim=-1, keepdim=True)
|
201 |
+
|
202 |
+
return label_embeds
|
step1x3d_geometry/models/conditional_encoders/clip/modeling_clip.py
ADDED
@@ -0,0 +1,1597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch CLIP model."""
|
16 |
+
|
17 |
+
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.modeling_attn_mask_utils import (
|
28 |
+
_create_4d_causal_attention_mask,
|
29 |
+
_prepare_4d_attention_mask,
|
30 |
+
)
|
31 |
+
from transformers.modeling_outputs import (
|
32 |
+
BaseModelOutput,
|
33 |
+
BaseModelOutputWithPooling,
|
34 |
+
ImageClassifierOutput,
|
35 |
+
)
|
36 |
+
from transformers.modeling_utils import PreTrainedModel
|
37 |
+
from transformers.utils import (
|
38 |
+
ModelOutput,
|
39 |
+
add_code_sample_docstrings,
|
40 |
+
add_start_docstrings,
|
41 |
+
add_start_docstrings_to_model_forward,
|
42 |
+
logging,
|
43 |
+
replace_return_docstrings,
|
44 |
+
)
|
45 |
+
from transformers.models.clip.configuration_clip import (
|
46 |
+
CLIPConfig,
|
47 |
+
CLIPTextConfig,
|
48 |
+
CLIPVisionConfig,
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
logger = logging.get_logger(__name__)
|
53 |
+
|
54 |
+
# General docstring
|
55 |
+
_CONFIG_FOR_DOC = "CLIPConfig"
|
56 |
+
_CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32"
|
57 |
+
|
58 |
+
# Image classification docstring
|
59 |
+
_IMAGE_CLASS_CHECKPOINT = "openai/clip-vit-base-patch32"
|
60 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "LABEL_0"
|
61 |
+
|
62 |
+
|
63 |
+
# contrastive loss function, adapted from
|
64 |
+
# https://sachinruk.github.io/blog/2021-03-07-clip.html
|
65 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
66 |
+
return nn.functional.cross_entropy(
|
67 |
+
logits, torch.arange(len(logits), device=logits.device)
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
72 |
+
caption_loss = contrastive_loss(similarity)
|
73 |
+
image_loss = contrastive_loss(similarity.t())
|
74 |
+
return (caption_loss + image_loss) / 2.0
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class CLIPVisionModelOutput(ModelOutput):
|
79 |
+
"""
|
80 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
84 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
85 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
86 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
87 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
88 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
89 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
90 |
+
|
91 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
92 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
93 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
94 |
+
sequence_length)`.
|
95 |
+
|
96 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
97 |
+
heads.
|
98 |
+
"""
|
99 |
+
|
100 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
101 |
+
last_hidden_state: torch.FloatTensor = None
|
102 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
103 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
104 |
+
|
105 |
+
|
106 |
+
@dataclass
|
107 |
+
class CLIPTextModelOutput(ModelOutput):
|
108 |
+
"""
|
109 |
+
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
113 |
+
The text embeddings obtained by applying the projection layer to the pooler_output.
|
114 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
115 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
116 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
117 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
118 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
119 |
+
|
120 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
121 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
122 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
123 |
+
sequence_length)`.
|
124 |
+
|
125 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
126 |
+
heads.
|
127 |
+
"""
|
128 |
+
|
129 |
+
text_embeds: Optional[torch.FloatTensor] = None
|
130 |
+
last_hidden_state: torch.FloatTensor = None
|
131 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
132 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
133 |
+
|
134 |
+
|
135 |
+
@dataclass
|
136 |
+
class CLIPOutput(ModelOutput):
|
137 |
+
"""
|
138 |
+
Args:
|
139 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
140 |
+
Contrastive loss for image-text similarity.
|
141 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
142 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
143 |
+
similarity scores.
|
144 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
145 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
146 |
+
similarity scores.
|
147 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
148 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`].
|
149 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
150 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
151 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
152 |
+
The output of the [`CLIPTextModel`].
|
153 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
154 |
+
The output of the [`CLIPVisionModel`].
|
155 |
+
"""
|
156 |
+
|
157 |
+
loss: Optional[torch.FloatTensor] = None
|
158 |
+
logits_per_image: torch.FloatTensor = None
|
159 |
+
logits_per_text: torch.FloatTensor = None
|
160 |
+
text_embeds: torch.FloatTensor = None
|
161 |
+
image_embeds: torch.FloatTensor = None
|
162 |
+
text_model_output: BaseModelOutputWithPooling = None
|
163 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
164 |
+
|
165 |
+
def to_tuple(self) -> Tuple[Any]:
|
166 |
+
return tuple(
|
167 |
+
(
|
168 |
+
self[k]
|
169 |
+
if k not in ["text_model_output", "vision_model_output"]
|
170 |
+
else getattr(self, k).to_tuple()
|
171 |
+
)
|
172 |
+
for k in self.keys()
|
173 |
+
)
|
174 |
+
|
175 |
+
|
176 |
+
class CLIPVisionEmbeddings(nn.Module):
|
177 |
+
def __init__(self, config: CLIPVisionConfig):
|
178 |
+
super().__init__()
|
179 |
+
self.config = config
|
180 |
+
self.embed_dim = config.hidden_size
|
181 |
+
self.image_size = config.image_size
|
182 |
+
self.patch_size = config.patch_size
|
183 |
+
|
184 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
185 |
+
|
186 |
+
self.patch_embedding = nn.Conv2d(
|
187 |
+
in_channels=config.num_channels,
|
188 |
+
out_channels=self.embed_dim,
|
189 |
+
kernel_size=self.patch_size,
|
190 |
+
stride=self.patch_size,
|
191 |
+
bias=False,
|
192 |
+
)
|
193 |
+
|
194 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
195 |
+
self.num_positions = self.num_patches + 1
|
196 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
197 |
+
self.register_buffer(
|
198 |
+
"position_ids",
|
199 |
+
torch.arange(self.num_positions).expand((1, -1)),
|
200 |
+
persistent=False,
|
201 |
+
)
|
202 |
+
|
203 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
204 |
+
batch_size = pixel_values.shape[0]
|
205 |
+
target_dtype = self.patch_embedding.weight.dtype
|
206 |
+
patch_embeds = self.patch_embedding(
|
207 |
+
pixel_values.to(dtype=target_dtype)
|
208 |
+
) # shape = [*, width, grid, grid]
|
209 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
210 |
+
|
211 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
212 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
213 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
214 |
+
return embeddings
|
215 |
+
|
216 |
+
|
217 |
+
class CLIPTextEmbeddings(nn.Module):
|
218 |
+
def __init__(self, config: CLIPTextConfig):
|
219 |
+
super().__init__()
|
220 |
+
embed_dim = config.hidden_size
|
221 |
+
|
222 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
223 |
+
self.position_embedding = nn.Embedding(
|
224 |
+
config.max_position_embeddings, embed_dim
|
225 |
+
)
|
226 |
+
|
227 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
228 |
+
self.register_buffer(
|
229 |
+
"position_ids",
|
230 |
+
torch.arange(config.max_position_embeddings).expand((1, -1)),
|
231 |
+
persistent=False,
|
232 |
+
)
|
233 |
+
|
234 |
+
def forward(
|
235 |
+
self,
|
236 |
+
input_ids: Optional[torch.LongTensor] = None,
|
237 |
+
position_ids: Optional[torch.LongTensor] = None,
|
238 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
239 |
+
) -> torch.Tensor:
|
240 |
+
seq_length = (
|
241 |
+
input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
242 |
+
)
|
243 |
+
|
244 |
+
if position_ids is None:
|
245 |
+
position_ids = self.position_ids[:, :seq_length]
|
246 |
+
|
247 |
+
if inputs_embeds is None:
|
248 |
+
inputs_embeds = self.token_embedding(input_ids)
|
249 |
+
|
250 |
+
position_embeddings = self.position_embedding(position_ids)
|
251 |
+
embeddings = inputs_embeds + position_embeddings
|
252 |
+
|
253 |
+
return embeddings
|
254 |
+
|
255 |
+
|
256 |
+
class CLIPAttention(nn.Module):
|
257 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
258 |
+
|
259 |
+
def __init__(self, config):
|
260 |
+
super().__init__()
|
261 |
+
self.config = config
|
262 |
+
self.embed_dim = config.hidden_size
|
263 |
+
self.num_heads = config.num_attention_heads
|
264 |
+
self.head_dim = self.embed_dim // self.num_heads
|
265 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
266 |
+
raise ValueError(
|
267 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
268 |
+
f" {self.num_heads})."
|
269 |
+
)
|
270 |
+
self.scale = self.head_dim**-0.5
|
271 |
+
self.dropout = config.attention_dropout
|
272 |
+
|
273 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
274 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
275 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
276 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
277 |
+
|
278 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
279 |
+
return (
|
280 |
+
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
|
281 |
+
.transpose(1, 2)
|
282 |
+
.contiguous()
|
283 |
+
)
|
284 |
+
|
285 |
+
def forward(
|
286 |
+
self,
|
287 |
+
hidden_states: torch.Tensor,
|
288 |
+
attention_mask: Optional[torch.Tensor] = None,
|
289 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
290 |
+
output_attentions: Optional[bool] = False,
|
291 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
292 |
+
"""Input shape: Batch x Time x Channel"""
|
293 |
+
|
294 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
295 |
+
|
296 |
+
# get query proj
|
297 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
298 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
299 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
300 |
+
|
301 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
302 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
303 |
+
key_states = key_states.view(*proj_shape)
|
304 |
+
value_states = value_states.view(*proj_shape)
|
305 |
+
|
306 |
+
src_len = key_states.size(1)
|
307 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
308 |
+
|
309 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
310 |
+
raise ValueError(
|
311 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
312 |
+
f" {attn_weights.size()}"
|
313 |
+
)
|
314 |
+
|
315 |
+
# apply the causal_attention_mask first
|
316 |
+
if causal_attention_mask is not None:
|
317 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
318 |
+
raise ValueError(
|
319 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
320 |
+
f" {causal_attention_mask.size()}"
|
321 |
+
)
|
322 |
+
attn_weights = (
|
323 |
+
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
324 |
+
+ causal_attention_mask
|
325 |
+
)
|
326 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
327 |
+
|
328 |
+
if attention_mask is not None:
|
329 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
330 |
+
raise ValueError(
|
331 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
332 |
+
)
|
333 |
+
attn_weights = (
|
334 |
+
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
335 |
+
+ attention_mask
|
336 |
+
)
|
337 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
338 |
+
|
339 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
340 |
+
|
341 |
+
if output_attentions:
|
342 |
+
# this operation is a bit akward, but it's required to
|
343 |
+
# make sure that attn_weights keeps its gradient.
|
344 |
+
# In order to do so, attn_weights have to reshaped
|
345 |
+
# twice and have to be reused in the following
|
346 |
+
attn_weights_reshaped = attn_weights.view(
|
347 |
+
bsz, self.num_heads, tgt_len, src_len
|
348 |
+
)
|
349 |
+
attn_weights = attn_weights_reshaped.view(
|
350 |
+
bsz * self.num_heads, tgt_len, src_len
|
351 |
+
)
|
352 |
+
else:
|
353 |
+
attn_weights_reshaped = None
|
354 |
+
|
355 |
+
attn_probs = nn.functional.dropout(
|
356 |
+
attn_weights, p=self.dropout, training=self.training
|
357 |
+
)
|
358 |
+
|
359 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
360 |
+
|
361 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
362 |
+
raise ValueError(
|
363 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
364 |
+
f" {attn_output.size()}"
|
365 |
+
)
|
366 |
+
|
367 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
368 |
+
attn_output = attn_output.transpose(1, 2)
|
369 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
370 |
+
|
371 |
+
attn_output = self.out_proj(attn_output)
|
372 |
+
|
373 |
+
return attn_output, attn_weights_reshaped
|
374 |
+
|
375 |
+
|
376 |
+
class CLIPMLP(nn.Module):
|
377 |
+
def __init__(self, config):
|
378 |
+
super().__init__()
|
379 |
+
self.config = config
|
380 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
381 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
382 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
383 |
+
|
384 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
385 |
+
hidden_states = self.fc1(hidden_states)
|
386 |
+
hidden_states = self.activation_fn(hidden_states)
|
387 |
+
hidden_states = self.fc2(hidden_states)
|
388 |
+
return hidden_states
|
389 |
+
|
390 |
+
|
391 |
+
class CLIPEncoderLayer(nn.Module):
|
392 |
+
def __init__(self, config: CLIPConfig):
|
393 |
+
super().__init__()
|
394 |
+
self.embed_dim = config.hidden_size
|
395 |
+
self.self_attn = CLIPAttention(config)
|
396 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
397 |
+
self.mlp = CLIPMLP(config)
|
398 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
hidden_states: torch.Tensor,
|
403 |
+
attention_mask: torch.Tensor,
|
404 |
+
causal_attention_mask: torch.Tensor,
|
405 |
+
output_attentions: Optional[bool] = False,
|
406 |
+
) -> Tuple[torch.FloatTensor]:
|
407 |
+
"""
|
408 |
+
Args:
|
409 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
410 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
411 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
412 |
+
`(config.encoder_attention_heads,)`.
|
413 |
+
output_attentions (`bool`, *optional*):
|
414 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
415 |
+
returned tensors for more detail.
|
416 |
+
"""
|
417 |
+
residual = hidden_states
|
418 |
+
|
419 |
+
hidden_states = self.layer_norm1(hidden_states)
|
420 |
+
hidden_states, attn_weights = self.self_attn(
|
421 |
+
hidden_states=hidden_states,
|
422 |
+
attention_mask=attention_mask,
|
423 |
+
causal_attention_mask=causal_attention_mask,
|
424 |
+
output_attentions=output_attentions,
|
425 |
+
)
|
426 |
+
hidden_states = residual + hidden_states
|
427 |
+
|
428 |
+
residual = hidden_states
|
429 |
+
hidden_states = self.layer_norm2(hidden_states)
|
430 |
+
hidden_states = self.mlp(hidden_states)
|
431 |
+
hidden_states = residual + hidden_states
|
432 |
+
|
433 |
+
outputs = (hidden_states,)
|
434 |
+
|
435 |
+
if output_attentions:
|
436 |
+
outputs += (attn_weights,)
|
437 |
+
|
438 |
+
return outputs
|
439 |
+
|
440 |
+
|
441 |
+
class CLIPPreTrainedModel(PreTrainedModel):
|
442 |
+
"""
|
443 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
444 |
+
models.
|
445 |
+
"""
|
446 |
+
|
447 |
+
config_class = CLIPConfig
|
448 |
+
base_model_prefix = "clip"
|
449 |
+
supports_gradient_checkpointing = True
|
450 |
+
|
451 |
+
def _init_weights(self, module):
|
452 |
+
"""Initialize the weights"""
|
453 |
+
factor = self.config.initializer_factor
|
454 |
+
if isinstance(module, CLIPTextEmbeddings):
|
455 |
+
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
456 |
+
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
457 |
+
elif isinstance(module, CLIPVisionEmbeddings):
|
458 |
+
factor = self.config.initializer_factor
|
459 |
+
nn.init.normal_(
|
460 |
+
module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor
|
461 |
+
)
|
462 |
+
nn.init.normal_(
|
463 |
+
module.patch_embedding.weight,
|
464 |
+
std=module.config.initializer_range * factor,
|
465 |
+
)
|
466 |
+
nn.init.normal_(
|
467 |
+
module.position_embedding.weight,
|
468 |
+
std=module.config.initializer_range * factor,
|
469 |
+
)
|
470 |
+
elif isinstance(module, CLIPAttention):
|
471 |
+
factor = self.config.initializer_factor
|
472 |
+
in_proj_std = (
|
473 |
+
(module.embed_dim**-0.5)
|
474 |
+
* ((2 * module.config.num_hidden_layers) ** -0.5)
|
475 |
+
* factor
|
476 |
+
)
|
477 |
+
out_proj_std = (module.embed_dim**-0.5) * factor
|
478 |
+
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
479 |
+
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
480 |
+
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
481 |
+
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
482 |
+
elif isinstance(module, CLIPMLP):
|
483 |
+
factor = self.config.initializer_factor
|
484 |
+
in_proj_std = (
|
485 |
+
(module.config.hidden_size**-0.5)
|
486 |
+
* ((2 * module.config.num_hidden_layers) ** -0.5)
|
487 |
+
* factor
|
488 |
+
)
|
489 |
+
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
490 |
+
nn.init.normal_(module.fc1.weight, std=fc_std)
|
491 |
+
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
492 |
+
elif isinstance(module, CLIPModel):
|
493 |
+
nn.init.normal_(
|
494 |
+
module.text_projection.weight,
|
495 |
+
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
496 |
+
)
|
497 |
+
nn.init.normal_(
|
498 |
+
module.visual_projection.weight,
|
499 |
+
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
500 |
+
)
|
501 |
+
elif isinstance(module, CLIPVisionModelWithProjection):
|
502 |
+
nn.init.normal_(
|
503 |
+
module.visual_projection.weight,
|
504 |
+
std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
|
505 |
+
)
|
506 |
+
elif isinstance(module, CLIPTextModelWithProjection):
|
507 |
+
nn.init.normal_(
|
508 |
+
module.text_projection.weight,
|
509 |
+
std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
|
510 |
+
)
|
511 |
+
elif isinstance(module, CLIPForImageClassification):
|
512 |
+
nn.init.normal_(
|
513 |
+
module.classifier.weight,
|
514 |
+
std=self.config.vision_config.hidden_size**-0.5
|
515 |
+
* self.config.initializer_factor,
|
516 |
+
)
|
517 |
+
|
518 |
+
if isinstance(module, nn.LayerNorm):
|
519 |
+
module.bias.data.zero_()
|
520 |
+
module.weight.data.fill_(1.0)
|
521 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
522 |
+
module.bias.data.zero_()
|
523 |
+
|
524 |
+
|
525 |
+
CLIP_START_DOCSTRING = r"""
|
526 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
527 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
528 |
+
etc.)
|
529 |
+
|
530 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
531 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
532 |
+
and behavior.
|
533 |
+
|
534 |
+
Parameters:
|
535 |
+
config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
|
536 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
537 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
538 |
+
"""
|
539 |
+
|
540 |
+
CLIP_TEXT_INPUTS_DOCSTRING = r"""
|
541 |
+
Args:
|
542 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
543 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
544 |
+
it.
|
545 |
+
|
546 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
547 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
548 |
+
|
549 |
+
[What are input IDs?](../glossary#input-ids)
|
550 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
551 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
552 |
+
|
553 |
+
- 1 for tokens that are **not masked**,
|
554 |
+
- 0 for tokens that are **masked**.
|
555 |
+
|
556 |
+
[What are attention masks?](../glossary#attention-mask)
|
557 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
558 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
559 |
+
config.max_position_embeddings - 1]`.
|
560 |
+
|
561 |
+
[What are position IDs?](../glossary#position-ids)
|
562 |
+
output_attentions (`bool`, *optional*):
|
563 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
564 |
+
tensors for more detail.
|
565 |
+
output_hidden_states (`bool`, *optional*):
|
566 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
567 |
+
more detail.
|
568 |
+
return_dict (`bool`, *optional*):
|
569 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
570 |
+
"""
|
571 |
+
|
572 |
+
CLIP_VISION_INPUTS_DOCSTRING = r"""
|
573 |
+
Args:
|
574 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
575 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
576 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
577 |
+
output_attentions (`bool`, *optional*):
|
578 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
579 |
+
tensors for more detail.
|
580 |
+
output_hidden_states (`bool`, *optional*):
|
581 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
582 |
+
more detail.
|
583 |
+
return_dict (`bool`, *optional*):
|
584 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
585 |
+
"""
|
586 |
+
|
587 |
+
CLIP_INPUTS_DOCSTRING = r"""
|
588 |
+
Args:
|
589 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
590 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
591 |
+
it.
|
592 |
+
|
593 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
594 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
595 |
+
|
596 |
+
[What are input IDs?](../glossary#input-ids)
|
597 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
598 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
599 |
+
|
600 |
+
- 1 for tokens that are **not masked**,
|
601 |
+
- 0 for tokens that are **masked**.
|
602 |
+
|
603 |
+
[What are attention masks?](../glossary#attention-mask)
|
604 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
605 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
606 |
+
config.max_position_embeddings - 1]`.
|
607 |
+
|
608 |
+
[What are position IDs?](../glossary#position-ids)
|
609 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
610 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
611 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
612 |
+
return_loss (`bool`, *optional*):
|
613 |
+
Whether or not to return the contrastive loss.
|
614 |
+
output_attentions (`bool`, *optional*):
|
615 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
616 |
+
tensors for more detail.
|
617 |
+
output_hidden_states (`bool`, *optional*):
|
618 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
619 |
+
more detail.
|
620 |
+
return_dict (`bool`, *optional*):
|
621 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
622 |
+
"""
|
623 |
+
|
624 |
+
|
625 |
+
class CLIPEncoder(nn.Module):
|
626 |
+
"""
|
627 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
628 |
+
[`CLIPEncoderLayer`].
|
629 |
+
|
630 |
+
Args:
|
631 |
+
config: CLIPConfig
|
632 |
+
"""
|
633 |
+
|
634 |
+
def __init__(self, config: CLIPConfig):
|
635 |
+
super().__init__()
|
636 |
+
self.config = config
|
637 |
+
self.layers = nn.ModuleList(
|
638 |
+
[CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
639 |
+
)
|
640 |
+
self.gradient_checkpointing = False
|
641 |
+
|
642 |
+
def forward(
|
643 |
+
self,
|
644 |
+
inputs_embeds,
|
645 |
+
attention_mask: Optional[torch.Tensor] = None,
|
646 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
647 |
+
output_attentions: Optional[bool] = None,
|
648 |
+
output_hidden_states: Optional[bool] = None,
|
649 |
+
return_dict: Optional[bool] = None,
|
650 |
+
) -> Union[Tuple, BaseModelOutput]:
|
651 |
+
r"""
|
652 |
+
Args:
|
653 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
654 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
655 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
656 |
+
than the model's internal embedding lookup matrix.
|
657 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
658 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
659 |
+
|
660 |
+
- 1 for tokens that are **not masked**,
|
661 |
+
- 0 for tokens that are **masked**.
|
662 |
+
|
663 |
+
[What are attention masks?](../glossary#attention-mask)
|
664 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
665 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
666 |
+
|
667 |
+
- 1 for tokens that are **not masked**,
|
668 |
+
- 0 for tokens that are **masked**.
|
669 |
+
|
670 |
+
[What are attention masks?](../glossary#attention-mask)
|
671 |
+
output_attentions (`bool`, *optional*):
|
672 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
673 |
+
returned tensors for more detail.
|
674 |
+
output_hidden_states (`bool`, *optional*):
|
675 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
676 |
+
for more detail.
|
677 |
+
return_dict (`bool`, *optional*):
|
678 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
679 |
+
"""
|
680 |
+
output_attentions = (
|
681 |
+
output_attentions
|
682 |
+
if output_attentions is not None
|
683 |
+
else self.config.output_attentions
|
684 |
+
)
|
685 |
+
output_hidden_states = (
|
686 |
+
output_hidden_states
|
687 |
+
if output_hidden_states is not None
|
688 |
+
else self.config.output_hidden_states
|
689 |
+
)
|
690 |
+
return_dict = (
|
691 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
692 |
+
)
|
693 |
+
|
694 |
+
encoder_states = () if output_hidden_states else None
|
695 |
+
all_attentions = () if output_attentions else None
|
696 |
+
|
697 |
+
hidden_states = inputs_embeds
|
698 |
+
for idx, encoder_layer in enumerate(self.layers):
|
699 |
+
if output_hidden_states:
|
700 |
+
encoder_states = encoder_states + (hidden_states,)
|
701 |
+
if self.gradient_checkpointing and self.training:
|
702 |
+
layer_outputs = self._gradient_checkpointing_func(
|
703 |
+
encoder_layer.__call__,
|
704 |
+
hidden_states,
|
705 |
+
attention_mask,
|
706 |
+
causal_attention_mask,
|
707 |
+
output_attentions,
|
708 |
+
)
|
709 |
+
else:
|
710 |
+
layer_outputs = encoder_layer(
|
711 |
+
hidden_states,
|
712 |
+
attention_mask,
|
713 |
+
causal_attention_mask,
|
714 |
+
output_attentions=output_attentions,
|
715 |
+
)
|
716 |
+
|
717 |
+
hidden_states = layer_outputs[0]
|
718 |
+
|
719 |
+
if output_attentions:
|
720 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
721 |
+
|
722 |
+
if output_hidden_states:
|
723 |
+
encoder_states = encoder_states + (hidden_states,)
|
724 |
+
|
725 |
+
if not return_dict:
|
726 |
+
return tuple(
|
727 |
+
v
|
728 |
+
for v in [hidden_states, encoder_states, all_attentions]
|
729 |
+
if v is not None
|
730 |
+
)
|
731 |
+
return BaseModelOutput(
|
732 |
+
last_hidden_state=hidden_states,
|
733 |
+
hidden_states=encoder_states,
|
734 |
+
attentions=all_attentions,
|
735 |
+
)
|
736 |
+
|
737 |
+
|
738 |
+
class CLIPTextTransformer(nn.Module):
|
739 |
+
def __init__(self, config: CLIPTextConfig):
|
740 |
+
super().__init__()
|
741 |
+
self.config = config
|
742 |
+
embed_dim = config.hidden_size
|
743 |
+
self.embeddings = CLIPTextEmbeddings(config)
|
744 |
+
self.encoder = CLIPEncoder(config)
|
745 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
746 |
+
|
747 |
+
# For `pooled_output` computation
|
748 |
+
self.eos_token_id = config.eos_token_id
|
749 |
+
|
750 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
751 |
+
@replace_return_docstrings(
|
752 |
+
output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig
|
753 |
+
)
|
754 |
+
def forward(
|
755 |
+
self,
|
756 |
+
input_ids: Optional[torch.Tensor] = None,
|
757 |
+
attention_mask: Optional[torch.Tensor] = None,
|
758 |
+
position_ids: Optional[torch.Tensor] = None,
|
759 |
+
output_attentions: Optional[bool] = None,
|
760 |
+
output_hidden_states: Optional[bool] = None,
|
761 |
+
return_dict: Optional[bool] = None,
|
762 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
763 |
+
r"""
|
764 |
+
Returns:
|
765 |
+
|
766 |
+
"""
|
767 |
+
output_attentions = (
|
768 |
+
output_attentions
|
769 |
+
if output_attentions is not None
|
770 |
+
else self.config.output_attentions
|
771 |
+
)
|
772 |
+
output_hidden_states = (
|
773 |
+
output_hidden_states
|
774 |
+
if output_hidden_states is not None
|
775 |
+
else self.config.output_hidden_states
|
776 |
+
)
|
777 |
+
return_dict = (
|
778 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
779 |
+
)
|
780 |
+
|
781 |
+
if input_ids is None:
|
782 |
+
raise ValueError("You have to specify input_ids")
|
783 |
+
|
784 |
+
input_shape = input_ids.size()
|
785 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
786 |
+
|
787 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
788 |
+
|
789 |
+
# CLIP's text model uses causal mask, prepare it here.
|
790 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
791 |
+
causal_attention_mask = _create_4d_causal_attention_mask(
|
792 |
+
input_shape, hidden_states.dtype, device=hidden_states.device
|
793 |
+
)
|
794 |
+
# expand attention_mask
|
795 |
+
if attention_mask is not None:
|
796 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
797 |
+
attention_mask = _prepare_4d_attention_mask(
|
798 |
+
attention_mask, hidden_states.dtype
|
799 |
+
)
|
800 |
+
|
801 |
+
encoder_outputs = self.encoder(
|
802 |
+
inputs_embeds=hidden_states,
|
803 |
+
attention_mask=attention_mask,
|
804 |
+
causal_attention_mask=causal_attention_mask,
|
805 |
+
output_attentions=output_attentions,
|
806 |
+
output_hidden_states=output_hidden_states,
|
807 |
+
return_dict=return_dict,
|
808 |
+
)
|
809 |
+
|
810 |
+
last_hidden_state = encoder_outputs[0]
|
811 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
812 |
+
|
813 |
+
if self.eos_token_id == 2:
|
814 |
+
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
|
815 |
+
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
|
816 |
+
# ------------------------------------------------------------
|
817 |
+
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
|
818 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
819 |
+
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
|
820 |
+
pooled_output = last_hidden_state[
|
821 |
+
torch.arange(
|
822 |
+
last_hidden_state.shape[0], device=last_hidden_state.device
|
823 |
+
),
|
824 |
+
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(
|
825 |
+
dim=-1
|
826 |
+
),
|
827 |
+
]
|
828 |
+
else:
|
829 |
+
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
|
830 |
+
pooled_output = last_hidden_state[
|
831 |
+
torch.arange(
|
832 |
+
last_hidden_state.shape[0], device=last_hidden_state.device
|
833 |
+
),
|
834 |
+
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
|
835 |
+
# Note: we assume each sequence (along batch dim.) contains an `eos_token_id` (e.g. prepared by the tokenizer)
|
836 |
+
(
|
837 |
+
input_ids.to(dtype=torch.int, device=last_hidden_state.device)
|
838 |
+
== self.eos_token_id
|
839 |
+
)
|
840 |
+
.int()
|
841 |
+
.argmax(dim=-1),
|
842 |
+
]
|
843 |
+
|
844 |
+
if not return_dict:
|
845 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
846 |
+
|
847 |
+
return BaseModelOutputWithPooling(
|
848 |
+
last_hidden_state=last_hidden_state,
|
849 |
+
pooler_output=pooled_output,
|
850 |
+
hidden_states=encoder_outputs.hidden_states,
|
851 |
+
attentions=encoder_outputs.attentions,
|
852 |
+
)
|
853 |
+
|
854 |
+
|
855 |
+
@add_start_docstrings(
|
856 |
+
"""The text model from CLIP without any head or projection on top.""",
|
857 |
+
CLIP_START_DOCSTRING,
|
858 |
+
)
|
859 |
+
class CLIPTextModel(CLIPPreTrainedModel):
|
860 |
+
config_class = CLIPTextConfig
|
861 |
+
|
862 |
+
_no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
|
863 |
+
|
864 |
+
def __init__(self, config: CLIPTextConfig):
|
865 |
+
super().__init__(config)
|
866 |
+
self.text_model = CLIPTextTransformer(config)
|
867 |
+
# Initialize weights and apply final processing
|
868 |
+
self.post_init()
|
869 |
+
|
870 |
+
def get_input_embeddings(self) -> nn.Module:
|
871 |
+
return self.text_model.embeddings.token_embedding
|
872 |
+
|
873 |
+
def set_input_embeddings(self, value):
|
874 |
+
self.text_model.embeddings.token_embedding = value
|
875 |
+
|
876 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
877 |
+
@replace_return_docstrings(
|
878 |
+
output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig
|
879 |
+
)
|
880 |
+
def forward(
|
881 |
+
self,
|
882 |
+
input_ids: Optional[torch.Tensor] = None,
|
883 |
+
attention_mask: Optional[torch.Tensor] = None,
|
884 |
+
position_ids: Optional[torch.Tensor] = None,
|
885 |
+
output_attentions: Optional[bool] = None,
|
886 |
+
output_hidden_states: Optional[bool] = None,
|
887 |
+
return_dict: Optional[bool] = None,
|
888 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
889 |
+
r"""
|
890 |
+
Returns:
|
891 |
+
|
892 |
+
Examples:
|
893 |
+
|
894 |
+
```python
|
895 |
+
>>> from transformers import AutoTokenizer, CLIPTextModel
|
896 |
+
|
897 |
+
>>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
|
898 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
899 |
+
|
900 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
901 |
+
|
902 |
+
>>> outputs = model(**inputs)
|
903 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
904 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
905 |
+
```"""
|
906 |
+
return_dict = (
|
907 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
908 |
+
)
|
909 |
+
|
910 |
+
return self.text_model(
|
911 |
+
input_ids=input_ids,
|
912 |
+
attention_mask=attention_mask,
|
913 |
+
position_ids=position_ids,
|
914 |
+
output_attentions=output_attentions,
|
915 |
+
output_hidden_states=output_hidden_states,
|
916 |
+
return_dict=return_dict,
|
917 |
+
)
|
918 |
+
|
919 |
+
|
920 |
+
class CLIPVisionTransformer(nn.Module):
|
921 |
+
def __init__(self, config: CLIPVisionConfig):
|
922 |
+
super().__init__()
|
923 |
+
self.config = config
|
924 |
+
embed_dim = config.hidden_size
|
925 |
+
|
926 |
+
self.embeddings = CLIPVisionEmbeddings(config)
|
927 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
928 |
+
self.encoder = CLIPEncoder(config)
|
929 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
930 |
+
|
931 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
932 |
+
@replace_return_docstrings(
|
933 |
+
output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig
|
934 |
+
)
|
935 |
+
def forward(
|
936 |
+
self,
|
937 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
938 |
+
output_attentions: Optional[bool] = None,
|
939 |
+
output_hidden_states: Optional[bool] = None,
|
940 |
+
return_dict: Optional[bool] = None,
|
941 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
942 |
+
r"""
|
943 |
+
Returns:
|
944 |
+
|
945 |
+
"""
|
946 |
+
output_attentions = (
|
947 |
+
output_attentions
|
948 |
+
if output_attentions is not None
|
949 |
+
else self.config.output_attentions
|
950 |
+
)
|
951 |
+
output_hidden_states = (
|
952 |
+
output_hidden_states
|
953 |
+
if output_hidden_states is not None
|
954 |
+
else self.config.output_hidden_states
|
955 |
+
)
|
956 |
+
return_dict = (
|
957 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
958 |
+
)
|
959 |
+
|
960 |
+
if pixel_values is None:
|
961 |
+
raise ValueError("You have to specify pixel_values")
|
962 |
+
|
963 |
+
hidden_states = self.embeddings(pixel_values)
|
964 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
965 |
+
|
966 |
+
encoder_outputs = self.encoder(
|
967 |
+
inputs_embeds=hidden_states,
|
968 |
+
output_attentions=output_attentions,
|
969 |
+
output_hidden_states=output_hidden_states,
|
970 |
+
return_dict=return_dict,
|
971 |
+
)
|
972 |
+
|
973 |
+
last_hidden_state = encoder_outputs[0]
|
974 |
+
pooled_output = last_hidden_state[:, 0, :]
|
975 |
+
pooled_output = self.post_layernorm(pooled_output)
|
976 |
+
|
977 |
+
if not return_dict:
|
978 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
979 |
+
|
980 |
+
return BaseModelOutputWithPooling(
|
981 |
+
last_hidden_state=last_hidden_state,
|
982 |
+
pooler_output=pooled_output,
|
983 |
+
hidden_states=encoder_outputs.hidden_states,
|
984 |
+
attentions=encoder_outputs.attentions,
|
985 |
+
)
|
986 |
+
|
987 |
+
|
988 |
+
@add_start_docstrings(
|
989 |
+
"""The vision model from CLIP without any head or projection on top.""",
|
990 |
+
CLIP_START_DOCSTRING,
|
991 |
+
)
|
992 |
+
class CLIPVisionModel(CLIPPreTrainedModel):
|
993 |
+
config_class = CLIPVisionConfig
|
994 |
+
main_input_name = "pixel_values"
|
995 |
+
_no_split_modules = ["CLIPEncoderLayer"]
|
996 |
+
|
997 |
+
def __init__(self, config: CLIPVisionConfig):
|
998 |
+
super().__init__(config)
|
999 |
+
self.vision_model = CLIPVisionTransformer(config)
|
1000 |
+
# Initialize weights and apply final processing
|
1001 |
+
self.post_init()
|
1002 |
+
|
1003 |
+
def get_input_embeddings(self) -> nn.Module:
|
1004 |
+
return self.vision_model.embeddings.patch_embedding
|
1005 |
+
|
1006 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
1007 |
+
@replace_return_docstrings(
|
1008 |
+
output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig
|
1009 |
+
)
|
1010 |
+
def forward(
|
1011 |
+
self,
|
1012 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1013 |
+
output_attentions: Optional[bool] = None,
|
1014 |
+
output_hidden_states: Optional[bool] = None,
|
1015 |
+
return_dict: Optional[bool] = None,
|
1016 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1017 |
+
r"""
|
1018 |
+
Returns:
|
1019 |
+
|
1020 |
+
Examples:
|
1021 |
+
|
1022 |
+
```python
|
1023 |
+
>>> from PIL import Image
|
1024 |
+
>>> import requests
|
1025 |
+
>>> from transformers import AutoProcessor, CLIPVisionModel
|
1026 |
+
|
1027 |
+
>>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
|
1028 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1029 |
+
|
1030 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1031 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1032 |
+
|
1033 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1034 |
+
|
1035 |
+
>>> outputs = model(**inputs)
|
1036 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1037 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
1038 |
+
```"""
|
1039 |
+
return_dict = (
|
1040 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1041 |
+
)
|
1042 |
+
|
1043 |
+
return self.vision_model(
|
1044 |
+
pixel_values=pixel_values,
|
1045 |
+
output_attentions=output_attentions,
|
1046 |
+
output_hidden_states=output_hidden_states,
|
1047 |
+
return_dict=return_dict,
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
|
1051 |
+
@add_start_docstrings(CLIP_START_DOCSTRING)
|
1052 |
+
class CLIPModel(CLIPPreTrainedModel):
|
1053 |
+
config_class = CLIPConfig
|
1054 |
+
_no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
|
1055 |
+
|
1056 |
+
def __init__(self, config: CLIPConfig):
|
1057 |
+
super().__init__(config)
|
1058 |
+
|
1059 |
+
if not isinstance(config.text_config, CLIPTextConfig):
|
1060 |
+
raise ValueError(
|
1061 |
+
"config.text_config is expected to be of type CLIPTextConfig but is of type"
|
1062 |
+
f" {type(config.text_config)}."
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
if not isinstance(config.vision_config, CLIPVisionConfig):
|
1066 |
+
raise ValueError(
|
1067 |
+
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
|
1068 |
+
f" {type(config.vision_config)}."
|
1069 |
+
)
|
1070 |
+
|
1071 |
+
text_config = config.text_config
|
1072 |
+
vision_config = config.vision_config
|
1073 |
+
|
1074 |
+
self.projection_dim = config.projection_dim
|
1075 |
+
self.text_embed_dim = text_config.hidden_size
|
1076 |
+
self.vision_embed_dim = vision_config.hidden_size
|
1077 |
+
|
1078 |
+
self.text_model = CLIPTextTransformer(text_config)
|
1079 |
+
self.vision_model = CLIPVisionTransformer(vision_config)
|
1080 |
+
|
1081 |
+
self.visual_projection = nn.Linear(
|
1082 |
+
self.vision_embed_dim, self.projection_dim, bias=False
|
1083 |
+
)
|
1084 |
+
self.text_projection = nn.Linear(
|
1085 |
+
self.text_embed_dim, self.projection_dim, bias=False
|
1086 |
+
)
|
1087 |
+
self.logit_scale = nn.Parameter(
|
1088 |
+
torch.tensor(self.config.logit_scale_init_value)
|
1089 |
+
)
|
1090 |
+
|
1091 |
+
# Initialize weights and apply final processing
|
1092 |
+
self.post_init()
|
1093 |
+
|
1094 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
1095 |
+
def get_text_features(
|
1096 |
+
self,
|
1097 |
+
input_ids: Optional[torch.Tensor] = None,
|
1098 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1099 |
+
position_ids: Optional[torch.Tensor] = None,
|
1100 |
+
output_attentions: Optional[bool] = None,
|
1101 |
+
output_hidden_states: Optional[bool] = None,
|
1102 |
+
return_dict: Optional[bool] = None,
|
1103 |
+
) -> torch.FloatTensor:
|
1104 |
+
r"""
|
1105 |
+
Returns:
|
1106 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1107 |
+
applying the projection layer to the pooled output of [`CLIPTextModel`].
|
1108 |
+
|
1109 |
+
Examples:
|
1110 |
+
|
1111 |
+
```python
|
1112 |
+
>>> from transformers import AutoTokenizer, CLIPModel
|
1113 |
+
|
1114 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
1115 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
1116 |
+
|
1117 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1118 |
+
>>> text_features = model.get_text_features(**inputs)
|
1119 |
+
```"""
|
1120 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1121 |
+
output_attentions = (
|
1122 |
+
output_attentions
|
1123 |
+
if output_attentions is not None
|
1124 |
+
else self.config.output_attentions
|
1125 |
+
)
|
1126 |
+
output_hidden_states = (
|
1127 |
+
output_hidden_states
|
1128 |
+
if output_hidden_states is not None
|
1129 |
+
else self.config.output_hidden_states
|
1130 |
+
)
|
1131 |
+
return_dict = (
|
1132 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1133 |
+
)
|
1134 |
+
|
1135 |
+
text_outputs = self.text_model(
|
1136 |
+
input_ids=input_ids,
|
1137 |
+
attention_mask=attention_mask,
|
1138 |
+
position_ids=position_ids,
|
1139 |
+
output_attentions=output_attentions,
|
1140 |
+
output_hidden_states=output_hidden_states,
|
1141 |
+
return_dict=return_dict,
|
1142 |
+
)
|
1143 |
+
|
1144 |
+
pooled_output = text_outputs[1]
|
1145 |
+
text_features = self.text_projection(pooled_output)
|
1146 |
+
|
1147 |
+
return text_features
|
1148 |
+
|
1149 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
1150 |
+
def get_image_features(
|
1151 |
+
self,
|
1152 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1153 |
+
output_attentions: Optional[bool] = None,
|
1154 |
+
output_hidden_states: Optional[bool] = None,
|
1155 |
+
return_dict: Optional[bool] = None,
|
1156 |
+
) -> torch.FloatTensor:
|
1157 |
+
r"""
|
1158 |
+
Returns:
|
1159 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1160 |
+
applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
1161 |
+
|
1162 |
+
Examples:
|
1163 |
+
|
1164 |
+
```python
|
1165 |
+
>>> from PIL import Image
|
1166 |
+
>>> import requests
|
1167 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
1168 |
+
|
1169 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
1170 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1171 |
+
|
1172 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1173 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1174 |
+
|
1175 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1176 |
+
|
1177 |
+
>>> image_features = model.get_image_features(**inputs)
|
1178 |
+
```"""
|
1179 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1180 |
+
output_attentions = (
|
1181 |
+
output_attentions
|
1182 |
+
if output_attentions is not None
|
1183 |
+
else self.config.output_attentions
|
1184 |
+
)
|
1185 |
+
output_hidden_states = (
|
1186 |
+
output_hidden_states
|
1187 |
+
if output_hidden_states is not None
|
1188 |
+
else self.config.output_hidden_states
|
1189 |
+
)
|
1190 |
+
return_dict = (
|
1191 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
vision_outputs = self.vision_model(
|
1195 |
+
pixel_values=pixel_values,
|
1196 |
+
output_attentions=output_attentions,
|
1197 |
+
output_hidden_states=output_hidden_states,
|
1198 |
+
return_dict=return_dict,
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
pooled_output = vision_outputs[1] # pooled_output
|
1202 |
+
image_features = self.visual_projection(pooled_output)
|
1203 |
+
|
1204 |
+
return image_features
|
1205 |
+
|
1206 |
+
@add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
|
1207 |
+
@replace_return_docstrings(output_type=CLIPOutput, config_class=CLIPConfig)
|
1208 |
+
def forward(
|
1209 |
+
self,
|
1210 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1211 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1212 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1213 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1214 |
+
return_loss: Optional[bool] = None,
|
1215 |
+
output_attentions: Optional[bool] = None,
|
1216 |
+
output_hidden_states: Optional[bool] = None,
|
1217 |
+
return_dict: Optional[bool] = None,
|
1218 |
+
) -> Union[Tuple, CLIPOutput]:
|
1219 |
+
r"""
|
1220 |
+
Returns:
|
1221 |
+
|
1222 |
+
Examples:
|
1223 |
+
|
1224 |
+
```python
|
1225 |
+
>>> from PIL import Image
|
1226 |
+
>>> import requests
|
1227 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
1228 |
+
|
1229 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
1230 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1231 |
+
|
1232 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1233 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1234 |
+
|
1235 |
+
>>> inputs = processor(
|
1236 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
1237 |
+
... )
|
1238 |
+
|
1239 |
+
>>> outputs = model(**inputs)
|
1240 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
1241 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
1242 |
+
```"""
|
1243 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1244 |
+
output_attentions = (
|
1245 |
+
output_attentions
|
1246 |
+
if output_attentions is not None
|
1247 |
+
else self.config.output_attentions
|
1248 |
+
)
|
1249 |
+
output_hidden_states = (
|
1250 |
+
output_hidden_states
|
1251 |
+
if output_hidden_states is not None
|
1252 |
+
else self.config.output_hidden_states
|
1253 |
+
)
|
1254 |
+
return_dict = (
|
1255 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1256 |
+
)
|
1257 |
+
|
1258 |
+
vision_outputs = self.vision_model(
|
1259 |
+
pixel_values=pixel_values,
|
1260 |
+
output_attentions=output_attentions,
|
1261 |
+
output_hidden_states=output_hidden_states,
|
1262 |
+
return_dict=return_dict,
|
1263 |
+
)
|
1264 |
+
|
1265 |
+
text_outputs = self.text_model(
|
1266 |
+
input_ids=input_ids,
|
1267 |
+
attention_mask=attention_mask,
|
1268 |
+
position_ids=position_ids,
|
1269 |
+
output_attentions=output_attentions,
|
1270 |
+
output_hidden_states=output_hidden_states,
|
1271 |
+
return_dict=return_dict,
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
image_embeds = vision_outputs[1]
|
1275 |
+
image_embeds = self.visual_projection(image_embeds)
|
1276 |
+
|
1277 |
+
text_embeds = text_outputs[1]
|
1278 |
+
text_embeds = self.text_projection(text_embeds)
|
1279 |
+
|
1280 |
+
# normalized features
|
1281 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
1282 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1283 |
+
|
1284 |
+
# cosine similarity as logits
|
1285 |
+
logit_scale = self.logit_scale.exp()
|
1286 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
1287 |
+
logits_per_image = logits_per_text.t()
|
1288 |
+
|
1289 |
+
loss = None
|
1290 |
+
if return_loss:
|
1291 |
+
loss = clip_loss(logits_per_text)
|
1292 |
+
|
1293 |
+
if not return_dict:
|
1294 |
+
output = (
|
1295 |
+
logits_per_image,
|
1296 |
+
logits_per_text,
|
1297 |
+
text_embeds,
|
1298 |
+
image_embeds,
|
1299 |
+
text_outputs,
|
1300 |
+
vision_outputs,
|
1301 |
+
)
|
1302 |
+
return ((loss,) + output) if loss is not None else output
|
1303 |
+
|
1304 |
+
return CLIPOutput(
|
1305 |
+
loss=loss,
|
1306 |
+
logits_per_image=logits_per_image,
|
1307 |
+
logits_per_text=logits_per_text,
|
1308 |
+
text_embeds=text_embeds,
|
1309 |
+
image_embeds=image_embeds,
|
1310 |
+
text_model_output=text_outputs,
|
1311 |
+
vision_model_output=vision_outputs,
|
1312 |
+
)
|
1313 |
+
|
1314 |
+
|
1315 |
+
@add_start_docstrings(
|
1316 |
+
"""
|
1317 |
+
CLIP Text Model with a projection layer on top (a linear layer on top of the pooled output).
|
1318 |
+
""",
|
1319 |
+
CLIP_START_DOCSTRING,
|
1320 |
+
)
|
1321 |
+
class CLIPTextModelWithProjection(CLIPPreTrainedModel):
|
1322 |
+
config_class = CLIPTextConfig
|
1323 |
+
|
1324 |
+
_no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
|
1325 |
+
|
1326 |
+
def __init__(self, config: CLIPTextConfig):
|
1327 |
+
super().__init__(config)
|
1328 |
+
|
1329 |
+
self.text_model = CLIPTextTransformer(config)
|
1330 |
+
|
1331 |
+
self.text_projection = nn.Linear(
|
1332 |
+
config.hidden_size, config.projection_dim, bias=False
|
1333 |
+
)
|
1334 |
+
|
1335 |
+
# Initialize weights and apply final processing
|
1336 |
+
self.post_init()
|
1337 |
+
|
1338 |
+
def get_input_embeddings(self) -> nn.Module:
|
1339 |
+
return self.text_model.embeddings.token_embedding
|
1340 |
+
|
1341 |
+
def set_input_embeddings(self, value):
|
1342 |
+
self.text_model.embeddings.token_embedding = value
|
1343 |
+
|
1344 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
1345 |
+
@replace_return_docstrings(
|
1346 |
+
output_type=CLIPTextModelOutput, config_class=CLIPTextConfig
|
1347 |
+
)
|
1348 |
+
def forward(
|
1349 |
+
self,
|
1350 |
+
input_ids: Optional[torch.Tensor] = None,
|
1351 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1352 |
+
position_ids: Optional[torch.Tensor] = None,
|
1353 |
+
output_attentions: Optional[bool] = None,
|
1354 |
+
output_hidden_states: Optional[bool] = None,
|
1355 |
+
return_dict: Optional[bool] = None,
|
1356 |
+
) -> Union[Tuple, CLIPTextModelOutput]:
|
1357 |
+
r"""
|
1358 |
+
Returns:
|
1359 |
+
|
1360 |
+
Examples:
|
1361 |
+
|
1362 |
+
```python
|
1363 |
+
>>> from transformers import AutoTokenizer, CLIPTextModelWithProjection
|
1364 |
+
|
1365 |
+
>>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
|
1366 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
1367 |
+
|
1368 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1369 |
+
|
1370 |
+
>>> outputs = model(**inputs)
|
1371 |
+
>>> text_embeds = outputs.text_embeds
|
1372 |
+
```"""
|
1373 |
+
return_dict = (
|
1374 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1375 |
+
)
|
1376 |
+
|
1377 |
+
text_outputs = self.text_model(
|
1378 |
+
input_ids=input_ids,
|
1379 |
+
attention_mask=attention_mask,
|
1380 |
+
position_ids=position_ids,
|
1381 |
+
output_attentions=output_attentions,
|
1382 |
+
output_hidden_states=output_hidden_states,
|
1383 |
+
return_dict=return_dict,
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
pooled_output = text_outputs[1]
|
1387 |
+
|
1388 |
+
text_embeds = self.text_projection(pooled_output)
|
1389 |
+
|
1390 |
+
if not return_dict:
|
1391 |
+
outputs = (text_embeds, text_outputs[0]) + text_outputs[2:]
|
1392 |
+
return tuple(output for output in outputs if output is not None)
|
1393 |
+
|
1394 |
+
return CLIPTextModelOutput(
|
1395 |
+
text_embeds=text_embeds,
|
1396 |
+
last_hidden_state=text_outputs.last_hidden_state,
|
1397 |
+
hidden_states=text_outputs.hidden_states,
|
1398 |
+
attentions=text_outputs.attentions,
|
1399 |
+
)
|
1400 |
+
|
1401 |
+
|
1402 |
+
@add_start_docstrings(
|
1403 |
+
"""
|
1404 |
+
CLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output).
|
1405 |
+
""",
|
1406 |
+
CLIP_START_DOCSTRING,
|
1407 |
+
)
|
1408 |
+
class CLIPVisionModelWithProjection(CLIPPreTrainedModel):
|
1409 |
+
config_class = CLIPVisionConfig
|
1410 |
+
main_input_name = "pixel_values"
|
1411 |
+
|
1412 |
+
def __init__(self, config: CLIPVisionConfig):
|
1413 |
+
super().__init__(config)
|
1414 |
+
|
1415 |
+
self.vision_model = CLIPVisionTransformer(config)
|
1416 |
+
|
1417 |
+
self.visual_projection = nn.Linear(
|
1418 |
+
config.hidden_size, config.projection_dim, bias=False
|
1419 |
+
)
|
1420 |
+
|
1421 |
+
# Initialize weights and apply final processing
|
1422 |
+
self.post_init()
|
1423 |
+
|
1424 |
+
def get_input_embeddings(self) -> nn.Module:
|
1425 |
+
return self.vision_model.embeddings.patch_embedding
|
1426 |
+
|
1427 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
1428 |
+
@replace_return_docstrings(
|
1429 |
+
output_type=CLIPVisionModelOutput, config_class=CLIPVisionConfig
|
1430 |
+
)
|
1431 |
+
def forward(
|
1432 |
+
self,
|
1433 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1434 |
+
output_attentions: Optional[bool] = None,
|
1435 |
+
output_hidden_states: Optional[bool] = None,
|
1436 |
+
return_dict: Optional[bool] = None,
|
1437 |
+
) -> Union[Tuple, CLIPVisionModelOutput]:
|
1438 |
+
r"""
|
1439 |
+
Returns:
|
1440 |
+
|
1441 |
+
Examples:
|
1442 |
+
|
1443 |
+
```python
|
1444 |
+
>>> from PIL import Image
|
1445 |
+
>>> import requests
|
1446 |
+
>>> from transformers import AutoProcessor, CLIPVisionModelWithProjection
|
1447 |
+
|
1448 |
+
>>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
|
1449 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1450 |
+
|
1451 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1452 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1453 |
+
|
1454 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1455 |
+
|
1456 |
+
>>> outputs = model(**inputs)
|
1457 |
+
>>> image_embeds = outputs.image_embeds
|
1458 |
+
```"""
|
1459 |
+
return_dict = (
|
1460 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1461 |
+
)
|
1462 |
+
|
1463 |
+
vision_outputs = self.vision_model(
|
1464 |
+
pixel_values=pixel_values,
|
1465 |
+
output_attentions=output_attentions,
|
1466 |
+
output_hidden_states=output_hidden_states,
|
1467 |
+
return_dict=return_dict,
|
1468 |
+
)
|
1469 |
+
|
1470 |
+
pooled_output = vision_outputs[1] # pooled_output
|
1471 |
+
|
1472 |
+
image_embeds = self.visual_projection(pooled_output)
|
1473 |
+
|
1474 |
+
if not return_dict:
|
1475 |
+
outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:]
|
1476 |
+
return tuple(output for output in outputs if output is not None)
|
1477 |
+
|
1478 |
+
return CLIPVisionModelOutput(
|
1479 |
+
image_embeds=image_embeds,
|
1480 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1481 |
+
hidden_states=vision_outputs.hidden_states,
|
1482 |
+
attentions=vision_outputs.attentions,
|
1483 |
+
)
|
1484 |
+
|
1485 |
+
|
1486 |
+
@add_start_docstrings(
|
1487 |
+
"""
|
1488 |
+
CLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of
|
1489 |
+
the patch tokens) e.g. for ImageNet.
|
1490 |
+
""",
|
1491 |
+
CLIP_START_DOCSTRING,
|
1492 |
+
)
|
1493 |
+
class CLIPForImageClassification(CLIPPreTrainedModel):
|
1494 |
+
main_input_name = "pixel_values"
|
1495 |
+
|
1496 |
+
def __init__(self, config: CLIPConfig) -> None:
|
1497 |
+
super().__init__(config)
|
1498 |
+
|
1499 |
+
self.num_labels = config.num_labels
|
1500 |
+
self.vision_model = CLIPVisionTransformer(config.vision_config)
|
1501 |
+
|
1502 |
+
# Classifier head
|
1503 |
+
self.classifier = (
|
1504 |
+
nn.Linear(config.vision_config.hidden_size, config.num_labels)
|
1505 |
+
if config.num_labels > 0
|
1506 |
+
else nn.Identity()
|
1507 |
+
)
|
1508 |
+
|
1509 |
+
# Initialize weights and apply final processing
|
1510 |
+
self.post_init()
|
1511 |
+
|
1512 |
+
@add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
|
1513 |
+
@add_code_sample_docstrings(
|
1514 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
1515 |
+
output_type=ImageClassifierOutput,
|
1516 |
+
config_class=_CONFIG_FOR_DOC,
|
1517 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
1518 |
+
)
|
1519 |
+
def forward(
|
1520 |
+
self,
|
1521 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1522 |
+
labels: Optional[torch.Tensor] = None,
|
1523 |
+
output_attentions: Optional[bool] = None,
|
1524 |
+
output_hidden_states: Optional[bool] = None,
|
1525 |
+
return_dict: Optional[bool] = None,
|
1526 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
1527 |
+
r"""
|
1528 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1529 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
1530 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1531 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1532 |
+
"""
|
1533 |
+
output_attentions = (
|
1534 |
+
output_attentions
|
1535 |
+
if output_attentions is not None
|
1536 |
+
else self.config.output_attentions
|
1537 |
+
)
|
1538 |
+
output_hidden_states = (
|
1539 |
+
output_hidden_states
|
1540 |
+
if output_hidden_states is not None
|
1541 |
+
else self.config.output_hidden_states
|
1542 |
+
)
|
1543 |
+
return_dict = (
|
1544 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1545 |
+
)
|
1546 |
+
|
1547 |
+
outputs = self.vision_model(
|
1548 |
+
pixel_values,
|
1549 |
+
output_attentions=output_attentions,
|
1550 |
+
output_hidden_states=output_hidden_states,
|
1551 |
+
return_dict=return_dict,
|
1552 |
+
)
|
1553 |
+
|
1554 |
+
sequence_output = outputs[0]
|
1555 |
+
|
1556 |
+
# average pool the patch tokens
|
1557 |
+
sequence_output = torch.mean(sequence_output[:, 1:, :], dim=1)
|
1558 |
+
# apply classifier
|
1559 |
+
logits = self.classifier(sequence_output)
|
1560 |
+
|
1561 |
+
loss = None
|
1562 |
+
if labels is not None:
|
1563 |
+
# move labels to correct device to enable model parallelism
|
1564 |
+
labels = labels.to(logits.device)
|
1565 |
+
if self.config.problem_type is None:
|
1566 |
+
if self.num_labels == 1:
|
1567 |
+
self.config.problem_type = "regression"
|
1568 |
+
elif self.num_labels > 1 and (
|
1569 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1570 |
+
):
|
1571 |
+
self.config.problem_type = "single_label_classification"
|
1572 |
+
else:
|
1573 |
+
self.config.problem_type = "multi_label_classification"
|
1574 |
+
|
1575 |
+
if self.config.problem_type == "regression":
|
1576 |
+
loss_fct = MSELoss()
|
1577 |
+
if self.num_labels == 1:
|
1578 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1579 |
+
else:
|
1580 |
+
loss = loss_fct(logits, labels)
|
1581 |
+
elif self.config.problem_type == "single_label_classification":
|
1582 |
+
loss_fct = CrossEntropyLoss()
|
1583 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1584 |
+
elif self.config.problem_type == "multi_label_classification":
|
1585 |
+
loss_fct = BCEWithLogitsLoss()
|
1586 |
+
loss = loss_fct(logits, labels)
|
1587 |
+
|
1588 |
+
if not return_dict:
|
1589 |
+
output = (logits,) + outputs[2:]
|
1590 |
+
return ((loss,) + output) if loss is not None else output
|
1591 |
+
|
1592 |
+
return ImageClassifierOutput(
|
1593 |
+
loss=loss,
|
1594 |
+
logits=logits,
|
1595 |
+
hidden_states=outputs.hidden_states,
|
1596 |
+
attentions=outputs.attentions,
|
1597 |
+
)
|
step1x3d_geometry/models/conditional_encoders/clip/modeling_conditional_clip.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Reference:
|
16 |
+
# * transformers/models/dinov2/modeling_dinov2.py
|
17 |
+
# * https://github.com/facebookresearch/DiT/blob/main/models.py#L101
|
18 |
+
# * https://github.com/3DTopia/OpenLRM/tree/main/openlrm/models/encoders/dinov2
|
19 |
+
"""PyTorch CLIP model."""
|
20 |
+
|
21 |
+
from typing import Dict, List, Optional, Set, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
|
26 |
+
from .modeling_clip import (
|
27 |
+
CLIPConfig,
|
28 |
+
CLIPTextConfig,
|
29 |
+
CLIPVisionConfig,
|
30 |
+
CLIPEncoderLayer,
|
31 |
+
CLIPTextTransformer,
|
32 |
+
CLIPVisionTransformer,
|
33 |
+
CLIPModel,
|
34 |
+
CLIPVisionEmbeddings,
|
35 |
+
CLIPVisionModel,
|
36 |
+
CLIPOutput,
|
37 |
+
BaseModelOutput,
|
38 |
+
BaseModelOutputWithPooling,
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
class ModLN(nn.Module):
|
43 |
+
def __init__(self, inner_dim: int, mod_dim: int = 32):
|
44 |
+
super().__init__()
|
45 |
+
self.mlp = nn.Sequential(
|
46 |
+
nn.SiLU(),
|
47 |
+
nn.Linear(mod_dim, inner_dim * 2),
|
48 |
+
)
|
49 |
+
|
50 |
+
for m in self.modules():
|
51 |
+
if isinstance(m, nn.Linear):
|
52 |
+
nn.init.zeros_(m.weight)
|
53 |
+
nn.init.zeros_(m.bias)
|
54 |
+
|
55 |
+
def forward(self, x: torch.Tensor, condition: torch.Tensor):
|
56 |
+
"""
|
57 |
+
x: [N, M, C_in], M: num of tokens
|
58 |
+
condition: [N, C_mod]
|
59 |
+
"""
|
60 |
+
shift, scale = self.mlp(condition).unsqueeze(1).chunk(2, dim=-1)
|
61 |
+
return x * (1 + scale) + shift
|
62 |
+
|
63 |
+
|
64 |
+
class ConditionalCLIPVisionConfig(CLIPVisionConfig):
|
65 |
+
def __init__(self, modulation_dim: int = 32, *args, **kwargs):
|
66 |
+
super().__init__(*args, **kwargs)
|
67 |
+
self.modulation_dim = modulation_dim
|
68 |
+
|
69 |
+
|
70 |
+
class ConditionalCLIPEncoderLayer(CLIPEncoderLayer):
|
71 |
+
"""This corresponds to the Block class in the original implementation."""
|
72 |
+
|
73 |
+
def __init__(self, config: ConditionalCLIPVisionConfig) -> None:
|
74 |
+
super().__init__(config)
|
75 |
+
self.mod_norm1 = ModLN(config.hidden_size, config.modulation_dim)
|
76 |
+
self.mod_norm2 = ModLN(config.hidden_size, config.modulation_dim)
|
77 |
+
|
78 |
+
def forward(
|
79 |
+
self,
|
80 |
+
hidden_states: torch.Tensor,
|
81 |
+
attention_mask: torch.Tensor,
|
82 |
+
causal_attention_mask: torch.Tensor,
|
83 |
+
condition: Optional[torch.Tensor] = None,
|
84 |
+
output_attentions: bool = False,
|
85 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
86 |
+
residual = hidden_states
|
87 |
+
|
88 |
+
hidden_states = self.mod_norm1(self.layer_norm1(hidden_states), condition)
|
89 |
+
hidden_states, attn_weights = self.self_attn(
|
90 |
+
hidden_states=hidden_states,
|
91 |
+
attention_mask=attention_mask,
|
92 |
+
causal_attention_mask=causal_attention_mask,
|
93 |
+
output_attentions=output_attentions,
|
94 |
+
)
|
95 |
+
hidden_states = residual + hidden_states
|
96 |
+
|
97 |
+
residual = hidden_states
|
98 |
+
hidden_states = self.mod_norm2(self.layer_norm2(hidden_states), condition)
|
99 |
+
hidden_states = self.mlp(hidden_states)
|
100 |
+
hidden_states = residual + hidden_states
|
101 |
+
|
102 |
+
outputs = (hidden_states,)
|
103 |
+
|
104 |
+
if output_attentions:
|
105 |
+
outputs += (attn_weights,)
|
106 |
+
|
107 |
+
return outputs
|
108 |
+
|
109 |
+
|
110 |
+
class ConditionalCLIPEncoder(nn.Module):
|
111 |
+
def __init__(self, config: CLIPConfig) -> None:
|
112 |
+
super().__init__()
|
113 |
+
self.config = config
|
114 |
+
self.layers = nn.ModuleList(
|
115 |
+
[
|
116 |
+
ConditionalCLIPEncoderLayer(config)
|
117 |
+
for _ in range(config.num_hidden_layers)
|
118 |
+
]
|
119 |
+
)
|
120 |
+
self.gradient_checkpointing = False
|
121 |
+
|
122 |
+
def forward(
|
123 |
+
self,
|
124 |
+
inputs_embeds,
|
125 |
+
attention_mask: Optional[torch.Tensor] = None,
|
126 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
127 |
+
output_attentions: Optional[bool] = None,
|
128 |
+
output_hidden_states: Optional[bool] = None,
|
129 |
+
condition: Optional[torch.Tensor] = None,
|
130 |
+
return_dict: Optional[bool] = None,
|
131 |
+
) -> Union[tuple, BaseModelOutput]:
|
132 |
+
output_attentions = (
|
133 |
+
output_attentions
|
134 |
+
if output_attentions is not None
|
135 |
+
else self.config.output_attentions
|
136 |
+
)
|
137 |
+
output_hidden_states = (
|
138 |
+
output_hidden_states
|
139 |
+
if output_hidden_states is not None
|
140 |
+
else self.config.output_hidden_states
|
141 |
+
)
|
142 |
+
return_dict = (
|
143 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
144 |
+
)
|
145 |
+
|
146 |
+
encoder_states = () if output_hidden_states else None
|
147 |
+
all_attentions = () if output_attentions else None
|
148 |
+
|
149 |
+
hidden_states = inputs_embeds
|
150 |
+
for idx, encoder_layer in enumerate(self.layers):
|
151 |
+
if output_hidden_states:
|
152 |
+
encoder_states = encoder_states + (hidden_states,)
|
153 |
+
if self.gradient_checkpointing and self.training:
|
154 |
+
layer_outputs = self._gradient_checkpointing_func(
|
155 |
+
encoder_layer.__call__,
|
156 |
+
hidden_states,
|
157 |
+
attention_mask,
|
158 |
+
causal_attention_mask,
|
159 |
+
condition=condition,
|
160 |
+
output_attentions=output_attentions,
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
layer_outputs = encoder_layer(
|
164 |
+
hidden_states,
|
165 |
+
attention_mask,
|
166 |
+
causal_attention_mask,
|
167 |
+
condition=condition,
|
168 |
+
output_attentions=output_attentions,
|
169 |
+
)
|
170 |
+
|
171 |
+
hidden_states = layer_outputs[0]
|
172 |
+
|
173 |
+
if output_attentions:
|
174 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
175 |
+
|
176 |
+
if output_hidden_states:
|
177 |
+
encoder_states = encoder_states + (hidden_states,)
|
178 |
+
|
179 |
+
if not return_dict:
|
180 |
+
return tuple(
|
181 |
+
v
|
182 |
+
for v in [hidden_states, encoder_states, all_attentions]
|
183 |
+
if v is not None
|
184 |
+
)
|
185 |
+
return BaseModelOutput(
|
186 |
+
last_hidden_state=hidden_states,
|
187 |
+
hidden_states=encoder_states,
|
188 |
+
attentions=all_attentions,
|
189 |
+
)
|
190 |
+
|
191 |
+
|
192 |
+
class ConditionalCLIPVisionTransformer(CLIPVisionTransformer):
|
193 |
+
def __init__(self, config: ConditionalCLIPVisionConfig):
|
194 |
+
super().__init__(config)
|
195 |
+
self.config = config
|
196 |
+
embed_dim = config.hidden_size
|
197 |
+
|
198 |
+
self.embeddings = CLIPVisionEmbeddings(config)
|
199 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
200 |
+
self.encoder = ConditionalCLIPEncoder(config)
|
201 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
202 |
+
|
203 |
+
def forward(
|
204 |
+
self,
|
205 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
206 |
+
condition: Optional[torch.Tensor] = None,
|
207 |
+
output_attentions: Optional[bool] = None,
|
208 |
+
output_hidden_states: Optional[bool] = None,
|
209 |
+
return_dict: Optional[bool] = None,
|
210 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
211 |
+
output_attentions = (
|
212 |
+
output_attentions
|
213 |
+
if output_attentions is not None
|
214 |
+
else self.config.output_attentions
|
215 |
+
)
|
216 |
+
output_hidden_states = (
|
217 |
+
output_hidden_states
|
218 |
+
if output_hidden_states is not None
|
219 |
+
else self.config.output_hidden_states
|
220 |
+
)
|
221 |
+
return_dict = (
|
222 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
223 |
+
)
|
224 |
+
|
225 |
+
if pixel_values is None:
|
226 |
+
raise ValueError("You have to specify pixel_values")
|
227 |
+
|
228 |
+
hidden_states = self.embeddings(pixel_values)
|
229 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
230 |
+
|
231 |
+
encoder_outputs = self.encoder(
|
232 |
+
inputs_embeds=hidden_states,
|
233 |
+
output_attentions=output_attentions,
|
234 |
+
output_hidden_states=output_hidden_states,
|
235 |
+
condition=condition,
|
236 |
+
return_dict=return_dict,
|
237 |
+
)
|
238 |
+
|
239 |
+
last_hidden_state = encoder_outputs[0]
|
240 |
+
pooled_output = last_hidden_state[:, 0, :]
|
241 |
+
pooled_output = self.post_layernorm(pooled_output)
|
242 |
+
|
243 |
+
if not return_dict:
|
244 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
245 |
+
|
246 |
+
return BaseModelOutputWithPooling(
|
247 |
+
last_hidden_state=last_hidden_state,
|
248 |
+
pooler_output=pooled_output,
|
249 |
+
hidden_states=encoder_outputs.hidden_states,
|
250 |
+
attentions=encoder_outputs.attentions,
|
251 |
+
)
|
252 |
+
|
253 |
+
|
254 |
+
class ConditionalCLIPVisionModel(CLIPVisionModel):
|
255 |
+
config_class = ConditionalCLIPVisionConfig
|
256 |
+
|
257 |
+
def __init__(self, config: ConditionalCLIPVisionConfig):
|
258 |
+
super().__init__(config)
|
259 |
+
self.vision_model = ConditionalCLIPVisionTransformer(config)
|
260 |
+
# Initialize weights and apply final processing
|
261 |
+
self.post_init()
|
262 |
+
|
263 |
+
def forward(
|
264 |
+
self,
|
265 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
266 |
+
condition: Optional[torch.Tensor] = None,
|
267 |
+
output_attentions: Optional[bool] = None,
|
268 |
+
output_hidden_states: Optional[bool] = None,
|
269 |
+
return_dict: Optional[bool] = None,
|
270 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
271 |
+
return_dict = (
|
272 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
273 |
+
)
|
274 |
+
|
275 |
+
return self.vision_model(
|
276 |
+
pixel_values=pixel_values,
|
277 |
+
condition=condition,
|
278 |
+
output_attentions=output_attentions,
|
279 |
+
output_hidden_states=output_hidden_states,
|
280 |
+
return_dict=return_dict,
|
281 |
+
)
|
282 |
+
|
283 |
+
|
284 |
+
class ConditionalCLIPModel(CLIPModel):
|
285 |
+
config_class = CLIPConfig
|
286 |
+
|
287 |
+
def __init__(self, config: CLIPConfig):
|
288 |
+
super().__init__(config)
|
289 |
+
|
290 |
+
if not isinstance(config.text_config, CLIPTextConfig):
|
291 |
+
raise ValueError(
|
292 |
+
"config.text_config is expected to be of type CLIPTextConfig but is of type"
|
293 |
+
f" {type(config.text_config)}."
|
294 |
+
)
|
295 |
+
|
296 |
+
if not isinstance(config.vision_config, CLIPVisionConfig):
|
297 |
+
raise ValueError(
|
298 |
+
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
|
299 |
+
f" {type(config.vision_config)}."
|
300 |
+
)
|
301 |
+
|
302 |
+
text_config = config.text_config
|
303 |
+
vision_config = config.vision_config
|
304 |
+
|
305 |
+
self.projection_dim = config.projection_dim
|
306 |
+
self.text_embed_dim = text_config.hidden_size
|
307 |
+
self.vision_embed_dim = vision_config.hidden_size
|
308 |
+
|
309 |
+
self.text_model = CLIPTextTransformer(text_config)
|
310 |
+
self.vision_model = ConditionalCLIPVisionTransformer(vision_config)
|
311 |
+
|
312 |
+
self.visual_projection = nn.Linear(
|
313 |
+
self.vision_embed_dim, self.projection_dim, bias=False
|
314 |
+
)
|
315 |
+
self.text_projection = nn.Linear(
|
316 |
+
self.text_embed_dim, self.projection_dim, bias=False
|
317 |
+
)
|
318 |
+
self.logit_scale = nn.Parameter(
|
319 |
+
torch.tensor(self.config.logit_scale_init_value)
|
320 |
+
)
|
321 |
+
|
322 |
+
# Initialize weights and apply final processing
|
323 |
+
self.post_init()
|
324 |
+
|
325 |
+
def get_image_features(
|
326 |
+
self,
|
327 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
328 |
+
condition: Optional[torch.Tensor] = None,
|
329 |
+
output_attentions: Optional[bool] = None,
|
330 |
+
output_hidden_states: Optional[bool] = None,
|
331 |
+
return_dict: Optional[bool] = None,
|
332 |
+
) -> torch.FloatTensor:
|
333 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
334 |
+
output_attentions = (
|
335 |
+
output_attentions
|
336 |
+
if output_attentions is not None
|
337 |
+
else self.config.output_attentions
|
338 |
+
)
|
339 |
+
output_hidden_states = (
|
340 |
+
output_hidden_states
|
341 |
+
if output_hidden_states is not None
|
342 |
+
else self.config.output_hidden_states
|
343 |
+
)
|
344 |
+
return_dict = (
|
345 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
346 |
+
)
|
347 |
+
|
348 |
+
vision_outputs = self.vision_model(
|
349 |
+
pixel_values=pixel_values,
|
350 |
+
condition=condition,
|
351 |
+
output_attentions=output_attentions,
|
352 |
+
output_hidden_states=output_hidden_states,
|
353 |
+
return_dict=return_dict,
|
354 |
+
)
|
355 |
+
|
356 |
+
pooled_output = vision_outputs[1] # pooled_output
|
357 |
+
image_features = self.visual_projection(pooled_output)
|
358 |
+
|
359 |
+
return image_features
|
360 |
+
|
361 |
+
def forward(
|
362 |
+
self,
|
363 |
+
input_ids: Optional[torch.LongTensor] = None,
|
364 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
365 |
+
condition: Optional[torch.Tensor] = None,
|
366 |
+
attention_mask: Optional[torch.Tensor] = None,
|
367 |
+
position_ids: Optional[torch.LongTensor] = None,
|
368 |
+
return_loss: Optional[bool] = None,
|
369 |
+
output_attentions: Optional[bool] = None,
|
370 |
+
output_hidden_states: Optional[bool] = None,
|
371 |
+
return_dict: Optional[bool] = None,
|
372 |
+
) -> Union[Tuple, CLIPOutput]:
|
373 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
374 |
+
output_attentions = (
|
375 |
+
output_attentions
|
376 |
+
if output_attentions is not None
|
377 |
+
else self.config.output_attentions
|
378 |
+
)
|
379 |
+
output_hidden_states = (
|
380 |
+
output_hidden_states
|
381 |
+
if output_hidden_states is not None
|
382 |
+
else self.config.output_hidden_states
|
383 |
+
)
|
384 |
+
return_dict = (
|
385 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
386 |
+
)
|
387 |
+
|
388 |
+
vision_outputs = self.vision_model(
|
389 |
+
pixel_values=pixel_values,
|
390 |
+
condition=condition,
|
391 |
+
output_attentions=output_attentions,
|
392 |
+
output_hidden_states=output_hidden_states,
|
393 |
+
return_dict=return_dict,
|
394 |
+
)
|
395 |
+
|
396 |
+
text_outputs = self.text_model(
|
397 |
+
input_ids=input_ids,
|
398 |
+
attention_mask=attention_mask,
|
399 |
+
position_ids=position_ids,
|
400 |
+
output_attentions=output_attentions,
|
401 |
+
output_hidden_states=output_hidden_states,
|
402 |
+
return_dict=return_dict,
|
403 |
+
)
|
404 |
+
|
405 |
+
image_embeds = vision_outputs[1]
|
406 |
+
image_embeds = self.visual_projection(image_embeds)
|
407 |
+
|
408 |
+
text_embeds = text_outputs[1]
|
409 |
+
text_embeds = self.text_projection(text_embeds)
|
410 |
+
|
411 |
+
# normalized features
|
412 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
413 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
414 |
+
|
415 |
+
# cosine similarity as logits
|
416 |
+
logit_scale = self.logit_scale.exp()
|
417 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
418 |
+
logits_per_image = logits_per_text.t()
|
419 |
+
|
420 |
+
loss = None
|
421 |
+
if return_loss:
|
422 |
+
loss = clip_loss(logits_per_text)
|
423 |
+
|
424 |
+
if not return_dict:
|
425 |
+
output = (
|
426 |
+
logits_per_image,
|
427 |
+
logits_per_text,
|
428 |
+
text_embeds,
|
429 |
+
image_embeds,
|
430 |
+
text_outputs,
|
431 |
+
vision_outputs,
|
432 |
+
)
|
433 |
+
return ((loss,) + output) if loss is not None else output
|
434 |
+
|
435 |
+
return CLIPOutput(
|
436 |
+
loss=loss,
|
437 |
+
logits_per_image=logits_per_image,
|
438 |
+
logits_per_text=logits_per_text,
|
439 |
+
text_embeds=text_embeds,
|
440 |
+
image_embeds=image_embeds,
|
441 |
+
text_model_output=text_outputs,
|
442 |
+
vision_model_output=vision_outputs,
|
443 |
+
)
|
step1x3d_geometry/models/conditional_encoders/dinov2/modeling_conditional_dinov2.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# Reference:
|
16 |
+
# * transformers/models/dinov2/modeling_dinov2.py
|
17 |
+
# * https://github.com/facebookresearch/DiT/blob/main/models.py#L101
|
18 |
+
# * https://github.com/3DTopia/OpenLRM/tree/main/openlrm/models/encoders/dinov2
|
19 |
+
"""PyTorch DINOv2 model."""
|
20 |
+
|
21 |
+
from typing import Dict, List, Optional, Set, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
|
26 |
+
from .modeling_dinov2 import (
|
27 |
+
Dinov2Config,
|
28 |
+
Dinov2Layer,
|
29 |
+
Dinov2Model,
|
30 |
+
Dinov2Embeddings,
|
31 |
+
BaseModelOutput,
|
32 |
+
BaseModelOutputWithPooling,
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
class ModLN(nn.Module):
|
37 |
+
def __init__(self, inner_dim: int, mod_dim: int = 1024):
|
38 |
+
super().__init__()
|
39 |
+
self.mlp = nn.Sequential(
|
40 |
+
nn.SiLU(),
|
41 |
+
nn.Linear(mod_dim, inner_dim * 2),
|
42 |
+
)
|
43 |
+
|
44 |
+
for m in self.modules():
|
45 |
+
if isinstance(m, nn.Linear):
|
46 |
+
nn.init.zeros_(m.weight)
|
47 |
+
nn.init.zeros_(m.bias)
|
48 |
+
|
49 |
+
def forward(self, x: torch.Tensor, condition: torch.Tensor):
|
50 |
+
"""
|
51 |
+
x: [N, M, C_in], M: num of tokens
|
52 |
+
condition: [N, C_mod]
|
53 |
+
"""
|
54 |
+
shift, scale = self.mlp(condition).unsqueeze(1).chunk(2, dim=-1)
|
55 |
+
return x * (1 + scale) + shift
|
56 |
+
|
57 |
+
|
58 |
+
class ConditionalDinov2Config(Dinov2Config):
|
59 |
+
def __init__(self, modulation_dim: int = 1024, *args, **kwargs):
|
60 |
+
super().__init__(*args, **kwargs)
|
61 |
+
self.modulation_dim = modulation_dim
|
62 |
+
|
63 |
+
|
64 |
+
class ConditionalDinov2Layer(Dinov2Layer):
|
65 |
+
"""This corresponds to the Block class in the original implementation."""
|
66 |
+
|
67 |
+
def __init__(self, config: ConditionalDinov2Config) -> None:
|
68 |
+
super().__init__(config)
|
69 |
+
self.mod_norm1 = ModLN(config.hidden_size, config.modulation_dim)
|
70 |
+
self.mod_norm2 = ModLN(config.hidden_size, config.modulation_dim)
|
71 |
+
|
72 |
+
def forward(
|
73 |
+
self,
|
74 |
+
hidden_states: torch.Tensor,
|
75 |
+
head_mask: Optional[torch.Tensor] = None,
|
76 |
+
condition: Optional[torch.Tensor] = None,
|
77 |
+
output_attentions: bool = False,
|
78 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
79 |
+
self_attention_outputs = self.attention(
|
80 |
+
self.mod_norm1(
|
81 |
+
self.norm1(hidden_states), condition
|
82 |
+
), # in Dinov2, layernorm is applied before self-attention
|
83 |
+
head_mask,
|
84 |
+
output_attentions=output_attentions,
|
85 |
+
)
|
86 |
+
attention_output = self_attention_outputs[0]
|
87 |
+
|
88 |
+
attention_output = self.layer_scale1(attention_output)
|
89 |
+
outputs = self_attention_outputs[
|
90 |
+
1:
|
91 |
+
] # add self attentions if we output attention weights
|
92 |
+
|
93 |
+
# first residual connection
|
94 |
+
hidden_states = self.drop_path(attention_output) + hidden_states
|
95 |
+
|
96 |
+
# in Dinov2, layernorm is also applied after self-attention
|
97 |
+
layer_output = self.mod_norm2(self.norm2(hidden_states), condition)
|
98 |
+
layer_output = self.mlp(layer_output)
|
99 |
+
layer_output = self.layer_scale2(layer_output)
|
100 |
+
|
101 |
+
# second residual connection
|
102 |
+
layer_output = self.drop_path(layer_output) + hidden_states
|
103 |
+
|
104 |
+
outputs = (layer_output,) + outputs
|
105 |
+
|
106 |
+
return outputs
|
107 |
+
|
108 |
+
|
109 |
+
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2
|
110 |
+
class ConditionalDinov2Encoder(nn.Module):
|
111 |
+
def __init__(self, config: ConditionalDinov2Config) -> None:
|
112 |
+
super().__init__()
|
113 |
+
self.config = config
|
114 |
+
self.layer = nn.ModuleList(
|
115 |
+
[ConditionalDinov2Layer(config) for _ in range(config.num_hidden_layers)]
|
116 |
+
)
|
117 |
+
self.gradient_checkpointing = False
|
118 |
+
|
119 |
+
def forward(
|
120 |
+
self,
|
121 |
+
hidden_states: torch.Tensor,
|
122 |
+
head_mask: Optional[torch.Tensor] = None,
|
123 |
+
output_attentions: bool = False,
|
124 |
+
output_hidden_states: bool = False,
|
125 |
+
condition: Optional[torch.Tensor] = None,
|
126 |
+
return_dict: bool = True,
|
127 |
+
) -> Union[tuple, BaseModelOutput]:
|
128 |
+
all_hidden_states = () if output_hidden_states else None
|
129 |
+
all_self_attentions = () if output_attentions else None
|
130 |
+
|
131 |
+
for i, layer_module in enumerate(self.layer):
|
132 |
+
if output_hidden_states:
|
133 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
134 |
+
|
135 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
136 |
+
|
137 |
+
if self.gradient_checkpointing and self.training:
|
138 |
+
layer_outputs = self._gradient_checkpointing_func(
|
139 |
+
layer_module.__call__,
|
140 |
+
hidden_states,
|
141 |
+
layer_head_mask,
|
142 |
+
condition,
|
143 |
+
output_attentions,
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
layer_outputs = layer_module(
|
147 |
+
hidden_states,
|
148 |
+
layer_head_mask,
|
149 |
+
condition,
|
150 |
+
output_attentions,
|
151 |
+
)
|
152 |
+
|
153 |
+
hidden_states = layer_outputs[0]
|
154 |
+
|
155 |
+
if output_attentions:
|
156 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
157 |
+
|
158 |
+
if output_hidden_states:
|
159 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
160 |
+
|
161 |
+
if not return_dict:
|
162 |
+
return tuple(
|
163 |
+
v
|
164 |
+
for v in [hidden_states, all_hidden_states, all_self_attentions]
|
165 |
+
if v is not None
|
166 |
+
)
|
167 |
+
return BaseModelOutput(
|
168 |
+
last_hidden_state=hidden_states,
|
169 |
+
hidden_states=all_hidden_states,
|
170 |
+
attentions=all_self_attentions,
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
+
class ConditionalDinov2Model(Dinov2Model):
|
175 |
+
config_class = ConditionalDinov2Config
|
176 |
+
|
177 |
+
def __init__(self, config: ConditionalDinov2Config):
|
178 |
+
super().__init__(config)
|
179 |
+
self.config = config
|
180 |
+
|
181 |
+
self.embeddings = Dinov2Embeddings(config)
|
182 |
+
self.encoder = ConditionalDinov2Encoder(config)
|
183 |
+
|
184 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
185 |
+
|
186 |
+
# Initialize weights and apply final processing
|
187 |
+
self.post_init()
|
188 |
+
|
189 |
+
def forward(
|
190 |
+
self,
|
191 |
+
pixel_values: Optional[torch.Tensor] = None,
|
192 |
+
bool_masked_pos: Optional[torch.Tensor] = None,
|
193 |
+
head_mask: Optional[torch.Tensor] = None,
|
194 |
+
condition: Optional[torch.Tensor] = None,
|
195 |
+
output_attentions: Optional[bool] = None,
|
196 |
+
output_hidden_states: Optional[bool] = None,
|
197 |
+
return_dict: Optional[bool] = None,
|
198 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
199 |
+
output_attentions = (
|
200 |
+
output_attentions
|
201 |
+
if output_attentions is not None
|
202 |
+
else self.config.output_attentions
|
203 |
+
)
|
204 |
+
output_hidden_states = (
|
205 |
+
output_hidden_states
|
206 |
+
if output_hidden_states is not None
|
207 |
+
else self.config.output_hidden_states
|
208 |
+
)
|
209 |
+
return_dict = (
|
210 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
211 |
+
)
|
212 |
+
|
213 |
+
if pixel_values is None:
|
214 |
+
raise ValueError("You have to specify pixel_values")
|
215 |
+
|
216 |
+
# Prepare head mask if needed
|
217 |
+
# 1.0 in head_mask indicate we keep the head
|
218 |
+
# attention_probs has shape bsz x n_heads x N x N
|
219 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
220 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
221 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
222 |
+
|
223 |
+
embedding_output = self.embeddings(
|
224 |
+
pixel_values, bool_masked_pos=bool_masked_pos
|
225 |
+
)
|
226 |
+
|
227 |
+
encoder_outputs = self.encoder(
|
228 |
+
embedding_output,
|
229 |
+
head_mask=head_mask,
|
230 |
+
output_attentions=output_attentions,
|
231 |
+
output_hidden_states=output_hidden_states,
|
232 |
+
condition=condition,
|
233 |
+
return_dict=return_dict,
|
234 |
+
)
|
235 |
+
sequence_output = encoder_outputs[0]
|
236 |
+
sequence_output = self.layernorm(sequence_output)
|
237 |
+
pooled_output = sequence_output[:, 0, :]
|
238 |
+
|
239 |
+
if not return_dict:
|
240 |
+
head_outputs = (sequence_output, pooled_output)
|
241 |
+
return head_outputs + encoder_outputs[1:]
|
242 |
+
|
243 |
+
return BaseModelOutputWithPooling(
|
244 |
+
last_hidden_state=sequence_output,
|
245 |
+
pooler_output=pooled_output,
|
246 |
+
hidden_states=encoder_outputs.hidden_states,
|
247 |
+
attentions=encoder_outputs.attentions,
|
248 |
+
)
|
step1x3d_geometry/models/conditional_encoders/dinov2/modeling_dinov2.py
ADDED
@@ -0,0 +1,978 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch DINOv2 model."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections.abc
|
19 |
+
import math
|
20 |
+
from typing import Dict, List, Optional, Set, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from transformers.activations import ACT2FN
|
28 |
+
from transformers.modeling_outputs import (
|
29 |
+
BackboneOutput,
|
30 |
+
BaseModelOutput,
|
31 |
+
BaseModelOutputWithPooling,
|
32 |
+
ImageClassifierOutput,
|
33 |
+
)
|
34 |
+
from transformers.modeling_utils import PreTrainedModel
|
35 |
+
from transformers.pytorch_utils import (
|
36 |
+
find_pruneable_heads_and_indices,
|
37 |
+
prune_linear_layer,
|
38 |
+
)
|
39 |
+
from transformers.utils import (
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
from transformers.utils.backbone_utils import BackboneMixin
|
47 |
+
from transformers.models.dinov2.configuration_dinov2 import Dinov2Config
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
# General docstring
|
53 |
+
_CONFIG_FOR_DOC = "Dinov2Config"
|
54 |
+
|
55 |
+
# Base docstring
|
56 |
+
_CHECKPOINT_FOR_DOC = "facebook/dinov2-base"
|
57 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 257, 768]
|
58 |
+
|
59 |
+
# Image classification docstring
|
60 |
+
_IMAGE_CLASS_CHECKPOINT = "facebook/dinov2-small-imagenet1k-1-layer"
|
61 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
62 |
+
|
63 |
+
|
64 |
+
DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
65 |
+
"facebook/dinov2-base",
|
66 |
+
# See all DINOv2 models at https://huggingface.co/models?filter=dinov2
|
67 |
+
]
|
68 |
+
|
69 |
+
|
70 |
+
class Dinov2Embeddings(nn.Module):
|
71 |
+
"""
|
72 |
+
Construct the CLS token, mask token, position and patch embeddings.
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(self, config: Dinov2Config) -> None:
|
76 |
+
super().__init__()
|
77 |
+
|
78 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
79 |
+
self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size))
|
80 |
+
self.patch_embeddings = Dinov2PatchEmbeddings(config)
|
81 |
+
num_patches = self.patch_embeddings.num_patches
|
82 |
+
self.position_embeddings = nn.Parameter(
|
83 |
+
torch.randn(1, num_patches + 1, config.hidden_size)
|
84 |
+
)
|
85 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
86 |
+
self.config = config
|
87 |
+
|
88 |
+
def interpolate_pos_encoding(
|
89 |
+
self, embeddings: torch.Tensor, height: int, width: int
|
90 |
+
) -> torch.Tensor:
|
91 |
+
"""
|
92 |
+
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
93 |
+
resolution images.
|
94 |
+
|
95 |
+
Source:
|
96 |
+
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
97 |
+
"""
|
98 |
+
|
99 |
+
num_patches = embeddings.shape[1] - 1
|
100 |
+
num_positions = self.position_embeddings.shape[1] - 1
|
101 |
+
if num_patches == num_positions and height == width:
|
102 |
+
return self.position_embeddings
|
103 |
+
class_pos_embed = self.position_embeddings[:, 0]
|
104 |
+
patch_pos_embed = self.position_embeddings[:, 1:]
|
105 |
+
dim = embeddings.shape[-1]
|
106 |
+
height = height // self.config.patch_size
|
107 |
+
width = width // self.config.patch_size
|
108 |
+
# we add a small number to avoid floating point error in the interpolation
|
109 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
110 |
+
height, width = height + 0.1, width + 0.1
|
111 |
+
patch_pos_embed = patch_pos_embed.reshape(
|
112 |
+
1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim
|
113 |
+
)
|
114 |
+
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
115 |
+
target_dtype = patch_pos_embed.dtype
|
116 |
+
patch_pos_embed = nn.functional.interpolate(
|
117 |
+
patch_pos_embed.to(dtype=torch.float32),
|
118 |
+
scale_factor=(
|
119 |
+
float(height / math.sqrt(num_positions)),
|
120 |
+
float(width / math.sqrt(num_positions)),
|
121 |
+
),
|
122 |
+
mode="bicubic",
|
123 |
+
align_corners=False,
|
124 |
+
).to(dtype=target_dtype)
|
125 |
+
if (
|
126 |
+
int(height) != patch_pos_embed.shape[-2]
|
127 |
+
or int(width) != patch_pos_embed.shape[-1]
|
128 |
+
):
|
129 |
+
raise ValueError(
|
130 |
+
"Width or height does not match with the interpolated position embeddings"
|
131 |
+
)
|
132 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
133 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
134 |
+
|
135 |
+
def forward(
|
136 |
+
self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None
|
137 |
+
) -> torch.Tensor:
|
138 |
+
batch_size, _, height, width = pixel_values.shape
|
139 |
+
target_dtype = self.patch_embeddings.projection.weight.dtype
|
140 |
+
embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype))
|
141 |
+
|
142 |
+
if bool_masked_pos is not None:
|
143 |
+
embeddings = torch.where(
|
144 |
+
bool_masked_pos.unsqueeze(-1),
|
145 |
+
self.mask_token.to(embeddings.dtype).unsqueeze(0),
|
146 |
+
embeddings,
|
147 |
+
)
|
148 |
+
|
149 |
+
# add the [CLS] token to the embedded patch tokens
|
150 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
151 |
+
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
152 |
+
|
153 |
+
# add positional encoding to each token
|
154 |
+
embeddings = embeddings + self.interpolate_pos_encoding(
|
155 |
+
embeddings, height, width
|
156 |
+
)
|
157 |
+
|
158 |
+
embeddings = self.dropout(embeddings)
|
159 |
+
|
160 |
+
return embeddings
|
161 |
+
|
162 |
+
|
163 |
+
class Dinov2PatchEmbeddings(nn.Module):
|
164 |
+
"""
|
165 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
166 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
167 |
+
Transformer.
|
168 |
+
"""
|
169 |
+
|
170 |
+
def __init__(self, config):
|
171 |
+
super().__init__()
|
172 |
+
image_size, patch_size = config.image_size, config.patch_size
|
173 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
174 |
+
|
175 |
+
image_size = (
|
176 |
+
image_size
|
177 |
+
if isinstance(image_size, collections.abc.Iterable)
|
178 |
+
else (image_size, image_size)
|
179 |
+
)
|
180 |
+
patch_size = (
|
181 |
+
patch_size
|
182 |
+
if isinstance(patch_size, collections.abc.Iterable)
|
183 |
+
else (patch_size, patch_size)
|
184 |
+
)
|
185 |
+
num_patches = (image_size[1] // patch_size[1]) * (
|
186 |
+
image_size[0] // patch_size[0]
|
187 |
+
)
|
188 |
+
self.image_size = image_size
|
189 |
+
self.patch_size = patch_size
|
190 |
+
self.num_channels = num_channels
|
191 |
+
self.num_patches = num_patches
|
192 |
+
|
193 |
+
self.projection = nn.Conv2d(
|
194 |
+
num_channels, hidden_size, kernel_size=patch_size, stride=patch_size
|
195 |
+
)
|
196 |
+
|
197 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
198 |
+
num_channels = pixel_values.shape[1]
|
199 |
+
if num_channels != self.num_channels:
|
200 |
+
raise ValueError(
|
201 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
202 |
+
f" Expected {self.num_channels} but got {num_channels}."
|
203 |
+
)
|
204 |
+
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
205 |
+
return embeddings
|
206 |
+
|
207 |
+
|
208 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Dinov2
|
209 |
+
class Dinov2SelfAttention(nn.Module):
|
210 |
+
def __init__(self, config: Dinov2Config) -> None:
|
211 |
+
super().__init__()
|
212 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
213 |
+
config, "embedding_size"
|
214 |
+
):
|
215 |
+
raise ValueError(
|
216 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
217 |
+
f"heads {config.num_attention_heads}."
|
218 |
+
)
|
219 |
+
|
220 |
+
self.num_attention_heads = config.num_attention_heads
|
221 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
222 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
223 |
+
|
224 |
+
self.query = nn.Linear(
|
225 |
+
config.hidden_size, self.all_head_size, bias=config.qkv_bias
|
226 |
+
)
|
227 |
+
self.key = nn.Linear(
|
228 |
+
config.hidden_size, self.all_head_size, bias=config.qkv_bias
|
229 |
+
)
|
230 |
+
self.value = nn.Linear(
|
231 |
+
config.hidden_size, self.all_head_size, bias=config.qkv_bias
|
232 |
+
)
|
233 |
+
|
234 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
235 |
+
|
236 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
237 |
+
new_x_shape = x.size()[:-1] + (
|
238 |
+
self.num_attention_heads,
|
239 |
+
self.attention_head_size,
|
240 |
+
)
|
241 |
+
x = x.view(new_x_shape)
|
242 |
+
return x.permute(0, 2, 1, 3)
|
243 |
+
|
244 |
+
def forward(
|
245 |
+
self,
|
246 |
+
hidden_states,
|
247 |
+
head_mask: Optional[torch.Tensor] = None,
|
248 |
+
output_attentions: bool = False,
|
249 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
250 |
+
mixed_query_layer = self.query(hidden_states)
|
251 |
+
|
252 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
253 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
254 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
255 |
+
|
256 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
257 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
258 |
+
|
259 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
260 |
+
|
261 |
+
# Normalize the attention scores to probabilities.
|
262 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
263 |
+
|
264 |
+
# This is actually dropping out entire tokens to attend to, which might
|
265 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
266 |
+
attention_probs = self.dropout(attention_probs)
|
267 |
+
|
268 |
+
# Mask heads if we want to
|
269 |
+
if head_mask is not None:
|
270 |
+
attention_probs = attention_probs * head_mask
|
271 |
+
|
272 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
273 |
+
|
274 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
275 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
276 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
277 |
+
|
278 |
+
outputs = (
|
279 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
280 |
+
)
|
281 |
+
|
282 |
+
return outputs
|
283 |
+
|
284 |
+
|
285 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Dinov2
|
286 |
+
class Dinov2SelfOutput(nn.Module):
|
287 |
+
"""
|
288 |
+
The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the
|
289 |
+
layernorm applied before each block.
|
290 |
+
"""
|
291 |
+
|
292 |
+
def __init__(self, config: Dinov2Config) -> None:
|
293 |
+
super().__init__()
|
294 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
295 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
296 |
+
|
297 |
+
def forward(
|
298 |
+
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
|
299 |
+
) -> torch.Tensor:
|
300 |
+
hidden_states = self.dense(hidden_states)
|
301 |
+
hidden_states = self.dropout(hidden_states)
|
302 |
+
|
303 |
+
return hidden_states
|
304 |
+
|
305 |
+
|
306 |
+
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Dinov2
|
307 |
+
class Dinov2Attention(nn.Module):
|
308 |
+
def __init__(self, config: Dinov2Config) -> None:
|
309 |
+
super().__init__()
|
310 |
+
self.attention = Dinov2SelfAttention(config)
|
311 |
+
self.output = Dinov2SelfOutput(config)
|
312 |
+
self.pruned_heads = set()
|
313 |
+
|
314 |
+
def prune_heads(self, heads: Set[int]) -> None:
|
315 |
+
if len(heads) == 0:
|
316 |
+
return
|
317 |
+
heads, index = find_pruneable_heads_and_indices(
|
318 |
+
heads,
|
319 |
+
self.attention.num_attention_heads,
|
320 |
+
self.attention.attention_head_size,
|
321 |
+
self.pruned_heads,
|
322 |
+
)
|
323 |
+
|
324 |
+
# Prune linear layers
|
325 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
326 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
327 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
328 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
329 |
+
|
330 |
+
# Update hyper params and store pruned heads
|
331 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(
|
332 |
+
heads
|
333 |
+
)
|
334 |
+
self.attention.all_head_size = (
|
335 |
+
self.attention.attention_head_size * self.attention.num_attention_heads
|
336 |
+
)
|
337 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
338 |
+
|
339 |
+
def forward(
|
340 |
+
self,
|
341 |
+
hidden_states: torch.Tensor,
|
342 |
+
head_mask: Optional[torch.Tensor] = None,
|
343 |
+
output_attentions: bool = False,
|
344 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
345 |
+
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
|
346 |
+
|
347 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
348 |
+
|
349 |
+
outputs = (attention_output,) + self_outputs[
|
350 |
+
1:
|
351 |
+
] # add attentions if we output them
|
352 |
+
return outputs
|
353 |
+
|
354 |
+
|
355 |
+
class Dinov2LayerScale(nn.Module):
|
356 |
+
def __init__(self, config) -> None:
|
357 |
+
super().__init__()
|
358 |
+
self.lambda1 = nn.Parameter(
|
359 |
+
config.layerscale_value * torch.ones(config.hidden_size)
|
360 |
+
)
|
361 |
+
|
362 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
363 |
+
return hidden_state * self.lambda1
|
364 |
+
|
365 |
+
|
366 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
367 |
+
def drop_path(
|
368 |
+
input: torch.Tensor, drop_prob: float = 0.0, training: bool = False
|
369 |
+
) -> torch.Tensor:
|
370 |
+
"""
|
371 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
372 |
+
|
373 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
374 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
375 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
376 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
377 |
+
argument.
|
378 |
+
"""
|
379 |
+
if drop_prob == 0.0 or not training:
|
380 |
+
return input
|
381 |
+
keep_prob = 1 - drop_prob
|
382 |
+
shape = (input.shape[0],) + (1,) * (
|
383 |
+
input.ndim - 1
|
384 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
385 |
+
random_tensor = keep_prob + torch.rand(
|
386 |
+
shape, dtype=input.dtype, device=input.device
|
387 |
+
)
|
388 |
+
random_tensor.floor_() # binarize
|
389 |
+
output = input.div(keep_prob) * random_tensor
|
390 |
+
return output
|
391 |
+
|
392 |
+
|
393 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
|
394 |
+
class Dinov2DropPath(nn.Module):
|
395 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
396 |
+
|
397 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
398 |
+
super().__init__()
|
399 |
+
self.drop_prob = drop_prob
|
400 |
+
|
401 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
402 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
403 |
+
|
404 |
+
def extra_repr(self) -> str:
|
405 |
+
return "p={}".format(self.drop_prob)
|
406 |
+
|
407 |
+
|
408 |
+
class Dinov2MLP(nn.Module):
|
409 |
+
def __init__(self, config) -> None:
|
410 |
+
super().__init__()
|
411 |
+
in_features = out_features = config.hidden_size
|
412 |
+
hidden_features = int(config.hidden_size * config.mlp_ratio)
|
413 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=True)
|
414 |
+
if isinstance(config.hidden_act, str):
|
415 |
+
self.activation = ACT2FN[config.hidden_act]
|
416 |
+
else:
|
417 |
+
self.activation = config.hidden_act
|
418 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=True)
|
419 |
+
|
420 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
421 |
+
hidden_state = self.fc1(hidden_state)
|
422 |
+
hidden_state = self.activation(hidden_state)
|
423 |
+
hidden_state = self.fc2(hidden_state)
|
424 |
+
return hidden_state
|
425 |
+
|
426 |
+
|
427 |
+
class Dinov2SwiGLUFFN(nn.Module):
|
428 |
+
def __init__(self, config) -> None:
|
429 |
+
super().__init__()
|
430 |
+
in_features = out_features = config.hidden_size
|
431 |
+
hidden_features = int(config.hidden_size * config.mlp_ratio)
|
432 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
433 |
+
|
434 |
+
self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True)
|
435 |
+
self.weights_out = nn.Linear(hidden_features, out_features, bias=True)
|
436 |
+
|
437 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
438 |
+
hidden_state = self.weights_in(hidden_state)
|
439 |
+
x1, x2 = hidden_state.chunk(2, dim=-1)
|
440 |
+
hidden = nn.functional.silu(x1) * x2
|
441 |
+
return self.weights_out(hidden)
|
442 |
+
|
443 |
+
|
444 |
+
class Dinov2Layer(nn.Module):
|
445 |
+
"""This corresponds to the Block class in the original implementation."""
|
446 |
+
|
447 |
+
def __init__(self, config: Dinov2Config) -> None:
|
448 |
+
super().__init__()
|
449 |
+
|
450 |
+
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
451 |
+
self.attention = Dinov2Attention(config)
|
452 |
+
self.layer_scale1 = Dinov2LayerScale(config)
|
453 |
+
self.drop_path = (
|
454 |
+
Dinov2DropPath(config.drop_path_rate)
|
455 |
+
if config.drop_path_rate > 0.0
|
456 |
+
else nn.Identity()
|
457 |
+
)
|
458 |
+
|
459 |
+
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
460 |
+
|
461 |
+
if config.use_swiglu_ffn:
|
462 |
+
self.mlp = Dinov2SwiGLUFFN(config)
|
463 |
+
else:
|
464 |
+
self.mlp = Dinov2MLP(config)
|
465 |
+
self.layer_scale2 = Dinov2LayerScale(config)
|
466 |
+
|
467 |
+
def forward(
|
468 |
+
self,
|
469 |
+
hidden_states: torch.Tensor,
|
470 |
+
head_mask: Optional[torch.Tensor] = None,
|
471 |
+
output_attentions: bool = False,
|
472 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
473 |
+
self_attention_outputs = self.attention(
|
474 |
+
self.norm1(
|
475 |
+
hidden_states
|
476 |
+
), # in Dinov2, layernorm is applied before self-attention
|
477 |
+
head_mask,
|
478 |
+
output_attentions=output_attentions,
|
479 |
+
)
|
480 |
+
attention_output = self_attention_outputs[0]
|
481 |
+
|
482 |
+
attention_output = self.layer_scale1(attention_output)
|
483 |
+
outputs = self_attention_outputs[
|
484 |
+
1:
|
485 |
+
] # add self attentions if we output attention weights
|
486 |
+
|
487 |
+
# first residual connection
|
488 |
+
hidden_states = self.drop_path(attention_output) + hidden_states
|
489 |
+
|
490 |
+
# in Dinov2, layernorm is also applied after self-attention
|
491 |
+
layer_output = self.norm2(hidden_states)
|
492 |
+
layer_output = self.mlp(layer_output)
|
493 |
+
layer_output = self.layer_scale2(layer_output)
|
494 |
+
|
495 |
+
# second residual connection
|
496 |
+
layer_output = self.drop_path(layer_output) + hidden_states
|
497 |
+
|
498 |
+
outputs = (layer_output,) + outputs
|
499 |
+
|
500 |
+
return outputs
|
501 |
+
|
502 |
+
|
503 |
+
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2
|
504 |
+
class Dinov2Encoder(nn.Module):
|
505 |
+
def __init__(self, config: Dinov2Config) -> None:
|
506 |
+
super().__init__()
|
507 |
+
self.config = config
|
508 |
+
self.layer = nn.ModuleList(
|
509 |
+
[Dinov2Layer(config) for _ in range(config.num_hidden_layers)]
|
510 |
+
)
|
511 |
+
self.gradient_checkpointing = False
|
512 |
+
|
513 |
+
def forward(
|
514 |
+
self,
|
515 |
+
hidden_states: torch.Tensor,
|
516 |
+
head_mask: Optional[torch.Tensor] = None,
|
517 |
+
output_attentions: bool = False,
|
518 |
+
output_hidden_states: bool = False,
|
519 |
+
return_dict: bool = True,
|
520 |
+
) -> Union[tuple, BaseModelOutput]:
|
521 |
+
all_hidden_states = () if output_hidden_states else None
|
522 |
+
all_self_attentions = () if output_attentions else None
|
523 |
+
|
524 |
+
for i, layer_module in enumerate(self.layer):
|
525 |
+
if output_hidden_states:
|
526 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
527 |
+
|
528 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
529 |
+
|
530 |
+
if self.gradient_checkpointing and self.training:
|
531 |
+
layer_outputs = self._gradient_checkpointing_func(
|
532 |
+
layer_module.__call__,
|
533 |
+
hidden_states,
|
534 |
+
layer_head_mask,
|
535 |
+
output_attentions,
|
536 |
+
)
|
537 |
+
else:
|
538 |
+
layer_outputs = layer_module(
|
539 |
+
hidden_states, layer_head_mask, output_attentions
|
540 |
+
)
|
541 |
+
|
542 |
+
hidden_states = layer_outputs[0]
|
543 |
+
|
544 |
+
if output_attentions:
|
545 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
546 |
+
|
547 |
+
if output_hidden_states:
|
548 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
549 |
+
|
550 |
+
if not return_dict:
|
551 |
+
return tuple(
|
552 |
+
v
|
553 |
+
for v in [hidden_states, all_hidden_states, all_self_attentions]
|
554 |
+
if v is not None
|
555 |
+
)
|
556 |
+
return BaseModelOutput(
|
557 |
+
last_hidden_state=hidden_states,
|
558 |
+
hidden_states=all_hidden_states,
|
559 |
+
attentions=all_self_attentions,
|
560 |
+
)
|
561 |
+
|
562 |
+
|
563 |
+
class Dinov2PreTrainedModel(PreTrainedModel):
|
564 |
+
"""
|
565 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
566 |
+
models.
|
567 |
+
"""
|
568 |
+
|
569 |
+
config_class = Dinov2Config
|
570 |
+
base_model_prefix = "dinov2"
|
571 |
+
main_input_name = "pixel_values"
|
572 |
+
supports_gradient_checkpointing = True
|
573 |
+
|
574 |
+
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
575 |
+
"""Initialize the weights"""
|
576 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
577 |
+
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
|
578 |
+
# `trunc_normal_cpu` not implemented in `half` issues
|
579 |
+
module.weight.data = nn.init.trunc_normal_(
|
580 |
+
module.weight.data.to(torch.float32),
|
581 |
+
mean=0.0,
|
582 |
+
std=self.config.initializer_range,
|
583 |
+
).to(module.weight.dtype)
|
584 |
+
if module.bias is not None:
|
585 |
+
module.bias.data.zero_()
|
586 |
+
elif isinstance(module, nn.LayerNorm):
|
587 |
+
module.bias.data.zero_()
|
588 |
+
module.weight.data.fill_(1.0)
|
589 |
+
elif isinstance(module, Dinov2Embeddings):
|
590 |
+
module.position_embeddings.data = nn.init.trunc_normal_(
|
591 |
+
module.position_embeddings.data.to(torch.float32),
|
592 |
+
mean=0.0,
|
593 |
+
std=self.config.initializer_range,
|
594 |
+
).to(module.position_embeddings.dtype)
|
595 |
+
|
596 |
+
module.cls_token.data = nn.init.trunc_normal_(
|
597 |
+
module.cls_token.data.to(torch.float32),
|
598 |
+
mean=0.0,
|
599 |
+
std=self.config.initializer_range,
|
600 |
+
).to(module.cls_token.dtype)
|
601 |
+
|
602 |
+
|
603 |
+
DINOV2_START_DOCSTRING = r"""
|
604 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
605 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
606 |
+
behavior.
|
607 |
+
|
608 |
+
Parameters:
|
609 |
+
config ([`Dinov2Config`]): Model configuration class with all the parameters of the model.
|
610 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
611 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
612 |
+
"""
|
613 |
+
|
614 |
+
DINOV2_BASE_INPUTS_DOCSTRING = r"""
|
615 |
+
Args:
|
616 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
617 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
618 |
+
[`BitImageProcessor.preprocess`] for details.
|
619 |
+
|
620 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
|
621 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for
|
622 |
+
pre-training.
|
623 |
+
|
624 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
625 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
626 |
+
|
627 |
+
- 1 indicates the head is **not masked**,
|
628 |
+
- 0 indicates the head is **masked**.
|
629 |
+
|
630 |
+
output_attentions (`bool`, *optional*):
|
631 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
632 |
+
tensors for more detail.
|
633 |
+
output_hidden_states (`bool`, *optional*):
|
634 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
635 |
+
more detail.
|
636 |
+
return_dict (`bool`, *optional*):
|
637 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
638 |
+
"""
|
639 |
+
|
640 |
+
DINOV2_INPUTS_DOCSTRING = r"""
|
641 |
+
Args:
|
642 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
643 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
644 |
+
[`BitImageProcessor.preprocess`] for details.
|
645 |
+
|
646 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
647 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
648 |
+
|
649 |
+
- 1 indicates the head is **not masked**,
|
650 |
+
- 0 indicates the head is **masked**.
|
651 |
+
|
652 |
+
output_attentions (`bool`, *optional*):
|
653 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
654 |
+
tensors for more detail.
|
655 |
+
output_hidden_states (`bool`, *optional*):
|
656 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
657 |
+
more detail.
|
658 |
+
return_dict (`bool`, *optional*):
|
659 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
660 |
+
"""
|
661 |
+
|
662 |
+
|
663 |
+
@add_start_docstrings(
|
664 |
+
"The bare DINOv2 Model transformer outputting raw hidden-states without any specific head on top.",
|
665 |
+
DINOV2_START_DOCSTRING,
|
666 |
+
)
|
667 |
+
class Dinov2Model(Dinov2PreTrainedModel):
|
668 |
+
def __init__(self, config: Dinov2Config):
|
669 |
+
super().__init__(config)
|
670 |
+
self.config = config
|
671 |
+
|
672 |
+
self.embeddings = Dinov2Embeddings(config)
|
673 |
+
self.encoder = Dinov2Encoder(config)
|
674 |
+
|
675 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
676 |
+
|
677 |
+
# Initialize weights and apply final processing
|
678 |
+
self.post_init()
|
679 |
+
|
680 |
+
def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
|
681 |
+
return self.embeddings.patch_embeddings
|
682 |
+
|
683 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
684 |
+
"""
|
685 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
686 |
+
class PreTrainedModel
|
687 |
+
"""
|
688 |
+
for layer, heads in heads_to_prune.items():
|
689 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
690 |
+
|
691 |
+
@add_start_docstrings_to_model_forward(DINOV2_BASE_INPUTS_DOCSTRING)
|
692 |
+
@add_code_sample_docstrings(
|
693 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
694 |
+
output_type=BaseModelOutputWithPooling,
|
695 |
+
config_class=_CONFIG_FOR_DOC,
|
696 |
+
modality="vision",
|
697 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
698 |
+
)
|
699 |
+
def forward(
|
700 |
+
self,
|
701 |
+
pixel_values: Optional[torch.Tensor] = None,
|
702 |
+
bool_masked_pos: Optional[torch.Tensor] = None,
|
703 |
+
head_mask: Optional[torch.Tensor] = None,
|
704 |
+
output_attentions: Optional[bool] = None,
|
705 |
+
output_hidden_states: Optional[bool] = None,
|
706 |
+
return_dict: Optional[bool] = None,
|
707 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
708 |
+
output_attentions = (
|
709 |
+
output_attentions
|
710 |
+
if output_attentions is not None
|
711 |
+
else self.config.output_attentions
|
712 |
+
)
|
713 |
+
output_hidden_states = (
|
714 |
+
output_hidden_states
|
715 |
+
if output_hidden_states is not None
|
716 |
+
else self.config.output_hidden_states
|
717 |
+
)
|
718 |
+
return_dict = (
|
719 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
720 |
+
)
|
721 |
+
|
722 |
+
if pixel_values is None:
|
723 |
+
raise ValueError("You have to specify pixel_values")
|
724 |
+
|
725 |
+
# Prepare head mask if needed
|
726 |
+
# 1.0 in head_mask indicate we keep the head
|
727 |
+
# attention_probs has shape bsz x n_heads x N x N
|
728 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
729 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
730 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
731 |
+
|
732 |
+
embedding_output = self.embeddings(
|
733 |
+
pixel_values, bool_masked_pos=bool_masked_pos
|
734 |
+
)
|
735 |
+
|
736 |
+
encoder_outputs = self.encoder(
|
737 |
+
embedding_output,
|
738 |
+
head_mask=head_mask,
|
739 |
+
output_attentions=output_attentions,
|
740 |
+
output_hidden_states=output_hidden_states,
|
741 |
+
return_dict=return_dict,
|
742 |
+
)
|
743 |
+
sequence_output = encoder_outputs[0]
|
744 |
+
sequence_output = self.layernorm(sequence_output)
|
745 |
+
pooled_output = sequence_output[:, 0, :]
|
746 |
+
|
747 |
+
if not return_dict:
|
748 |
+
head_outputs = (sequence_output, pooled_output)
|
749 |
+
return head_outputs + encoder_outputs[1:]
|
750 |
+
|
751 |
+
return BaseModelOutputWithPooling(
|
752 |
+
last_hidden_state=sequence_output,
|
753 |
+
pooler_output=pooled_output,
|
754 |
+
hidden_states=encoder_outputs.hidden_states,
|
755 |
+
attentions=encoder_outputs.attentions,
|
756 |
+
)
|
757 |
+
|
758 |
+
|
759 |
+
@add_start_docstrings(
|
760 |
+
"""
|
761 |
+
Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
|
762 |
+
of the [CLS] token) e.g. for ImageNet.
|
763 |
+
""",
|
764 |
+
DINOV2_START_DOCSTRING,
|
765 |
+
)
|
766 |
+
class Dinov2ForImageClassification(Dinov2PreTrainedModel):
|
767 |
+
def __init__(self, config: Dinov2Config) -> None:
|
768 |
+
super().__init__(config)
|
769 |
+
|
770 |
+
self.num_labels = config.num_labels
|
771 |
+
self.dinov2 = Dinov2Model(config)
|
772 |
+
|
773 |
+
# Classifier head
|
774 |
+
self.classifier = (
|
775 |
+
nn.Linear(config.hidden_size * 2, config.num_labels)
|
776 |
+
if config.num_labels > 0
|
777 |
+
else nn.Identity()
|
778 |
+
)
|
779 |
+
|
780 |
+
# Initialize weights and apply final processing
|
781 |
+
self.post_init()
|
782 |
+
|
783 |
+
@add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
|
784 |
+
@add_code_sample_docstrings(
|
785 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
786 |
+
output_type=ImageClassifierOutput,
|
787 |
+
config_class=_CONFIG_FOR_DOC,
|
788 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
789 |
+
)
|
790 |
+
def forward(
|
791 |
+
self,
|
792 |
+
pixel_values: Optional[torch.Tensor] = None,
|
793 |
+
head_mask: Optional[torch.Tensor] = None,
|
794 |
+
labels: Optional[torch.Tensor] = None,
|
795 |
+
output_attentions: Optional[bool] = None,
|
796 |
+
output_hidden_states: Optional[bool] = None,
|
797 |
+
return_dict: Optional[bool] = None,
|
798 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
799 |
+
r"""
|
800 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
801 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
802 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
803 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
804 |
+
"""
|
805 |
+
return_dict = (
|
806 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
807 |
+
)
|
808 |
+
|
809 |
+
outputs = self.dinov2(
|
810 |
+
pixel_values,
|
811 |
+
head_mask=head_mask,
|
812 |
+
output_attentions=output_attentions,
|
813 |
+
output_hidden_states=output_hidden_states,
|
814 |
+
return_dict=return_dict,
|
815 |
+
)
|
816 |
+
|
817 |
+
sequence_output = outputs[0] # batch_size, sequence_length, hidden_size
|
818 |
+
|
819 |
+
cls_token = sequence_output[:, 0]
|
820 |
+
patch_tokens = sequence_output[:, 1:]
|
821 |
+
|
822 |
+
linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1)
|
823 |
+
|
824 |
+
logits = self.classifier(linear_input)
|
825 |
+
|
826 |
+
loss = None
|
827 |
+
if labels is not None:
|
828 |
+
# move labels to correct device to enable model parallelism
|
829 |
+
labels = labels.to(logits.device)
|
830 |
+
if self.config.problem_type is None:
|
831 |
+
if self.num_labels == 1:
|
832 |
+
self.config.problem_type = "regression"
|
833 |
+
elif self.num_labels > 1 and (
|
834 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
835 |
+
):
|
836 |
+
self.config.problem_type = "single_label_classification"
|
837 |
+
else:
|
838 |
+
self.config.problem_type = "multi_label_classification"
|
839 |
+
|
840 |
+
if self.config.problem_type == "regression":
|
841 |
+
loss_fct = MSELoss()
|
842 |
+
if self.num_labels == 1:
|
843 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
844 |
+
else:
|
845 |
+
loss = loss_fct(logits, labels)
|
846 |
+
elif self.config.problem_type == "single_label_classification":
|
847 |
+
loss_fct = CrossEntropyLoss()
|
848 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
849 |
+
elif self.config.problem_type == "multi_label_classification":
|
850 |
+
loss_fct = BCEWithLogitsLoss()
|
851 |
+
loss = loss_fct(logits, labels)
|
852 |
+
|
853 |
+
if not return_dict:
|
854 |
+
output = (logits,) + outputs[2:]
|
855 |
+
return ((loss,) + output) if loss is not None else output
|
856 |
+
|
857 |
+
return ImageClassifierOutput(
|
858 |
+
loss=loss,
|
859 |
+
logits=logits,
|
860 |
+
hidden_states=outputs.hidden_states,
|
861 |
+
attentions=outputs.attentions,
|
862 |
+
)
|
863 |
+
|
864 |
+
|
865 |
+
@add_start_docstrings(
|
866 |
+
"""
|
867 |
+
Dinov2 backbone, to be used with frameworks like DETR and MaskFormer.
|
868 |
+
""",
|
869 |
+
DINOV2_START_DOCSTRING,
|
870 |
+
)
|
871 |
+
class Dinov2Backbone(Dinov2PreTrainedModel, BackboneMixin):
|
872 |
+
def __init__(self, config):
|
873 |
+
super().__init__(config)
|
874 |
+
super()._init_backbone(config)
|
875 |
+
|
876 |
+
self.num_features = [
|
877 |
+
config.hidden_size for _ in range(config.num_hidden_layers + 1)
|
878 |
+
]
|
879 |
+
self.embeddings = Dinov2Embeddings(config)
|
880 |
+
self.encoder = Dinov2Encoder(config)
|
881 |
+
|
882 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
883 |
+
|
884 |
+
# Initialize weights and apply final processing
|
885 |
+
self.post_init()
|
886 |
+
|
887 |
+
def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
|
888 |
+
return self.embeddings.patch_embeddings
|
889 |
+
|
890 |
+
@add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
|
891 |
+
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
892 |
+
def forward(
|
893 |
+
self,
|
894 |
+
pixel_values: torch.Tensor,
|
895 |
+
output_hidden_states: Optional[bool] = None,
|
896 |
+
output_attentions: Optional[bool] = None,
|
897 |
+
return_dict: Optional[bool] = None,
|
898 |
+
) -> BackboneOutput:
|
899 |
+
"""
|
900 |
+
Returns:
|
901 |
+
|
902 |
+
Examples:
|
903 |
+
|
904 |
+
```python
|
905 |
+
>>> from transformers import AutoImageProcessor, AutoBackbone
|
906 |
+
>>> import torch
|
907 |
+
>>> from PIL import Image
|
908 |
+
>>> import requests
|
909 |
+
|
910 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
911 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
912 |
+
|
913 |
+
>>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
914 |
+
>>> model = AutoBackbone.from_pretrained(
|
915 |
+
... "facebook/dinov2-base", out_features=["stage2", "stage5", "stage8", "stage11"]
|
916 |
+
... )
|
917 |
+
|
918 |
+
>>> inputs = processor(image, return_tensors="pt")
|
919 |
+
|
920 |
+
>>> outputs = model(**inputs)
|
921 |
+
>>> feature_maps = outputs.feature_maps
|
922 |
+
>>> list(feature_maps[-1].shape)
|
923 |
+
[1, 768, 16, 16]
|
924 |
+
```"""
|
925 |
+
return_dict = (
|
926 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
927 |
+
)
|
928 |
+
output_hidden_states = (
|
929 |
+
output_hidden_states
|
930 |
+
if output_hidden_states is not None
|
931 |
+
else self.config.output_hidden_states
|
932 |
+
)
|
933 |
+
output_attentions = (
|
934 |
+
output_attentions
|
935 |
+
if output_attentions is not None
|
936 |
+
else self.config.output_attentions
|
937 |
+
)
|
938 |
+
|
939 |
+
embedding_output = self.embeddings(pixel_values)
|
940 |
+
|
941 |
+
outputs = self.encoder(
|
942 |
+
embedding_output,
|
943 |
+
output_hidden_states=True,
|
944 |
+
output_attentions=output_attentions,
|
945 |
+
return_dict=return_dict,
|
946 |
+
)
|
947 |
+
|
948 |
+
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
949 |
+
|
950 |
+
feature_maps = ()
|
951 |
+
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
952 |
+
if stage in self.out_features:
|
953 |
+
if self.config.apply_layernorm:
|
954 |
+
hidden_state = self.layernorm(hidden_state)
|
955 |
+
if self.config.reshape_hidden_states:
|
956 |
+
hidden_state = hidden_state[:, 1:]
|
957 |
+
# this was actually a bug in the original implementation that we copied here,
|
958 |
+
# cause normally the order is height, width
|
959 |
+
batch_size, _, height, width = pixel_values.shape
|
960 |
+
patch_size = self.config.patch_size
|
961 |
+
hidden_state = hidden_state.reshape(
|
962 |
+
batch_size, height // patch_size, width // patch_size, -1
|
963 |
+
)
|
964 |
+
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
|
965 |
+
feature_maps += (hidden_state,)
|
966 |
+
|
967 |
+
if not return_dict:
|
968 |
+
if output_hidden_states:
|
969 |
+
output = (feature_maps,) + outputs[1:]
|
970 |
+
else:
|
971 |
+
output = (feature_maps,) + outputs[2:]
|
972 |
+
return output
|
973 |
+
|
974 |
+
return BackboneOutput(
|
975 |
+
feature_maps=feature_maps,
|
976 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
977 |
+
attentions=outputs.attentions if output_attentions else None,
|
978 |
+
)
|
step1x3d_geometry/models/conditional_encoders/dinov2_clip_encoder.py
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import numpy as np
|
5 |
+
import re
|
6 |
+
from einops import rearrange
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from torchvision import transforms
|
9 |
+
|
10 |
+
from diffusers.models.modeling_utils import ModelMixin
|
11 |
+
from transformers import CLIPTokenizer, CLIPImageProcessor
|
12 |
+
from transformers import AutoImageProcessor, AutoModel
|
13 |
+
from transformers import T5EncoderModel, T5Tokenizer, AutoTokenizer
|
14 |
+
from transformers.utils import ModelOutput
|
15 |
+
from typing import Iterable, Optional, Union, List
|
16 |
+
|
17 |
+
import step1x3d_geometry
|
18 |
+
from step1x3d_geometry.utils.typing import *
|
19 |
+
from .clip.modeling_clip import CLIPModel
|
20 |
+
from .clip.modeling_conditional_clip import ConditionalCLIPModel
|
21 |
+
from .base import BaseVisualEncoder, ImageType
|
22 |
+
from .dinov2.modeling_dinov2 import Dinov2Model
|
23 |
+
from .dinov2.modeling_conditional_dinov2 import ConditionalDinov2Model
|
24 |
+
from .dinov2_with_registers.modeling_dinov2_with_registers import (
|
25 |
+
Dinov2WithRegistersModel,
|
26 |
+
)
|
27 |
+
|
28 |
+
CLIP_IMAGE_SIZE = 224
|
29 |
+
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class CLIPEmbedOutput(ModelOutput):
|
33 |
+
last_hidden_state: torch.FloatTensor = None
|
34 |
+
pooler_output: torch.FloatTensor = None
|
35 |
+
embeds: torch.FloatTensor = None
|
36 |
+
|
37 |
+
|
38 |
+
class DINOEmbedOutput(ModelOutput):
|
39 |
+
last_hidden_state: torch.FloatTensor = None
|
40 |
+
pooler_output: torch.FloatTensor = None
|
41 |
+
|
42 |
+
|
43 |
+
@step1x3d_geometry.register("dinov2-clip-encoder")
|
44 |
+
class Dinov2CLIPEncoder(BaseVisualEncoder, ModelMixin):
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class Config(BaseVisualEncoder.Config):
|
48 |
+
pretrained_model_name_or_path: Optional[str] = (
|
49 |
+
None # the pretrained model name or path for condition model
|
50 |
+
)
|
51 |
+
pretrained_clip_name_or_path: Optional[str] = (
|
52 |
+
None # the pretrained model name or path for clip
|
53 |
+
)
|
54 |
+
pretrained_dino_name_or_path: Optional[str] = (
|
55 |
+
None # the pretrained model name or path for dino
|
56 |
+
)
|
57 |
+
pretrained_linear_proj: Optional[str] = None
|
58 |
+
freeze_modulation_clip: bool = False
|
59 |
+
freeze_modulation_dino: bool = False
|
60 |
+
enable_gradient_checkpointing: bool = False
|
61 |
+
image_size: int = CLIP_IMAGE_SIZE
|
62 |
+
fuse_type: str = "concat"
|
63 |
+
|
64 |
+
dino_type: Optional[str] = None
|
65 |
+
clip_type: Optional[str] = None
|
66 |
+
kwargs: Optional[dict] = None
|
67 |
+
|
68 |
+
cfg: Config
|
69 |
+
|
70 |
+
def configure(self) -> None:
|
71 |
+
super().configure()
|
72 |
+
|
73 |
+
# Load the CLIP model and processor
|
74 |
+
if not self.cfg.encode_camera:
|
75 |
+
if self.cfg.pretrained_clip_name_or_path is not None:
|
76 |
+
self.cfg.clip_type = f"openai/{self.cfg.pretrained_clip_name_or_path.split('openai--')[-1].split('/')[0]}"
|
77 |
+
self.clip_model: CLIPModel = CLIPModel.from_pretrained(
|
78 |
+
self.cfg.pretrained_clip_name_or_path
|
79 |
+
)
|
80 |
+
else:
|
81 |
+
print("Loading CLIP model from openai/clip-vit-large-patch14")
|
82 |
+
self.dino_type = "openai/clip-vit-large-patch14"
|
83 |
+
self.clip_model: CLIPModel = CLIPModel(
|
84 |
+
config=ConditionalCLIPModel.config_class.from_pretrained(
|
85 |
+
"openai/clip-vit-large-patch14",
|
86 |
+
)
|
87 |
+
)
|
88 |
+
if self.cfg.pretrained_dino_name_or_path is not None:
|
89 |
+
self.cfg.dino_type = f"facebook/{self.cfg.pretrained_dino_name_or_path.split('facebook--')[-1].split('/')[0]}"
|
90 |
+
self.dino_model: Dinov2Model = AutoModel.from_pretrained(
|
91 |
+
self.cfg.pretrained_dino_name_or_path
|
92 |
+
)
|
93 |
+
else:
|
94 |
+
if (
|
95 |
+
self.cfg.pretrained_model_name_or_path is None
|
96 |
+
): # default to load Dinov2-base model
|
97 |
+
assert (
|
98 |
+
self.cfg.dino_type is not None
|
99 |
+
), "The dino_type should be provided"
|
100 |
+
print(f"Loading Dinov2 model from {self.cfg.dino_type}")
|
101 |
+
if "reg" in self.cfg.dino_type:
|
102 |
+
self.dino_model: Dinov2WithRegistersModel = (
|
103 |
+
Dinov2WithRegistersModel(
|
104 |
+
config=Dinov2WithRegistersModel.config_class.from_pretrained(
|
105 |
+
self.cfg.dino_type,
|
106 |
+
)
|
107 |
+
)
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
self.dino_model: Dinov2Model = Dinov2Model(
|
111 |
+
config=Dinov2Model.config_class.from_pretrained(
|
112 |
+
self.dino_type,
|
113 |
+
)
|
114 |
+
)
|
115 |
+
elif "dinov2base" in self.cfg.pretrained_model_name_or_path:
|
116 |
+
print("Loading Dinov2 model from facebook/dinov2-base")
|
117 |
+
self.cfg.dino_type = "facebook/dinov2-base"
|
118 |
+
self.dino_model: Dinov2Model = Dinov2Model(
|
119 |
+
config=Dinov2Model.config_class.from_pretrained(
|
120 |
+
"facebook/dinov2-base",
|
121 |
+
)
|
122 |
+
)
|
123 |
+
elif "dinov2regbase" in self.cfg.pretrained_model_name_or_path:
|
124 |
+
print(
|
125 |
+
"Loading Dinov2 model from facebook/dinov2-with-registers-base"
|
126 |
+
)
|
127 |
+
self.cfg.dino_type = "facebook/dinov2-with-registers-base"
|
128 |
+
self.dino_model: Dinov2WithRegistersModel = (
|
129 |
+
Dinov2WithRegistersModel(
|
130 |
+
config=Dinov2WithRegistersModel.config_class.from_pretrained(
|
131 |
+
"facebook/dinov2-with-registers-base",
|
132 |
+
)
|
133 |
+
)
|
134 |
+
)
|
135 |
+
elif "dinov2reglarge" in self.cfg.pretrained_model_name_or_path:
|
136 |
+
print(
|
137 |
+
"Loading Dinov2 model from facebook/dinov2-with-registers-large"
|
138 |
+
)
|
139 |
+
self.cfg.dino_type = "facebook/dinov2-with-registers-large"
|
140 |
+
self.dino_model: Dinov2WithRegistersModel = (
|
141 |
+
Dinov2WithRegistersModel(
|
142 |
+
config=Dinov2WithRegistersModel.config_class.from_pretrained(
|
143 |
+
"facebook/dinov2-with-registers-large",
|
144 |
+
)
|
145 |
+
)
|
146 |
+
)
|
147 |
+
else:
|
148 |
+
raise ValueError(
|
149 |
+
f"Unknown Dinov2 model: {self.cfg.pretrained_model_name_or_path}"
|
150 |
+
)
|
151 |
+
else:
|
152 |
+
# clip
|
153 |
+
conditional_clip_config = ConditionalCLIPModel.config_class.from_pretrained(
|
154 |
+
self.cfg.pretrained_clip_name_or_path,
|
155 |
+
)
|
156 |
+
conditional_clip_config.vision_config.modulation_dim = (
|
157 |
+
self.cfg.camera_embeds_dim
|
158 |
+
)
|
159 |
+
self.clip_model: CLIPModel = ConditionalCLIPModel.from_pretrained(
|
160 |
+
self.cfg.pretrained_clip_name_or_path,
|
161 |
+
vision_config=conditional_clip_config.vision_config,
|
162 |
+
)
|
163 |
+
|
164 |
+
# dino
|
165 |
+
conditional_vit_config = (
|
166 |
+
ConditionalDinov2Model.config_class.from_pretrained(
|
167 |
+
self.cfg.pretrained_dino_name_or_path,
|
168 |
+
)
|
169 |
+
)
|
170 |
+
conditional_vit_config.modulation_dim = self.cfg.camera_embeds_dim
|
171 |
+
self.dino_model: ConditionalDinov2Model = (
|
172 |
+
ConditionalDinov2Model.from_pretrained(
|
173 |
+
self.cfg.pretrained_dino_name_or_path, config=conditional_vit_config
|
174 |
+
)
|
175 |
+
)
|
176 |
+
|
177 |
+
self.image_preprocess_clip = CLIPImageProcessor()
|
178 |
+
self.image_preprocess_dino = AutoImageProcessor.from_pretrained(
|
179 |
+
self.cfg.dino_type
|
180 |
+
if self.cfg.pretrained_dino_name_or_path is None
|
181 |
+
else self.cfg.pretrained_dino_name_or_path
|
182 |
+
)
|
183 |
+
self.transform_clip = transforms.Compose(
|
184 |
+
[
|
185 |
+
transforms.Resize(
|
186 |
+
CLIP_IMAGE_SIZE,
|
187 |
+
transforms.InterpolationMode.BICUBIC,
|
188 |
+
antialias=True,
|
189 |
+
), # clip is CLIP_IMAGE_SIZE
|
190 |
+
transforms.CenterCrop(CLIP_IMAGE_SIZE), # crop a square.
|
191 |
+
transforms.Normalize(
|
192 |
+
mean=[0.48145466, 0.4578275, 0.40821073],
|
193 |
+
std=[0.26862954, 0.26130258, 0.27577711],
|
194 |
+
),
|
195 |
+
]
|
196 |
+
)
|
197 |
+
self.transform_dino = transforms.Compose(
|
198 |
+
[
|
199 |
+
transforms.Resize(
|
200 |
+
self.cfg.image_size,
|
201 |
+
transforms.InterpolationMode.BICUBIC,
|
202 |
+
antialias=True,
|
203 |
+
),
|
204 |
+
transforms.CenterCrop(self.cfg.image_size), # crop a square
|
205 |
+
transforms.Normalize(
|
206 |
+
mean=[0.485, 0.456, 0.406],
|
207 |
+
std=[0.229, 0.224, 0.225],
|
208 |
+
),
|
209 |
+
]
|
210 |
+
)
|
211 |
+
|
212 |
+
if self.cfg.enable_gradient_checkpointing:
|
213 |
+
self.dino_model.encoder.gradient_checkpointing = True
|
214 |
+
|
215 |
+
if self.cfg.zero_uncond_embeds:
|
216 |
+
image_size = max(self.cfg.image_size, self.cfg.image_size)
|
217 |
+
self.empty_image_embeds_dino = torch.zeros(
|
218 |
+
(self.cfg.n_views, (image_size // 14) ** 2 + 1, 1024)
|
219 |
+
).detach()
|
220 |
+
self.empty_image_embeds_clip = torch.zeros(
|
221 |
+
(self.cfg.n_views, (CLIP_IMAGE_SIZE // 14) ** 2 + 1, 1024)
|
222 |
+
).detach()
|
223 |
+
if self.cfg.fuse_type == "concat":
|
224 |
+
self.empty_image_embeds = torch.cat(
|
225 |
+
[self.empty_image_embeds_dino, self.empty_image_embeds_clip], dim=1
|
226 |
+
)
|
227 |
+
else:
|
228 |
+
raise ValueError
|
229 |
+
else:
|
230 |
+
if self.cfg.encode_camera:
|
231 |
+
self.empty_image_embeds_dino = self.encode_image_dino(
|
232 |
+
torch.zeros(
|
233 |
+
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
|
234 |
+
),
|
235 |
+
self.cameras[: self.cfg.n_views],
|
236 |
+
).detach()
|
237 |
+
self.empty_image_embeds_clip = self.encode_image_clip(
|
238 |
+
torch.zeros(
|
239 |
+
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
|
240 |
+
),
|
241 |
+
self.cameras[: self.cfg.n_views],
|
242 |
+
).detach()
|
243 |
+
else:
|
244 |
+
self.empty_image_embeds_dino = self.encode_image_dino(
|
245 |
+
torch.zeros(
|
246 |
+
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
|
247 |
+
)
|
248 |
+
).detach()
|
249 |
+
self.empty_image_embeds_clip = self.encode_image_clip(
|
250 |
+
torch.zeros(
|
251 |
+
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
|
252 |
+
)
|
253 |
+
).detach()
|
254 |
+
self.empty_image_embeds_clip, self.empty_image_embeds_dino = (
|
255 |
+
self.align_clip_dino(
|
256 |
+
self.empty_image_embeds_clip, self.empty_image_embeds_dino
|
257 |
+
)
|
258 |
+
)
|
259 |
+
self.empty_image_embeds = torch.cat(
|
260 |
+
[self.empty_image_embeds_dino, self.empty_image_embeds_clip], dim=1
|
261 |
+
)
|
262 |
+
|
263 |
+
# Freeze the clip model parameters
|
264 |
+
self.clip_model.eval()
|
265 |
+
for k, p in self.clip_model.named_parameters():
|
266 |
+
ks = k.split(".")
|
267 |
+
if (
|
268 |
+
"mod_norm1" in ks
|
269 |
+
or "mod_norm2" in ks
|
270 |
+
and not self.cfg.freeze_modulation_clip
|
271 |
+
):
|
272 |
+
p.requires_grad_(not self.cfg.freeze_modulation_clip)
|
273 |
+
else:
|
274 |
+
p.requires_grad_(False)
|
275 |
+
|
276 |
+
# freeze the dino model parameters
|
277 |
+
self.dino_model.eval()
|
278 |
+
for k, p in self.dino_model.named_parameters():
|
279 |
+
ks = k.split(".")
|
280 |
+
if (
|
281 |
+
"mod_norm1" in ks
|
282 |
+
or "mod_norm2" in ks
|
283 |
+
and not self.cfg.freeze_modulation_dino
|
284 |
+
):
|
285 |
+
p.requires_grad_(not self.cfg.freeze_modulation_dino)
|
286 |
+
else:
|
287 |
+
p.requires_grad_(False)
|
288 |
+
|
289 |
+
# add a linear projection layer to project the dino embeddings to the same dimension as clip embeddings
|
290 |
+
if (
|
291 |
+
self.clip_model.config.vision_config.hidden_size
|
292 |
+
!= self.dino_model.config.hidden_size
|
293 |
+
):
|
294 |
+
self.linear_proj = nn.Linear(
|
295 |
+
self.clip_model.config.vision_config.hidden_size,
|
296 |
+
self.dino_model.config.vision_config.hidden_size,
|
297 |
+
bias=False,
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
self.linear_proj = nn.Identity()
|
301 |
+
|
302 |
+
if self.cfg.pretrained_model_name_or_path is not None:
|
303 |
+
print(f"Loading ckpt from {self.cfg.pretrained_model_name_or_path}")
|
304 |
+
ckpt = torch.load(
|
305 |
+
self.cfg.pretrained_model_name_or_path, map_location="cpu"
|
306 |
+
)["state_dict"]
|
307 |
+
pretrained_model_ckpt = {}
|
308 |
+
for k, v in ckpt.items():
|
309 |
+
if k.startswith("condition."):
|
310 |
+
pretrained_model_ckpt[k.replace("condition.", "")] = v
|
311 |
+
self.load_state_dict(pretrained_model_ckpt, strict=True)
|
312 |
+
|
313 |
+
def encode_image_clip(
|
314 |
+
self,
|
315 |
+
images: Iterable[Optional[ImageType]],
|
316 |
+
cameras: Optional[torch.Tensor] = None,
|
317 |
+
force_none_camera_embeds: bool = False,
|
318 |
+
return_dict: bool = False,
|
319 |
+
**kwargs,
|
320 |
+
) -> torch.FloatTensor:
|
321 |
+
camera_embeds = None
|
322 |
+
if isinstance(images, (np.ndarray, torch.Tensor)): # for training process
|
323 |
+
assert (
|
324 |
+
images.min() >= 0.0 and images.max() <= 1.0
|
325 |
+
), "The pixel values should be in the range of [0, 1]"
|
326 |
+
if self.cfg.encode_camera:
|
327 |
+
assert cameras is not None, "The cameras should be provided"
|
328 |
+
camera_embeds = self.encode_camera(cameras)
|
329 |
+
pixel_values = self.transform_clip(images.permute(0, 3, 1, 2))
|
330 |
+
else: # for inference process
|
331 |
+
if self.cfg.encode_camera:
|
332 |
+
if cameras is None:
|
333 |
+
bs = len(images) // self.cfg.n_views
|
334 |
+
cameras = (
|
335 |
+
self.cameras[: self.cfg.n_views]
|
336 |
+
.repeat(bs, 1, 1)
|
337 |
+
.to(self.clip_model.device)
|
338 |
+
)
|
339 |
+
camera_embeds = self.encode_camera(cameras)
|
340 |
+
pixel_values = self.image_preprocess_clip.preprocess(
|
341 |
+
images,
|
342 |
+
return_tensors="pt",
|
343 |
+
do_rescale=True,
|
344 |
+
do_resize=True,
|
345 |
+
size=CLIP_IMAGE_SIZE,
|
346 |
+
crop_size=CLIP_IMAGE_SIZE,
|
347 |
+
).pixel_values
|
348 |
+
|
349 |
+
if force_none_camera_embeds:
|
350 |
+
camera_embeds = None
|
351 |
+
|
352 |
+
if pixel_values.ndim == 4:
|
353 |
+
pixel_values = pixel_values.unsqueeze(1)
|
354 |
+
if camera_embeds is not None:
|
355 |
+
camera_embeds = camera_embeds.unsqueeze(1)
|
356 |
+
|
357 |
+
if self.cfg.encode_camera and camera_embeds is not None:
|
358 |
+
vision_outputs = self.clip_model.vision_model(
|
359 |
+
pixel_values=rearrange(
|
360 |
+
pixel_values.to(self.clip_model.device), "B N C H W -> (B N) C H W"
|
361 |
+
),
|
362 |
+
condition=rearrange(camera_embeds, "B N C -> (B N) C"),
|
363 |
+
)
|
364 |
+
|
365 |
+
else:
|
366 |
+
vision_outputs = self.clip_model.vision_model(
|
367 |
+
pixel_values=rearrange(
|
368 |
+
pixel_values.to(self.clip_model.device), "B N C H W -> (B N) C H W"
|
369 |
+
),
|
370 |
+
)
|
371 |
+
|
372 |
+
if return_dict:
|
373 |
+
# clip
|
374 |
+
pooler_output = vision_outputs[1] # pooled_output
|
375 |
+
image_features = self.clip_model.visual_projection(pooler_output)
|
376 |
+
clip_embeds = vision_outputs.last_hidden_state
|
377 |
+
|
378 |
+
clip_embeds_dict = CLIPEmbedOutput(
|
379 |
+
last_hidden_state=clip_embeds,
|
380 |
+
pooler_output=pooler_output,
|
381 |
+
embeds=image_features,
|
382 |
+
)
|
383 |
+
|
384 |
+
return clip_embeds_dict
|
385 |
+
else:
|
386 |
+
return vision_outputs.last_hidden_state
|
387 |
+
|
388 |
+
def encode_image_dino(
|
389 |
+
self,
|
390 |
+
images: Iterable[Optional[ImageType]],
|
391 |
+
cameras: Optional[torch.Tensor] = None,
|
392 |
+
force_none_camera_embeds: bool = False,
|
393 |
+
return_dict: bool = False,
|
394 |
+
**kwargs,
|
395 |
+
) -> torch.FloatTensor:
|
396 |
+
camera_embeds = None
|
397 |
+
if isinstance(images, (np.ndarray, torch.Tensor)): # for training process
|
398 |
+
assert (
|
399 |
+
images.min() >= 0.0 and images.max() <= 1.0
|
400 |
+
), "The pixel values should be in the range of [0, 1]"
|
401 |
+
if self.cfg.encode_camera:
|
402 |
+
assert cameras is not None, "The cameras should be provided"
|
403 |
+
camera_embeds = self.encode_camera(cameras)
|
404 |
+
pixel_values = self.transform_dino(images.permute(0, 3, 1, 2))
|
405 |
+
else: # for inference process
|
406 |
+
if self.cfg.encode_camera:
|
407 |
+
if cameras is None:
|
408 |
+
bs = len(images) // self.cfg.n_views
|
409 |
+
cameras = (
|
410 |
+
self.cameras[: self.cfg.n_views]
|
411 |
+
.repeat(bs, 1, 1)
|
412 |
+
.to(self.dino_model.device)
|
413 |
+
)
|
414 |
+
camera_embeds = self.encode_camera(cameras)
|
415 |
+
pixel_values = self.image_preprocess_dino.preprocess(
|
416 |
+
images,
|
417 |
+
return_tensors="pt",
|
418 |
+
do_rescale=True,
|
419 |
+
do_resize=True,
|
420 |
+
size=self.cfg.image_size,
|
421 |
+
crop_size=self.cfg.image_size,
|
422 |
+
).pixel_values
|
423 |
+
|
424 |
+
if force_none_camera_embeds:
|
425 |
+
camera_embeds = None
|
426 |
+
|
427 |
+
if pixel_values.ndim == 4:
|
428 |
+
pixel_values = pixel_values.unsqueeze(1)
|
429 |
+
if camera_embeds is not None:
|
430 |
+
camera_embeds = camera_embeds.unsqueeze(1)
|
431 |
+
|
432 |
+
if self.cfg.encode_camera and camera_embeds is not None:
|
433 |
+
vision_outputs = self.dino_model(
|
434 |
+
rearrange(
|
435 |
+
pixel_values.to(self.dino_model.device), "B N C H W -> (B N) C H W"
|
436 |
+
),
|
437 |
+
condition=rearrange(camera_embeds, "B N C -> (B N) C"),
|
438 |
+
)
|
439 |
+
else:
|
440 |
+
vision_outputs = self.dino_model(
|
441 |
+
rearrange(
|
442 |
+
pixel_values.to(self.dino_model.device), "B N C H W -> (B N) C H W"
|
443 |
+
),
|
444 |
+
)
|
445 |
+
|
446 |
+
if return_dict:
|
447 |
+
# dino
|
448 |
+
dino_embeds_dict = DINOEmbedOutput(
|
449 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
450 |
+
pooler_output=vision_outputs.pooler_output,
|
451 |
+
)
|
452 |
+
return dino_embeds_dict
|
453 |
+
else:
|
454 |
+
return vision_outputs.last_hidden_state
|
455 |
+
|
456 |
+
def align_clip_dino(self, clip_embeds, dino_embeds):
|
457 |
+
if (
|
458 |
+
clip_embeds.shape[-2] != dino_embeds.shape[-2]
|
459 |
+
): # different shape, interpolate the clip embeddings to the same shape as dino embeddings
|
460 |
+
assert (
|
461 |
+
clip_embeds.shape[-2] == (self.cfg.image_size // 14) ** 2 + 1
|
462 |
+
), "The clip embeddings should have the shape of (n_views, (image_size // 14) ** 2 + 1, 1024)"
|
463 |
+
clip_embeds_patch_tokens = clip_embeds[:, 1:].view(
|
464 |
+
clip_embeds.shape[0],
|
465 |
+
self.cfg.image_size // 14,
|
466 |
+
self.cfg.image_size // 14,
|
467 |
+
1024,
|
468 |
+
)
|
469 |
+
clip_embeds_patch_tokens = (
|
470 |
+
torch.nn.functional.interpolate(
|
471 |
+
clip_embeds_patch_tokens.permute(0, 3, 1, 2),
|
472 |
+
size=(self.cfg.image_size // 14, self.cfg.image_size // 14),
|
473 |
+
mode="bilinear",
|
474 |
+
align_corners=False,
|
475 |
+
)
|
476 |
+
.permute(0, 2, 3, 1)
|
477 |
+
.view(clip_embeds.shape[0], -1, 1024)
|
478 |
+
)
|
479 |
+
clip_embeds = torch.cat(
|
480 |
+
[clip_embeds[:, :1], clip_embeds_patch_tokens], dim=1
|
481 |
+
)
|
482 |
+
return clip_embeds, dino_embeds
|
483 |
+
|
484 |
+
def encode_image(
|
485 |
+
self,
|
486 |
+
images: Iterable[Optional[ImageType]],
|
487 |
+
cameras: Optional[torch.Tensor] = None,
|
488 |
+
force_none_camera_embeds: bool = False,
|
489 |
+
return_dict: bool = False,
|
490 |
+
**kwargs,
|
491 |
+
) -> torch.FloatTensor:
|
492 |
+
clip_embeds = self.encode_image_clip(images, cameras)
|
493 |
+
dino_embeds = self.encode_image_dino(images, cameras)
|
494 |
+
if (
|
495 |
+
self.dino_model.__class__.__name__ == "Dinov2WithRegistersModel"
|
496 |
+
): # x_norm_clstoken, x_norm_regtokens, x_norm_patchtokens
|
497 |
+
dino_embeds = torch.cat(
|
498 |
+
[
|
499 |
+
dino_embeds[:, :1],
|
500 |
+
dino_embeds[:, self.dino_model.config.num_register_tokens + 1 :],
|
501 |
+
],
|
502 |
+
dim=1,
|
503 |
+
)
|
504 |
+
|
505 |
+
clip_embeds = self.linear_proj(clip_embeds) # bs, 257, 1024
|
506 |
+
|
507 |
+
if self.cfg.fuse_type == "concat":
|
508 |
+
visual_embeds = torch.cat([dino_embeds, clip_embeds], dim=1)
|
509 |
+
# elif self.cfg.fuse_type == 'add':
|
510 |
+
# clip_embeds, dino_embeds = self.align_clip_dino(clip_embeds, dino_embeds)
|
511 |
+
else:
|
512 |
+
raise ValueError
|
513 |
+
|
514 |
+
return visual_embeds
|
step1x3d_geometry/models/conditional_encoders/dinov2_encoder.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import numpy as np
|
5 |
+
import re
|
6 |
+
from einops import rearrange
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from torchvision import transforms
|
9 |
+
|
10 |
+
from diffusers.models.modeling_utils import ModelMixin
|
11 |
+
from transformers import AutoImageProcessor, AutoModel
|
12 |
+
from transformers.utils import ModelOutput
|
13 |
+
from typing import Iterable, Optional, Union, List
|
14 |
+
|
15 |
+
import step1x3d_geometry
|
16 |
+
from step1x3d_geometry.utils.typing import *
|
17 |
+
from .base import BaseVisualEncoder, ImageType
|
18 |
+
from .dinov2.modeling_dinov2 import Dinov2Model
|
19 |
+
from .dinov2.modeling_conditional_dinov2 import ConditionalDinov2Model
|
20 |
+
from .dinov2_with_registers.modeling_dinov2_with_registers import (
|
21 |
+
Dinov2WithRegistersModel,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
class DINOEmbedOutput(ModelOutput):
|
26 |
+
last_hidden_state: torch.FloatTensor = None
|
27 |
+
pooler_output: torch.FloatTensor = None
|
28 |
+
|
29 |
+
|
30 |
+
@step1x3d_geometry.register("dinov2-encoder")
|
31 |
+
class Dinov2Encoder(BaseVisualEncoder, ModelMixin):
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class Config(BaseVisualEncoder.Config):
|
35 |
+
pretrained_model_name_or_path: Optional[str] = (
|
36 |
+
None # the pretrained model name or path for condition model
|
37 |
+
)
|
38 |
+
pretrained_dino_name_or_path: Optional[str] = (
|
39 |
+
None # the pretrained model name or path for dino
|
40 |
+
)
|
41 |
+
freeze_modulation_dino: bool = False
|
42 |
+
enable_gradient_checkpointing: bool = False
|
43 |
+
image_size: int = 224
|
44 |
+
dino_type: Optional[str] = None
|
45 |
+
kwargs: Optional[dict] = None
|
46 |
+
|
47 |
+
cfg: Config
|
48 |
+
|
49 |
+
def configure(self) -> None:
|
50 |
+
super().configure()
|
51 |
+
|
52 |
+
# Load the DINOV2 model and processor
|
53 |
+
if not self.cfg.encode_camera:
|
54 |
+
if self.cfg.pretrained_dino_name_or_path is not None:
|
55 |
+
self.cfg.dino_type = f"facebook/{self.cfg.pretrained_dino_name_or_path.split('facebook--')[-1].split('/')[0]}"
|
56 |
+
if self.cfg.kwargs is not None:
|
57 |
+
self.dino_model: Dinov2Model = AutoModel.from_pretrained(
|
58 |
+
self.cfg.pretrained_dino_name_or_path, **self.cfg.kwargs
|
59 |
+
)
|
60 |
+
else:
|
61 |
+
self.dino_model: Dinov2Model = AutoModel.from_pretrained(
|
62 |
+
self.cfg.pretrained_dino_name_or_path
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
if (
|
66 |
+
self.cfg.pretrained_model_name_or_path is None
|
67 |
+
): # default to load Dinov2-base model
|
68 |
+
assert (
|
69 |
+
self.cfg.dino_type is not None
|
70 |
+
), "The dino_type should be provided"
|
71 |
+
print(f"Loading Dinov2 model from {self.cfg.dino_type}")
|
72 |
+
if "reg" in self.cfg.dino_type:
|
73 |
+
self.dino_model: Dinov2WithRegistersModel = (
|
74 |
+
Dinov2WithRegistersModel(
|
75 |
+
config=Dinov2WithRegistersModel.config_class.from_pretrained(
|
76 |
+
self.cfg.dino_type,
|
77 |
+
)
|
78 |
+
)
|
79 |
+
)
|
80 |
+
else:
|
81 |
+
self.dino_model: Dinov2Model = Dinov2Model(
|
82 |
+
config=Dinov2Model.config_class.from_pretrained(
|
83 |
+
self.dino_type,
|
84 |
+
)
|
85 |
+
)
|
86 |
+
elif "dinov2base" in self.cfg.pretrained_model_name_or_path:
|
87 |
+
print("Loading Dinov2 model from facebook/dinov2-base")
|
88 |
+
self.cfg.dino_type = "facebook/dinov2-base"
|
89 |
+
self.dino_model: Dinov2Model = Dinov2Model(
|
90 |
+
config=Dinov2Model.config_class.from_pretrained(
|
91 |
+
"facebook/dinov2-base",
|
92 |
+
)
|
93 |
+
)
|
94 |
+
elif "dinov2regbase" in self.cfg.pretrained_model_name_or_path:
|
95 |
+
print(
|
96 |
+
"Loading Dinov2 model from facebook/dinov2-with-registers-base"
|
97 |
+
)
|
98 |
+
self.cfg.dino_type = "facebook/dinov2-with-registers-base"
|
99 |
+
self.dino_model: Dinov2WithRegistersModel = (
|
100 |
+
Dinov2WithRegistersModel(
|
101 |
+
config=Dinov2WithRegistersModel.config_class.from_pretrained(
|
102 |
+
"facebook/dinov2-with-registers-base",
|
103 |
+
)
|
104 |
+
)
|
105 |
+
)
|
106 |
+
elif "dinov2reglarge" in self.cfg.pretrained_model_name_or_path:
|
107 |
+
print(
|
108 |
+
"Loading Dinov2 model from facebook/dinov2-with-registers-large"
|
109 |
+
)
|
110 |
+
self.cfg.dino_type = "facebook/dinov2-with-registers-large"
|
111 |
+
self.dino_model: Dinov2WithRegistersModel = (
|
112 |
+
Dinov2WithRegistersModel(
|
113 |
+
config=Dinov2WithRegistersModel.config_class.from_pretrained(
|
114 |
+
"facebook/dinov2-with-registers-large",
|
115 |
+
)
|
116 |
+
)
|
117 |
+
)
|
118 |
+
else:
|
119 |
+
raise ValueError(
|
120 |
+
f"Unknown Dinov2 model: {self.cfg.pretrained_model_name_or_path}"
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
# dino
|
124 |
+
conditional_vit_config = (
|
125 |
+
ConditionalDinov2Model.config_class.from_pretrained(
|
126 |
+
self.cfg.pretrained_dino_name_or_path,
|
127 |
+
)
|
128 |
+
)
|
129 |
+
conditional_vit_config.modulation_dim = self.cfg.camera_embeds_dim
|
130 |
+
self.dino_model: ConditionalDinov2Model = (
|
131 |
+
ConditionalDinov2Model.from_pretrained(
|
132 |
+
self.cfg.pretrained_dino_name_or_path, config=conditional_vit_config
|
133 |
+
)
|
134 |
+
)
|
135 |
+
|
136 |
+
self.image_preprocess_dino = AutoImageProcessor.from_pretrained(
|
137 |
+
self.cfg.dino_type
|
138 |
+
if self.cfg.pretrained_dino_name_or_path is None
|
139 |
+
else self.cfg.pretrained_dino_name_or_path
|
140 |
+
)
|
141 |
+
self.transform_dino = transforms.Compose(
|
142 |
+
[
|
143 |
+
transforms.Resize(
|
144 |
+
self.cfg.image_size,
|
145 |
+
transforms.InterpolationMode.BICUBIC,
|
146 |
+
antialias=True,
|
147 |
+
),
|
148 |
+
transforms.CenterCrop(
|
149 |
+
self.cfg.image_size
|
150 |
+
), # crop a (image_size, image_size) square
|
151 |
+
transforms.Normalize(
|
152 |
+
mean=[0.485, 0.456, 0.406],
|
153 |
+
std=[0.229, 0.224, 0.225],
|
154 |
+
),
|
155 |
+
]
|
156 |
+
)
|
157 |
+
|
158 |
+
if self.cfg.enable_gradient_checkpointing:
|
159 |
+
self.dino_model.encoder.gradient_checkpointing = True
|
160 |
+
|
161 |
+
if self.cfg.zero_uncond_embeds:
|
162 |
+
self.empty_image_embeds = torch.zeros(
|
163 |
+
(
|
164 |
+
self.cfg.n_views,
|
165 |
+
(self.cfg.image_size // 14) ** 2 + 1,
|
166 |
+
self.dino_model.config.hidden_size,
|
167 |
+
)
|
168 |
+
).detach()
|
169 |
+
else:
|
170 |
+
if self.cfg.encode_camera:
|
171 |
+
self.empty_image_embeds = self.encode_image_dino(
|
172 |
+
torch.zeros(
|
173 |
+
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
|
174 |
+
),
|
175 |
+
self.cameras[: self.cfg.n_views],
|
176 |
+
).detach()
|
177 |
+
else:
|
178 |
+
self.empty_image_embeds = self.encode_image_dino(
|
179 |
+
torch.zeros(
|
180 |
+
self.cfg.n_views, self.cfg.image_size, self.cfg.image_size, 3
|
181 |
+
)
|
182 |
+
).detach()
|
183 |
+
|
184 |
+
# freeze the dino model parameters
|
185 |
+
self.dino_model.eval()
|
186 |
+
for k, p in self.dino_model.named_parameters():
|
187 |
+
ks = k.split(".")
|
188 |
+
if (
|
189 |
+
"mod_norm1" in ks
|
190 |
+
or "mod_norm2" in ks
|
191 |
+
and not self.cfg.freeze_modulation_dino
|
192 |
+
):
|
193 |
+
p.requires_grad_(not self.cfg.freeze_modulation_dino)
|
194 |
+
else:
|
195 |
+
p.requires_grad_(False)
|
196 |
+
|
197 |
+
# load pretrained_model_name_or_path
|
198 |
+
if self.cfg.pretrained_model_name_or_path is not None:
|
199 |
+
print(f"Loading ckpt from {self.cfg.pretrained_model_name_or_path}")
|
200 |
+
ckpt = torch.load(
|
201 |
+
self.cfg.pretrained_model_name_or_path, map_location="cpu"
|
202 |
+
)["state_dict"]
|
203 |
+
pretrained_model_ckpt = {}
|
204 |
+
for k, v in ckpt.items():
|
205 |
+
if k.startswith("visual_condition."):
|
206 |
+
pretrained_model_ckpt[k.replace("visual_condition.", "")] = v
|
207 |
+
self.load_state_dict(pretrained_model_ckpt, strict=True)
|
208 |
+
|
209 |
+
def encode_image_dino(
|
210 |
+
self,
|
211 |
+
images: Iterable[Optional[ImageType]],
|
212 |
+
cameras: Optional[torch.Tensor] = None,
|
213 |
+
force_none_camera_embeds: bool = False,
|
214 |
+
return_dict: bool = False,
|
215 |
+
**kwargs,
|
216 |
+
) -> torch.FloatTensor:
|
217 |
+
camera_embeds = None
|
218 |
+
if isinstance(images, (np.ndarray, torch.Tensor)): # for training process
|
219 |
+
assert (
|
220 |
+
images.min() >= 0.0 and images.max() <= 1.0
|
221 |
+
), "The pixel values should be in the range of [0, 1]"
|
222 |
+
if self.cfg.encode_camera:
|
223 |
+
assert cameras is not None, "The cameras should be provided"
|
224 |
+
camera_embeds = self.encode_camera(cameras)
|
225 |
+
pixel_values = self.transform_dino(images.permute(0, 3, 1, 2))
|
226 |
+
else: # for inference process
|
227 |
+
if self.cfg.encode_camera:
|
228 |
+
if cameras is None:
|
229 |
+
bs = len(images) // self.cfg.n_views
|
230 |
+
cameras = (
|
231 |
+
self.cameras[: self.cfg.n_views]
|
232 |
+
.repeat(bs, 1, 1)
|
233 |
+
.to(self.dino_model.device)
|
234 |
+
)
|
235 |
+
camera_embeds = self.encode_camera(cameras)
|
236 |
+
pixel_values = self.image_preprocess_dino.preprocess(
|
237 |
+
images,
|
238 |
+
return_tensors="pt",
|
239 |
+
do_rescale=True,
|
240 |
+
do_resize=True,
|
241 |
+
size=self.cfg.image_size,
|
242 |
+
crop_size=self.cfg.image_size,
|
243 |
+
).pixel_values
|
244 |
+
|
245 |
+
if force_none_camera_embeds:
|
246 |
+
camera_embeds = None
|
247 |
+
|
248 |
+
if pixel_values.ndim == 4:
|
249 |
+
pixel_values = pixel_values.unsqueeze(1)
|
250 |
+
if camera_embeds is not None:
|
251 |
+
camera_embeds = camera_embeds.unsqueeze(1)
|
252 |
+
|
253 |
+
if self.cfg.encode_camera and camera_embeds is not None:
|
254 |
+
vision_outputs = self.dino_model(
|
255 |
+
rearrange(
|
256 |
+
pixel_values.to(self.dino_model.device), "B N C H W -> (B N) C H W"
|
257 |
+
),
|
258 |
+
condition=rearrange(camera_embeds, "B N C -> (B N) C"),
|
259 |
+
)
|
260 |
+
else:
|
261 |
+
vision_outputs = self.dino_model(
|
262 |
+
rearrange(
|
263 |
+
pixel_values.to(self.dino_model.device), "B N C H W -> (B N) C H W"
|
264 |
+
),
|
265 |
+
)
|
266 |
+
|
267 |
+
if return_dict:
|
268 |
+
# dino
|
269 |
+
dino_embeds_dict = DINOEmbedOutput(
|
270 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
271 |
+
pooler_output=vision_outputs.pooler_output,
|
272 |
+
)
|
273 |
+
return dino_embeds_dict
|
274 |
+
else:
|
275 |
+
return vision_outputs.last_hidden_state
|
276 |
+
|
277 |
+
def encode_image(
|
278 |
+
self,
|
279 |
+
images: Iterable[Optional[ImageType]],
|
280 |
+
cameras: Optional[torch.Tensor] = None,
|
281 |
+
force_none_camera_embeds: bool = False,
|
282 |
+
return_dict: bool = False,
|
283 |
+
**kwargs,
|
284 |
+
) -> torch.FloatTensor:
|
285 |
+
dino_embeds = self.encode_image_dino(images, cameras)
|
286 |
+
if (
|
287 |
+
self.dino_model.__class__.__name__ == "Dinov2WithRegistersModel"
|
288 |
+
): # x_norm_clstoken, x_norm_regtokens, x_norm_patchtokens
|
289 |
+
dino_embeds = torch.cat(
|
290 |
+
[
|
291 |
+
dino_embeds[:, :1],
|
292 |
+
dino_embeds[:, self.dino_model.config.num_register_tokens + 1 :],
|
293 |
+
],
|
294 |
+
dim=1,
|
295 |
+
)
|
296 |
+
return dino_embeds
|
step1x3d_geometry/models/conditional_encoders/dinov2_with_registers/modeling_dinov2_with_registers.py
ADDED
@@ -0,0 +1,1088 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
2 |
+
# This file was automatically generated from src/transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py.
|
3 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
4 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
5 |
+
# modular_dinov2_with_registers.py file directly. One of our CI enforces this.
|
6 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
7 |
+
# coding=utf-8
|
8 |
+
# Copyright 2024 Meta Inc. and the HuggingFace Inc. team. All rights reserved.
|
9 |
+
#
|
10 |
+
#
|
11 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
12 |
+
# you may not use this file except in compliance with the License.
|
13 |
+
# You may obtain a copy of the License at
|
14 |
+
#
|
15 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
16 |
+
#
|
17 |
+
# Unless required by applicable law or agreed to in writing, software
|
18 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
19 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
20 |
+
# See the License for the specific language governing permissions and
|
21 |
+
# limitations under the License.
|
22 |
+
|
23 |
+
import collections.abc
|
24 |
+
import math
|
25 |
+
from typing import Dict, List, Optional, Set, Tuple, Union
|
26 |
+
|
27 |
+
import torch
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.modeling_outputs import (
|
33 |
+
BackboneOutput,
|
34 |
+
BaseModelOutput,
|
35 |
+
BaseModelOutputWithPooling,
|
36 |
+
ImageClassifierOutput,
|
37 |
+
)
|
38 |
+
from transformers.modeling_utils import PreTrainedModel
|
39 |
+
from transformers.pytorch_utils import (
|
40 |
+
find_pruneable_heads_and_indices,
|
41 |
+
prune_linear_layer,
|
42 |
+
)
|
43 |
+
from transformers.utils import (
|
44 |
+
add_code_sample_docstrings,
|
45 |
+
add_start_docstrings,
|
46 |
+
add_start_docstrings_to_model_forward,
|
47 |
+
logging,
|
48 |
+
replace_return_docstrings,
|
49 |
+
torch_int,
|
50 |
+
)
|
51 |
+
from transformers.utils.backbone_utils import BackboneMixin
|
52 |
+
from transformers.models.dinov2_with_registers.configuration_dinov2_with_registers import (
|
53 |
+
Dinov2WithRegistersConfig,
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.get_logger(__name__)
|
58 |
+
|
59 |
+
# Base docstring
|
60 |
+
_CHECKPOINT_FOR_DOC = "facebook/dinov2_with_registers-base"
|
61 |
+
|
62 |
+
# General docstring
|
63 |
+
_CONFIG_FOR_DOC = "Dinov2WithRegistersConfig"
|
64 |
+
|
65 |
+
|
66 |
+
class Dinov2WithRegistersPatchEmbeddings(nn.Module):
|
67 |
+
"""
|
68 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
69 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
70 |
+
Transformer.
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(self, config):
|
74 |
+
super().__init__()
|
75 |
+
image_size, patch_size = config.image_size, config.patch_size
|
76 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
77 |
+
|
78 |
+
image_size = (
|
79 |
+
image_size
|
80 |
+
if isinstance(image_size, collections.abc.Iterable)
|
81 |
+
else (image_size, image_size)
|
82 |
+
)
|
83 |
+
patch_size = (
|
84 |
+
patch_size
|
85 |
+
if isinstance(patch_size, collections.abc.Iterable)
|
86 |
+
else (patch_size, patch_size)
|
87 |
+
)
|
88 |
+
num_patches = (image_size[1] // patch_size[1]) * (
|
89 |
+
image_size[0] // patch_size[0]
|
90 |
+
)
|
91 |
+
self.image_size = image_size
|
92 |
+
self.patch_size = patch_size
|
93 |
+
self.num_channels = num_channels
|
94 |
+
self.num_patches = num_patches
|
95 |
+
|
96 |
+
self.projection = nn.Conv2d(
|
97 |
+
num_channels, hidden_size, kernel_size=patch_size, stride=patch_size
|
98 |
+
)
|
99 |
+
|
100 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
101 |
+
num_channels = pixel_values.shape[1]
|
102 |
+
if num_channels != self.num_channels:
|
103 |
+
raise ValueError(
|
104 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
105 |
+
f" Expected {self.num_channels} but got {num_channels}."
|
106 |
+
)
|
107 |
+
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
108 |
+
return embeddings
|
109 |
+
|
110 |
+
|
111 |
+
class Dinov2WithRegistersEmbeddings(nn.Module):
|
112 |
+
"""
|
113 |
+
Construct the CLS token, mask token, register tokens, position and patch embeddings.
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
|
117 |
+
super().__init__()
|
118 |
+
|
119 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
120 |
+
self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size))
|
121 |
+
self.register_tokens = nn.Parameter(
|
122 |
+
torch.zeros(1, config.num_register_tokens, config.hidden_size)
|
123 |
+
)
|
124 |
+
self.patch_embeddings = Dinov2WithRegistersPatchEmbeddings(config)
|
125 |
+
num_patches = self.patch_embeddings.num_patches
|
126 |
+
self.position_embeddings = nn.Parameter(
|
127 |
+
torch.randn(1, num_patches + 1, config.hidden_size)
|
128 |
+
)
|
129 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
130 |
+
self.patch_size = config.patch_size
|
131 |
+
self.config = config
|
132 |
+
|
133 |
+
def interpolate_pos_encoding(
|
134 |
+
self, embeddings: torch.Tensor, height: int, width: int
|
135 |
+
) -> torch.Tensor:
|
136 |
+
"""
|
137 |
+
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
138 |
+
resolution images. This implementation supports torch.jit tracing while maintaining backwards compatibility
|
139 |
+
with the original implementation.
|
140 |
+
|
141 |
+
Adapted from:
|
142 |
+
- https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
|
143 |
+
- https://github.com/facebookresearch/dinov2/blob/main/dinov2/models/vision_transformer.py
|
144 |
+
"""
|
145 |
+
num_patches = embeddings.shape[1] - 1
|
146 |
+
num_positions = self.position_embeddings.shape[1] - 1
|
147 |
+
|
148 |
+
# Skip interpolation for matching dimensions (unless tracing)
|
149 |
+
if (
|
150 |
+
not torch.jit.is_tracing()
|
151 |
+
and num_patches == num_positions
|
152 |
+
and height == width
|
153 |
+
):
|
154 |
+
return self.position_embeddings
|
155 |
+
|
156 |
+
# Handle class token and patch embeddings separately
|
157 |
+
class_pos_embed = self.position_embeddings[:, 0]
|
158 |
+
patch_pos_embed = self.position_embeddings[:, 1:]
|
159 |
+
dim = embeddings.shape[-1]
|
160 |
+
|
161 |
+
# Calculate new dimensions
|
162 |
+
height = height // self.config.patch_size
|
163 |
+
width = width // self.config.patch_size
|
164 |
+
|
165 |
+
# Reshape for interpolation
|
166 |
+
sqrt_num_positions = torch_int(num_positions**0.5)
|
167 |
+
patch_pos_embed = patch_pos_embed.reshape(
|
168 |
+
1, sqrt_num_positions, sqrt_num_positions, dim
|
169 |
+
)
|
170 |
+
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
171 |
+
|
172 |
+
# Store original dtype for restoration after interpolation
|
173 |
+
target_dtype = patch_pos_embed.dtype
|
174 |
+
|
175 |
+
# Interpolate at float32 precision
|
176 |
+
patch_pos_embed = nn.functional.interpolate(
|
177 |
+
patch_pos_embed.to(dtype=torch.float32),
|
178 |
+
size=(
|
179 |
+
torch_int(height),
|
180 |
+
torch_int(width),
|
181 |
+
), # Explicit size instead of scale_factor
|
182 |
+
mode="bicubic",
|
183 |
+
align_corners=False,
|
184 |
+
antialias=True,
|
185 |
+
).to(dtype=target_dtype)
|
186 |
+
|
187 |
+
# Validate output dimensions if not tracing
|
188 |
+
if not torch.jit.is_tracing():
|
189 |
+
if (
|
190 |
+
int(height) != patch_pos_embed.shape[-2]
|
191 |
+
or int(width) != patch_pos_embed.shape[-1]
|
192 |
+
):
|
193 |
+
raise ValueError(
|
194 |
+
"Width or height does not match with the interpolated position embeddings"
|
195 |
+
)
|
196 |
+
|
197 |
+
# Reshape back to original format
|
198 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
199 |
+
|
200 |
+
# Combine class and patch embeddings
|
201 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
202 |
+
|
203 |
+
def forward(
|
204 |
+
self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None
|
205 |
+
) -> torch.Tensor:
|
206 |
+
batch_size, _, height, width = pixel_values.shape
|
207 |
+
target_dtype = self.patch_embeddings.projection.weight.dtype
|
208 |
+
embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype))
|
209 |
+
|
210 |
+
if bool_masked_pos is not None:
|
211 |
+
embeddings = torch.where(
|
212 |
+
bool_masked_pos.unsqueeze(-1),
|
213 |
+
self.mask_token.to(embeddings.dtype).unsqueeze(0),
|
214 |
+
embeddings,
|
215 |
+
)
|
216 |
+
|
217 |
+
# add the [CLS] token to the embedded patch tokens
|
218 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
219 |
+
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
220 |
+
|
221 |
+
# add positional encoding to each token
|
222 |
+
embeddings = embeddings + self.interpolate_pos_encoding(
|
223 |
+
embeddings, height, width
|
224 |
+
)
|
225 |
+
|
226 |
+
# add register tokens
|
227 |
+
embeddings = torch.cat(
|
228 |
+
(
|
229 |
+
embeddings[:, :1],
|
230 |
+
self.register_tokens.expand(embeddings.shape[0], -1, -1),
|
231 |
+
embeddings[:, 1:],
|
232 |
+
),
|
233 |
+
dim=1,
|
234 |
+
)
|
235 |
+
|
236 |
+
embeddings = self.dropout(embeddings)
|
237 |
+
|
238 |
+
return embeddings
|
239 |
+
|
240 |
+
|
241 |
+
class Dinov2WithRegistersSelfAttention(nn.Module):
|
242 |
+
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
|
243 |
+
super().__init__()
|
244 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
245 |
+
config, "embedding_size"
|
246 |
+
):
|
247 |
+
raise ValueError(
|
248 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
249 |
+
f"heads {config.num_attention_heads}."
|
250 |
+
)
|
251 |
+
|
252 |
+
self.num_attention_heads = config.num_attention_heads
|
253 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
254 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
255 |
+
|
256 |
+
self.query = nn.Linear(
|
257 |
+
config.hidden_size, self.all_head_size, bias=config.qkv_bias
|
258 |
+
)
|
259 |
+
self.key = nn.Linear(
|
260 |
+
config.hidden_size, self.all_head_size, bias=config.qkv_bias
|
261 |
+
)
|
262 |
+
self.value = nn.Linear(
|
263 |
+
config.hidden_size, self.all_head_size, bias=config.qkv_bias
|
264 |
+
)
|
265 |
+
|
266 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
267 |
+
|
268 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
269 |
+
new_x_shape = x.size()[:-1] + (
|
270 |
+
self.num_attention_heads,
|
271 |
+
self.attention_head_size,
|
272 |
+
)
|
273 |
+
x = x.view(new_x_shape)
|
274 |
+
return x.permute(0, 2, 1, 3)
|
275 |
+
|
276 |
+
def forward(
|
277 |
+
self,
|
278 |
+
hidden_states,
|
279 |
+
head_mask: Optional[torch.Tensor] = None,
|
280 |
+
output_attentions: bool = False,
|
281 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
282 |
+
mixed_query_layer = self.query(hidden_states)
|
283 |
+
|
284 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
285 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
286 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
287 |
+
|
288 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
289 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
290 |
+
|
291 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
292 |
+
|
293 |
+
# Normalize the attention scores to probabilities.
|
294 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
295 |
+
|
296 |
+
# This is actually dropping out entire tokens to attend to, which might
|
297 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
298 |
+
attention_probs = self.dropout(attention_probs)
|
299 |
+
|
300 |
+
# Mask heads if we want to
|
301 |
+
if head_mask is not None:
|
302 |
+
attention_probs = attention_probs * head_mask
|
303 |
+
|
304 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
305 |
+
|
306 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
307 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
308 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
309 |
+
|
310 |
+
outputs = (
|
311 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
312 |
+
)
|
313 |
+
|
314 |
+
return outputs
|
315 |
+
|
316 |
+
|
317 |
+
class Dinov2WithRegistersSdpaSelfAttention(Dinov2WithRegistersSelfAttention):
|
318 |
+
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
|
319 |
+
super().__init__(config)
|
320 |
+
self.attention_probs_dropout_prob = config.attention_probs_dropout_prob
|
321 |
+
|
322 |
+
def forward(
|
323 |
+
self,
|
324 |
+
hidden_states,
|
325 |
+
head_mask: Optional[torch.Tensor] = None,
|
326 |
+
output_attentions: bool = False,
|
327 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
328 |
+
if output_attentions:
|
329 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
330 |
+
logger.warning_once(
|
331 |
+
"Dinov2WithRegistersModel is using Dinov2WithRegistersSdpaSelfAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
332 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
333 |
+
)
|
334 |
+
return super().forward(
|
335 |
+
hidden_states=hidden_states,
|
336 |
+
head_mask=head_mask,
|
337 |
+
output_attentions=output_attentions,
|
338 |
+
)
|
339 |
+
|
340 |
+
mixed_query_layer = self.query(hidden_states)
|
341 |
+
|
342 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
343 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
344 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
345 |
+
|
346 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
347 |
+
query_layer,
|
348 |
+
key_layer,
|
349 |
+
value_layer,
|
350 |
+
head_mask,
|
351 |
+
self.attention_probs_dropout_prob if self.training else 0.0,
|
352 |
+
is_causal=False,
|
353 |
+
scale=None,
|
354 |
+
)
|
355 |
+
|
356 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
357 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
358 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
359 |
+
|
360 |
+
return context_layer, None
|
361 |
+
|
362 |
+
|
363 |
+
class Dinov2WithRegistersSelfOutput(nn.Module):
|
364 |
+
"""
|
365 |
+
The residual connection is defined in Dinov2WithRegistersLayer instead of here (as is the case with other models), due to the
|
366 |
+
layernorm applied before each block.
|
367 |
+
"""
|
368 |
+
|
369 |
+
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
|
370 |
+
super().__init__()
|
371 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
372 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
373 |
+
|
374 |
+
def forward(
|
375 |
+
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
|
376 |
+
) -> torch.Tensor:
|
377 |
+
hidden_states = self.dense(hidden_states)
|
378 |
+
hidden_states = self.dropout(hidden_states)
|
379 |
+
|
380 |
+
return hidden_states
|
381 |
+
|
382 |
+
|
383 |
+
class Dinov2WithRegistersAttention(nn.Module):
|
384 |
+
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
|
385 |
+
super().__init__()
|
386 |
+
self.attention = Dinov2WithRegistersSelfAttention(config)
|
387 |
+
self.output = Dinov2WithRegistersSelfOutput(config)
|
388 |
+
self.pruned_heads = set()
|
389 |
+
|
390 |
+
def prune_heads(self, heads: Set[int]) -> None:
|
391 |
+
if len(heads) == 0:
|
392 |
+
return
|
393 |
+
heads, index = find_pruneable_heads_and_indices(
|
394 |
+
heads,
|
395 |
+
self.attention.num_attention_heads,
|
396 |
+
self.attention.attention_head_size,
|
397 |
+
self.pruned_heads,
|
398 |
+
)
|
399 |
+
|
400 |
+
# Prune linear layers
|
401 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
402 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
403 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
404 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
405 |
+
|
406 |
+
# Update hyper params and store pruned heads
|
407 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(
|
408 |
+
heads
|
409 |
+
)
|
410 |
+
self.attention.all_head_size = (
|
411 |
+
self.attention.attention_head_size * self.attention.num_attention_heads
|
412 |
+
)
|
413 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
414 |
+
|
415 |
+
def forward(
|
416 |
+
self,
|
417 |
+
hidden_states: torch.Tensor,
|
418 |
+
head_mask: Optional[torch.Tensor] = None,
|
419 |
+
output_attentions: bool = False,
|
420 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
421 |
+
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
|
422 |
+
|
423 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
424 |
+
|
425 |
+
outputs = (attention_output,) + self_outputs[
|
426 |
+
1:
|
427 |
+
] # add attentions if we output them
|
428 |
+
return outputs
|
429 |
+
|
430 |
+
|
431 |
+
class Dinov2WithRegistersSdpaAttention(Dinov2WithRegistersAttention):
|
432 |
+
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
|
433 |
+
super().__init__(config)
|
434 |
+
self.attention = Dinov2WithRegistersSdpaSelfAttention(config)
|
435 |
+
|
436 |
+
|
437 |
+
class Dinov2WithRegistersLayerScale(nn.Module):
|
438 |
+
def __init__(self, config) -> None:
|
439 |
+
super().__init__()
|
440 |
+
self.lambda1 = nn.Parameter(
|
441 |
+
config.layerscale_value * torch.ones(config.hidden_size)
|
442 |
+
)
|
443 |
+
|
444 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
445 |
+
return hidden_state * self.lambda1
|
446 |
+
|
447 |
+
|
448 |
+
def drop_path(
|
449 |
+
input: torch.Tensor, drop_prob: float = 0.0, training: bool = False
|
450 |
+
) -> torch.Tensor:
|
451 |
+
"""
|
452 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
453 |
+
|
454 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
455 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
456 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
457 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
458 |
+
argument.
|
459 |
+
"""
|
460 |
+
if drop_prob == 0.0 or not training:
|
461 |
+
return input
|
462 |
+
keep_prob = 1 - drop_prob
|
463 |
+
shape = (input.shape[0],) + (1,) * (
|
464 |
+
input.ndim - 1
|
465 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
466 |
+
random_tensor = keep_prob + torch.rand(
|
467 |
+
shape, dtype=input.dtype, device=input.device
|
468 |
+
)
|
469 |
+
random_tensor.floor_() # binarize
|
470 |
+
output = input.div(keep_prob) * random_tensor
|
471 |
+
return output
|
472 |
+
|
473 |
+
|
474 |
+
class Dinov2WithRegistersDropPath(nn.Module):
|
475 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
476 |
+
|
477 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
478 |
+
super().__init__()
|
479 |
+
self.drop_prob = drop_prob
|
480 |
+
|
481 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
482 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
483 |
+
|
484 |
+
def extra_repr(self) -> str:
|
485 |
+
return "p={}".format(self.drop_prob)
|
486 |
+
|
487 |
+
|
488 |
+
class Dinov2WithRegistersMLP(nn.Module):
|
489 |
+
def __init__(self, config) -> None:
|
490 |
+
super().__init__()
|
491 |
+
in_features = out_features = config.hidden_size
|
492 |
+
hidden_features = int(config.hidden_size * config.mlp_ratio)
|
493 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=True)
|
494 |
+
if isinstance(config.hidden_act, str):
|
495 |
+
self.activation = ACT2FN[config.hidden_act]
|
496 |
+
else:
|
497 |
+
self.activation = config.hidden_act
|
498 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=True)
|
499 |
+
|
500 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
501 |
+
hidden_state = self.fc1(hidden_state)
|
502 |
+
hidden_state = self.activation(hidden_state)
|
503 |
+
hidden_state = self.fc2(hidden_state)
|
504 |
+
return hidden_state
|
505 |
+
|
506 |
+
|
507 |
+
class Dinov2WithRegistersSwiGLUFFN(nn.Module):
|
508 |
+
def __init__(self, config) -> None:
|
509 |
+
super().__init__()
|
510 |
+
in_features = out_features = config.hidden_size
|
511 |
+
hidden_features = int(config.hidden_size * config.mlp_ratio)
|
512 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
513 |
+
|
514 |
+
self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True)
|
515 |
+
self.weights_out = nn.Linear(hidden_features, out_features, bias=True)
|
516 |
+
|
517 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
518 |
+
hidden_state = self.weights_in(hidden_state)
|
519 |
+
x1, x2 = hidden_state.chunk(2, dim=-1)
|
520 |
+
hidden = nn.functional.silu(x1) * x2
|
521 |
+
return self.weights_out(hidden)
|
522 |
+
|
523 |
+
|
524 |
+
DINOV2_WITH_REGISTERS_ATTENTION_CLASSES = {
|
525 |
+
"eager": Dinov2WithRegistersAttention,
|
526 |
+
"sdpa": Dinov2WithRegistersSdpaAttention,
|
527 |
+
}
|
528 |
+
|
529 |
+
|
530 |
+
class Dinov2WithRegistersLayer(nn.Module):
|
531 |
+
"""This corresponds to the Block class in the original implementation."""
|
532 |
+
|
533 |
+
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
|
534 |
+
super().__init__()
|
535 |
+
|
536 |
+
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
537 |
+
self.attention = DINOV2_WITH_REGISTERS_ATTENTION_CLASSES[
|
538 |
+
config._attn_implementation
|
539 |
+
](config)
|
540 |
+
self.layer_scale1 = Dinov2WithRegistersLayerScale(config)
|
541 |
+
self.drop_path = (
|
542 |
+
Dinov2WithRegistersDropPath(config.drop_path_rate)
|
543 |
+
if config.drop_path_rate > 0.0
|
544 |
+
else nn.Identity()
|
545 |
+
)
|
546 |
+
|
547 |
+
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
548 |
+
|
549 |
+
if config.use_swiglu_ffn:
|
550 |
+
self.mlp = Dinov2WithRegistersSwiGLUFFN(config)
|
551 |
+
else:
|
552 |
+
self.mlp = Dinov2WithRegistersMLP(config)
|
553 |
+
self.layer_scale2 = Dinov2WithRegistersLayerScale(config)
|
554 |
+
|
555 |
+
def forward(
|
556 |
+
self,
|
557 |
+
hidden_states: torch.Tensor,
|
558 |
+
head_mask: Optional[torch.Tensor] = None,
|
559 |
+
output_attentions: bool = False,
|
560 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
561 |
+
self_attention_outputs = self.attention(
|
562 |
+
self.norm1(
|
563 |
+
hidden_states
|
564 |
+
), # in Dinov2WithRegisters, layernorm is applied before self-attention
|
565 |
+
head_mask,
|
566 |
+
output_attentions=output_attentions,
|
567 |
+
)
|
568 |
+
attention_output = self_attention_outputs[0]
|
569 |
+
|
570 |
+
attention_output = self.layer_scale1(attention_output)
|
571 |
+
outputs = self_attention_outputs[
|
572 |
+
1:
|
573 |
+
] # add self attentions if we output attention weights
|
574 |
+
|
575 |
+
# first residual connection
|
576 |
+
hidden_states = self.drop_path(attention_output) + hidden_states
|
577 |
+
|
578 |
+
# in Dinov2WithRegisters, layernorm is also applied after self-attention
|
579 |
+
layer_output = self.norm2(hidden_states)
|
580 |
+
layer_output = self.mlp(layer_output)
|
581 |
+
layer_output = self.layer_scale2(layer_output)
|
582 |
+
|
583 |
+
# second residual connection
|
584 |
+
layer_output = self.drop_path(layer_output) + hidden_states
|
585 |
+
|
586 |
+
outputs = (layer_output,) + outputs
|
587 |
+
|
588 |
+
return outputs
|
589 |
+
|
590 |
+
|
591 |
+
class Dinov2WithRegistersEncoder(nn.Module):
|
592 |
+
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
|
593 |
+
super().__init__()
|
594 |
+
self.config = config
|
595 |
+
self.layer = nn.ModuleList(
|
596 |
+
[Dinov2WithRegistersLayer(config) for _ in range(config.num_hidden_layers)]
|
597 |
+
)
|
598 |
+
self.gradient_checkpointing = False
|
599 |
+
|
600 |
+
def forward(
|
601 |
+
self,
|
602 |
+
hidden_states: torch.Tensor,
|
603 |
+
head_mask: Optional[torch.Tensor] = None,
|
604 |
+
output_attentions: bool = False,
|
605 |
+
output_hidden_states: bool = False,
|
606 |
+
return_dict: bool = True,
|
607 |
+
) -> Union[tuple, BaseModelOutput]:
|
608 |
+
all_hidden_states = () if output_hidden_states else None
|
609 |
+
all_self_attentions = () if output_attentions else None
|
610 |
+
|
611 |
+
for i, layer_module in enumerate(self.layer):
|
612 |
+
if output_hidden_states:
|
613 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
614 |
+
|
615 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
616 |
+
|
617 |
+
if self.gradient_checkpointing and self.training:
|
618 |
+
layer_outputs = self._gradient_checkpointing_func(
|
619 |
+
layer_module.__call__,
|
620 |
+
hidden_states,
|
621 |
+
layer_head_mask,
|
622 |
+
output_attentions,
|
623 |
+
)
|
624 |
+
else:
|
625 |
+
layer_outputs = layer_module(
|
626 |
+
hidden_states, layer_head_mask, output_attentions
|
627 |
+
)
|
628 |
+
|
629 |
+
hidden_states = layer_outputs[0]
|
630 |
+
|
631 |
+
if output_attentions:
|
632 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
633 |
+
|
634 |
+
if output_hidden_states:
|
635 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
636 |
+
|
637 |
+
if not return_dict:
|
638 |
+
return tuple(
|
639 |
+
v
|
640 |
+
for v in [hidden_states, all_hidden_states, all_self_attentions]
|
641 |
+
if v is not None
|
642 |
+
)
|
643 |
+
return BaseModelOutput(
|
644 |
+
last_hidden_state=hidden_states,
|
645 |
+
hidden_states=all_hidden_states,
|
646 |
+
attentions=all_self_attentions,
|
647 |
+
)
|
648 |
+
|
649 |
+
|
650 |
+
class Dinov2WithRegistersPreTrainedModel(PreTrainedModel):
|
651 |
+
"""
|
652 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
653 |
+
models.
|
654 |
+
"""
|
655 |
+
|
656 |
+
config_class = Dinov2WithRegistersConfig
|
657 |
+
base_model_prefix = "dinov2_with_registers"
|
658 |
+
main_input_name = "pixel_values"
|
659 |
+
supports_gradient_checkpointing = True
|
660 |
+
_no_split_modules = ["Dinov2WithRegistersSwiGLUFFN"]
|
661 |
+
_supports_sdpa = True
|
662 |
+
|
663 |
+
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
664 |
+
"""Initialize the weights"""
|
665 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
666 |
+
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
|
667 |
+
# `trunc_normal_cpu` not implemented in `half` issues
|
668 |
+
module.weight.data = nn.init.trunc_normal_(
|
669 |
+
module.weight.data.to(torch.float32),
|
670 |
+
mean=0.0,
|
671 |
+
std=self.config.initializer_range,
|
672 |
+
).to(module.weight.dtype)
|
673 |
+
if module.bias is not None:
|
674 |
+
module.bias.data.zero_()
|
675 |
+
elif isinstance(module, nn.LayerNorm):
|
676 |
+
module.bias.data.zero_()
|
677 |
+
module.weight.data.fill_(1.0)
|
678 |
+
elif isinstance(module, Dinov2WithRegistersEmbeddings):
|
679 |
+
module.position_embeddings.data = nn.init.trunc_normal_(
|
680 |
+
module.position_embeddings.data.to(torch.float32),
|
681 |
+
mean=0.0,
|
682 |
+
std=self.config.initializer_range,
|
683 |
+
).to(module.position_embeddings.dtype)
|
684 |
+
|
685 |
+
module.cls_token.data = nn.init.trunc_normal_(
|
686 |
+
module.cls_token.data.to(torch.float32),
|
687 |
+
mean=0.0,
|
688 |
+
std=self.config.initializer_range,
|
689 |
+
).to(module.cls_token.dtype)
|
690 |
+
|
691 |
+
|
692 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 257, 768]
|
693 |
+
|
694 |
+
|
695 |
+
DINOV2_WITH_REGISTERS_START_DOCSTRING = r"""
|
696 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
697 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
698 |
+
behavior.
|
699 |
+
|
700 |
+
Parameters:
|
701 |
+
config ([`Dinov2WithRegistersConfig`]): Model configuration class with all the parameters of the model.
|
702 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
703 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
704 |
+
"""
|
705 |
+
|
706 |
+
DINOV2_WITH_REGISTERS_BASE_INPUTS_DOCSTRING = r"""
|
707 |
+
Args:
|
708 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
709 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
710 |
+
[`BitImageProcessor.preprocess`] for details.
|
711 |
+
|
712 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
|
713 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for
|
714 |
+
pre-training.
|
715 |
+
|
716 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
717 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
718 |
+
|
719 |
+
- 1 indicates the head is **not masked**,
|
720 |
+
- 0 indicates the head is **masked**.
|
721 |
+
|
722 |
+
output_attentions (`bool`, *optional*):
|
723 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
724 |
+
tensors for more detail.
|
725 |
+
output_hidden_states (`bool`, *optional*):
|
726 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
727 |
+
more detail.
|
728 |
+
return_dict (`bool`, *optional*):
|
729 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
730 |
+
"""
|
731 |
+
|
732 |
+
|
733 |
+
@add_start_docstrings(
|
734 |
+
"The bare Dinov2WithRegisters Model transformer outputting raw hidden-states without any specific head on top.",
|
735 |
+
DINOV2_WITH_REGISTERS_START_DOCSTRING,
|
736 |
+
)
|
737 |
+
class Dinov2WithRegistersModel(Dinov2WithRegistersPreTrainedModel):
|
738 |
+
def __init__(self, config: Dinov2WithRegistersConfig):
|
739 |
+
super().__init__(config)
|
740 |
+
self.config = config
|
741 |
+
|
742 |
+
self.embeddings = Dinov2WithRegistersEmbeddings(config)
|
743 |
+
self.encoder = Dinov2WithRegistersEncoder(config)
|
744 |
+
|
745 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
746 |
+
|
747 |
+
# Initialize weights and apply final processing
|
748 |
+
self.post_init()
|
749 |
+
|
750 |
+
def get_input_embeddings(self) -> Dinov2WithRegistersPatchEmbeddings:
|
751 |
+
return self.embeddings.patch_embeddings
|
752 |
+
|
753 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
754 |
+
"""
|
755 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
756 |
+
class PreTrainedModel
|
757 |
+
"""
|
758 |
+
for layer, heads in heads_to_prune.items():
|
759 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
760 |
+
|
761 |
+
@add_start_docstrings_to_model_forward(DINOV2_WITH_REGISTERS_BASE_INPUTS_DOCSTRING)
|
762 |
+
@add_code_sample_docstrings(
|
763 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
764 |
+
output_type=BaseModelOutputWithPooling,
|
765 |
+
config_class=_CONFIG_FOR_DOC,
|
766 |
+
modality="vision",
|
767 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
768 |
+
)
|
769 |
+
def forward(
|
770 |
+
self,
|
771 |
+
pixel_values: Optional[torch.Tensor] = None,
|
772 |
+
bool_masked_pos: Optional[torch.Tensor] = None,
|
773 |
+
head_mask: Optional[torch.Tensor] = None,
|
774 |
+
output_attentions: Optional[bool] = None,
|
775 |
+
output_hidden_states: Optional[bool] = None,
|
776 |
+
return_dict: Optional[bool] = None,
|
777 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
778 |
+
output_attentions = (
|
779 |
+
output_attentions
|
780 |
+
if output_attentions is not None
|
781 |
+
else self.config.output_attentions
|
782 |
+
)
|
783 |
+
output_hidden_states = (
|
784 |
+
output_hidden_states
|
785 |
+
if output_hidden_states is not None
|
786 |
+
else self.config.output_hidden_states
|
787 |
+
)
|
788 |
+
return_dict = (
|
789 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
790 |
+
)
|
791 |
+
|
792 |
+
if pixel_values is None:
|
793 |
+
raise ValueError("You have to specify pixel_values")
|
794 |
+
|
795 |
+
# Prepare head mask if needed
|
796 |
+
# 1.0 in head_mask indicate we keep the head
|
797 |
+
# attention_probs has shape bsz x n_heads x N x N
|
798 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
799 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
800 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
801 |
+
|
802 |
+
embedding_output = self.embeddings(
|
803 |
+
pixel_values, bool_masked_pos=bool_masked_pos
|
804 |
+
)
|
805 |
+
|
806 |
+
encoder_outputs = self.encoder(
|
807 |
+
embedding_output,
|
808 |
+
head_mask=head_mask,
|
809 |
+
output_attentions=output_attentions,
|
810 |
+
output_hidden_states=output_hidden_states,
|
811 |
+
return_dict=return_dict,
|
812 |
+
)
|
813 |
+
sequence_output = encoder_outputs[0]
|
814 |
+
sequence_output = self.layernorm(sequence_output)
|
815 |
+
pooled_output = sequence_output[:, 0, :]
|
816 |
+
|
817 |
+
if not return_dict:
|
818 |
+
head_outputs = (sequence_output, pooled_output)
|
819 |
+
return head_outputs + encoder_outputs[1:]
|
820 |
+
|
821 |
+
return BaseModelOutputWithPooling(
|
822 |
+
last_hidden_state=sequence_output,
|
823 |
+
pooler_output=pooled_output,
|
824 |
+
hidden_states=encoder_outputs.hidden_states,
|
825 |
+
attentions=encoder_outputs.attentions,
|
826 |
+
)
|
827 |
+
|
828 |
+
|
829 |
+
# Image classification docstring
|
830 |
+
_IMAGE_CLASS_CHECKPOINT = "facebook/dinov2_with_registers-small-imagenet1k-1-layer"
|
831 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
832 |
+
|
833 |
+
DINOV2_WITH_REGISTERS_INPUTS_DOCSTRING = r"""
|
834 |
+
Args:
|
835 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
836 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
837 |
+
[`BitImageProcessor.preprocess`] for details.
|
838 |
+
|
839 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
840 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
841 |
+
|
842 |
+
- 1 indicates the head is **not masked**,
|
843 |
+
- 0 indicates the head is **masked**.
|
844 |
+
|
845 |
+
output_attentions (`bool`, *optional*):
|
846 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
847 |
+
tensors for more detail.
|
848 |
+
output_hidden_states (`bool`, *optional*):
|
849 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
850 |
+
more detail.
|
851 |
+
return_dict (`bool`, *optional*):
|
852 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
853 |
+
"""
|
854 |
+
|
855 |
+
|
856 |
+
@add_start_docstrings(
|
857 |
+
"""
|
858 |
+
Dinov2WithRegisters Model transformer with an image classification head on top (a linear layer on top of the final hidden state
|
859 |
+
of the [CLS] token) e.g. for ImageNet.
|
860 |
+
""",
|
861 |
+
DINOV2_WITH_REGISTERS_START_DOCSTRING,
|
862 |
+
)
|
863 |
+
class Dinov2WithRegistersForImageClassification(Dinov2WithRegistersPreTrainedModel):
|
864 |
+
def __init__(self, config: Dinov2WithRegistersConfig) -> None:
|
865 |
+
super().__init__(config)
|
866 |
+
|
867 |
+
self.num_labels = config.num_labels
|
868 |
+
self.dinov2_with_registers = Dinov2WithRegistersModel(config)
|
869 |
+
|
870 |
+
# Classifier head
|
871 |
+
self.classifier = (
|
872 |
+
nn.Linear(config.hidden_size * 2, config.num_labels)
|
873 |
+
if config.num_labels > 0
|
874 |
+
else nn.Identity()
|
875 |
+
)
|
876 |
+
|
877 |
+
# Initialize weights and apply final processing
|
878 |
+
self.post_init()
|
879 |
+
|
880 |
+
@add_start_docstrings_to_model_forward(DINOV2_WITH_REGISTERS_INPUTS_DOCSTRING)
|
881 |
+
@add_code_sample_docstrings(
|
882 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
883 |
+
output_type=ImageClassifierOutput,
|
884 |
+
config_class=_CONFIG_FOR_DOC,
|
885 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
886 |
+
)
|
887 |
+
def forward(
|
888 |
+
self,
|
889 |
+
pixel_values: Optional[torch.Tensor] = None,
|
890 |
+
head_mask: Optional[torch.Tensor] = None,
|
891 |
+
labels: Optional[torch.Tensor] = None,
|
892 |
+
output_attentions: Optional[bool] = None,
|
893 |
+
output_hidden_states: Optional[bool] = None,
|
894 |
+
return_dict: Optional[bool] = None,
|
895 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
896 |
+
r"""
|
897 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
898 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
899 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
900 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
901 |
+
"""
|
902 |
+
return_dict = (
|
903 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
904 |
+
)
|
905 |
+
|
906 |
+
outputs = self.dinov2_with_registers(
|
907 |
+
pixel_values,
|
908 |
+
head_mask=head_mask,
|
909 |
+
output_attentions=output_attentions,
|
910 |
+
output_hidden_states=output_hidden_states,
|
911 |
+
return_dict=return_dict,
|
912 |
+
)
|
913 |
+
|
914 |
+
sequence_output = outputs[0] # batch_size, sequence_length, hidden_size
|
915 |
+
|
916 |
+
cls_token = sequence_output[:, 0]
|
917 |
+
patch_tokens = sequence_output[:, 1:]
|
918 |
+
|
919 |
+
linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1)
|
920 |
+
|
921 |
+
logits = self.classifier(linear_input)
|
922 |
+
|
923 |
+
loss = None
|
924 |
+
if labels is not None:
|
925 |
+
# move labels to correct device to enable model parallelism
|
926 |
+
labels = labels.to(logits.device)
|
927 |
+
if self.config.problem_type is None:
|
928 |
+
if self.num_labels == 1:
|
929 |
+
self.config.problem_type = "regression"
|
930 |
+
elif self.num_labels > 1 and (
|
931 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
932 |
+
):
|
933 |
+
self.config.problem_type = "single_label_classification"
|
934 |
+
else:
|
935 |
+
self.config.problem_type = "multi_label_classification"
|
936 |
+
|
937 |
+
if self.config.problem_type == "regression":
|
938 |
+
loss_fct = MSELoss()
|
939 |
+
if self.num_labels == 1:
|
940 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
941 |
+
else:
|
942 |
+
loss = loss_fct(logits, labels)
|
943 |
+
elif self.config.problem_type == "single_label_classification":
|
944 |
+
loss_fct = CrossEntropyLoss()
|
945 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
946 |
+
elif self.config.problem_type == "multi_label_classification":
|
947 |
+
loss_fct = BCEWithLogitsLoss()
|
948 |
+
loss = loss_fct(logits, labels)
|
949 |
+
|
950 |
+
if not return_dict:
|
951 |
+
output = (logits,) + outputs[2:]
|
952 |
+
return ((loss,) + output) if loss is not None else output
|
953 |
+
|
954 |
+
return ImageClassifierOutput(
|
955 |
+
loss=loss,
|
956 |
+
logits=logits,
|
957 |
+
hidden_states=outputs.hidden_states,
|
958 |
+
attentions=outputs.attentions,
|
959 |
+
)
|
960 |
+
|
961 |
+
|
962 |
+
@add_start_docstrings(
|
963 |
+
"""
|
964 |
+
Dinov2WithRegisters backbone, to be used with frameworks like DETR and MaskFormer.
|
965 |
+
""",
|
966 |
+
DINOV2_WITH_REGISTERS_START_DOCSTRING,
|
967 |
+
)
|
968 |
+
class Dinov2WithRegistersBackbone(Dinov2WithRegistersPreTrainedModel, BackboneMixin):
|
969 |
+
def __init__(self, config):
|
970 |
+
super().__init__(config)
|
971 |
+
super()._init_backbone(config)
|
972 |
+
self.num_features = [
|
973 |
+
config.hidden_size for _ in range(config.num_hidden_layers + 1)
|
974 |
+
]
|
975 |
+
self.embeddings = Dinov2WithRegistersEmbeddings(config)
|
976 |
+
self.encoder = Dinov2WithRegistersEncoder(config)
|
977 |
+
|
978 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
979 |
+
|
980 |
+
self.num_register_tokens = config.num_register_tokens
|
981 |
+
|
982 |
+
# Initialize weights and apply final processing
|
983 |
+
self.post_init()
|
984 |
+
|
985 |
+
def get_input_embeddings(self) -> Dinov2WithRegistersPatchEmbeddings:
|
986 |
+
return self.embeddings.patch_embeddings
|
987 |
+
|
988 |
+
@add_start_docstrings_to_model_forward(DINOV2_WITH_REGISTERS_INPUTS_DOCSTRING)
|
989 |
+
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
990 |
+
def forward(
|
991 |
+
self,
|
992 |
+
pixel_values: torch.Tensor,
|
993 |
+
output_hidden_states: Optional[bool] = None,
|
994 |
+
output_attentions: Optional[bool] = None,
|
995 |
+
return_dict: Optional[bool] = None,
|
996 |
+
) -> BackboneOutput:
|
997 |
+
"""
|
998 |
+
Returns:
|
999 |
+
|
1000 |
+
Examples:
|
1001 |
+
Returns:
|
1002 |
+
|
1003 |
+
Examples:
|
1004 |
+
|
1005 |
+
|
1006 |
+
```python
|
1007 |
+
>>> from transformers import AutoImageProcessor, AutoBackbone
|
1008 |
+
>>> import torch
|
1009 |
+
>>> from PIL import Image
|
1010 |
+
>>> import requests
|
1011 |
+
|
1012 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1013 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1014 |
+
|
1015 |
+
>>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-with-registers-base")
|
1016 |
+
>>> model = AutoBackbone.from_pretrained(
|
1017 |
+
... "facebook/dinov2-with-registers-base", out_features=["stage2", "stage5", "stage8", "stage11"]
|
1018 |
+
... )
|
1019 |
+
|
1020 |
+
>>> inputs = processor(image, return_tensors="pt")
|
1021 |
+
|
1022 |
+
>>> outputs = model(**inputs)
|
1023 |
+
>>> feature_maps = outputs.feature_maps
|
1024 |
+
>>> list(feature_maps[-1].shape)
|
1025 |
+
[1, 768, 16, 16]
|
1026 |
+
```"""
|
1027 |
+
return_dict = (
|
1028 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1029 |
+
)
|
1030 |
+
output_hidden_states = (
|
1031 |
+
output_hidden_states
|
1032 |
+
if output_hidden_states is not None
|
1033 |
+
else self.config.output_hidden_states
|
1034 |
+
)
|
1035 |
+
output_attentions = (
|
1036 |
+
output_attentions
|
1037 |
+
if output_attentions is not None
|
1038 |
+
else self.config.output_attentions
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
embedding_output = self.embeddings(pixel_values)
|
1042 |
+
|
1043 |
+
outputs = self.encoder(
|
1044 |
+
embedding_output,
|
1045 |
+
output_hidden_states=True,
|
1046 |
+
output_attentions=output_attentions,
|
1047 |
+
return_dict=return_dict,
|
1048 |
+
)
|
1049 |
+
|
1050 |
+
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
1051 |
+
|
1052 |
+
feature_maps = ()
|
1053 |
+
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
1054 |
+
if stage in self.out_features:
|
1055 |
+
if self.config.apply_layernorm:
|
1056 |
+
hidden_state = self.layernorm(hidden_state)
|
1057 |
+
if self.config.reshape_hidden_states:
|
1058 |
+
hidden_state = hidden_state[:, self.num_register_tokens + 1 :]
|
1059 |
+
# this was actually a bug in the original implementation that we copied here,
|
1060 |
+
# cause normally the order is height, width
|
1061 |
+
batch_size, _, height, width = pixel_values.shape
|
1062 |
+
patch_size = self.config.patch_size
|
1063 |
+
hidden_state = hidden_state.reshape(
|
1064 |
+
batch_size, height // patch_size, width // patch_size, -1
|
1065 |
+
)
|
1066 |
+
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
|
1067 |
+
feature_maps += (hidden_state,)
|
1068 |
+
|
1069 |
+
if not return_dict:
|
1070 |
+
if output_hidden_states:
|
1071 |
+
output = (feature_maps,) + outputs[1:]
|
1072 |
+
else:
|
1073 |
+
output = (feature_maps,) + outputs[2:]
|
1074 |
+
return output
|
1075 |
+
|
1076 |
+
return BackboneOutput(
|
1077 |
+
feature_maps=feature_maps,
|
1078 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
1079 |
+
attentions=outputs.attentions if output_attentions else None,
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
|
1083 |
+
__all__ = [
|
1084 |
+
"Dinov2WithRegistersPreTrainedModel",
|
1085 |
+
"Dinov2WithRegistersModel",
|
1086 |
+
"Dinov2WithRegistersForImageClassification",
|
1087 |
+
"Dinov2WithRegistersBackbone",
|
1088 |
+
]
|
step1x3d_geometry/models/conditional_encoders/label_encoder.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import numpy as np
|
5 |
+
import re
|
6 |
+
from einops import rearrange
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from torchvision import transforms
|
9 |
+
from diffusers.models.modeling_utils import ModelMixin
|
10 |
+
|
11 |
+
from transformers.utils import ModelOutput
|
12 |
+
from typing import Iterable, Optional, Union, List
|
13 |
+
|
14 |
+
import step1x3d_geometry
|
15 |
+
from step1x3d_geometry.utils.typing import *
|
16 |
+
from step1x3d_geometry.utils.misc import get_device
|
17 |
+
|
18 |
+
from .base import BaseLabelEncoder
|
19 |
+
|
20 |
+
DEFAULT_POSE = 0 # "unknown", "t-pose", "a-pose", uncond
|
21 |
+
NUM_POSE_CLASSES = 3
|
22 |
+
POSE_MAPPING = {"unknown": 0, "t-pose": 1, "a-pose": 2, "uncond": 3}
|
23 |
+
|
24 |
+
DEFAULT_SYMMETRY_TYPE = 0 # "asymmetry", "x", uncond
|
25 |
+
NUM_SYMMETRY_TYPE_CLASSES = 2
|
26 |
+
SYMMETRY_TYPE_MAPPING = {"asymmetry": 0, "x": 1, "y": 0, "z": 0, "uncond": 2}
|
27 |
+
|
28 |
+
DEFAULT_GEOMETRY_QUALITY = 0 # "normal", "smooth", "sharp", uncond,
|
29 |
+
NUM_GEOMETRY_QUALITY_CLASSES = 3
|
30 |
+
GEOMETRY_QUALITY_MAPPING = {"normal": 0, "smooth": 1, "sharp": 2, "uncod": 3}
|
31 |
+
|
32 |
+
|
33 |
+
@step1x3d_geometry.register("label-encoder")
|
34 |
+
class LabelEncoder(BaseLabelEncoder, ModelMixin):
|
35 |
+
"""
|
36 |
+
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
num_classes (`int`): The number of classes.
|
40 |
+
hidden_size (`int`): The size of the vector embeddings.
|
41 |
+
"""
|
42 |
+
|
43 |
+
def configure(self) -> None:
|
44 |
+
super().configure()
|
45 |
+
|
46 |
+
if self.cfg.zero_uncond_embeds:
|
47 |
+
self.embedding_table_tpose = nn.Embedding(
|
48 |
+
NUM_POSE_CLASSES, self.cfg.hidden_size
|
49 |
+
)
|
50 |
+
self.embedding_table_symmetry_type = nn.Embedding(
|
51 |
+
NUM_SYMMETRY_TYPE_CLASSES, self.cfg.hidden_size
|
52 |
+
)
|
53 |
+
self.embedding_table_geometry_quality = nn.Embedding(
|
54 |
+
NUM_GEOMETRY_QUALITY_CLASSES, self.cfg.hidden_size
|
55 |
+
)
|
56 |
+
else:
|
57 |
+
self.embedding_table_tpose = nn.Embedding(
|
58 |
+
NUM_POSE_CLASSES + 1, self.cfg.hidden_size
|
59 |
+
)
|
60 |
+
self.embedding_table_symmetry_type = nn.Embedding(
|
61 |
+
NUM_SYMMETRY_TYPE_CLASSES + 1, self.cfg.hidden_size
|
62 |
+
)
|
63 |
+
self.embedding_table_geometry_quality = nn.Embedding(
|
64 |
+
NUM_GEOMETRY_QUALITY_CLASSES + 1, self.cfg.hidden_size
|
65 |
+
)
|
66 |
+
|
67 |
+
if self.cfg.zero_uncond_embeds:
|
68 |
+
self.empty_label_embeds = torch.zeros((1, 3, self.cfg.hidden_size)).detach()
|
69 |
+
else:
|
70 |
+
self.empty_label_embeds = (
|
71 |
+
self.encode_label( # the last class label is for the uncond
|
72 |
+
[{"pose": "", "symetry": "", "geometry_type": ""}]
|
73 |
+
).detach()
|
74 |
+
)
|
75 |
+
|
76 |
+
# load pretrained_model_name_or_path
|
77 |
+
if self.cfg.pretrained_model_name_or_path is not None:
|
78 |
+
print(f"Loading ckpt from {self.cfg.pretrained_model_name_or_path}")
|
79 |
+
ckpt = torch.load(
|
80 |
+
self.cfg.pretrained_model_name_or_path, map_location="cpu"
|
81 |
+
)["state_dict"]
|
82 |
+
pretrained_model_ckpt = {}
|
83 |
+
for k, v in ckpt.items():
|
84 |
+
if k.startswith("label_condition."):
|
85 |
+
pretrained_model_ckpt[k.replace("label_condition.", "")] = v
|
86 |
+
self.load_state_dict(pretrained_model_ckpt, strict=True)
|
87 |
+
|
88 |
+
def encode_label(self, labels: List[dict]) -> torch.FloatTensor:
|
89 |
+
tpose_label_embeds = []
|
90 |
+
symmetry_type_label_embeds = []
|
91 |
+
geometry_quality_label_embeds = []
|
92 |
+
|
93 |
+
for label in labels:
|
94 |
+
if "pose" in label.keys():
|
95 |
+
if label["pose"] is None or label["pose"] == "":
|
96 |
+
tpose_label_embeds.append(
|
97 |
+
torch.zeros(self.cfg.hidden_size).detach().to(get_device())
|
98 |
+
)
|
99 |
+
else:
|
100 |
+
tpose_label_embeds.append(
|
101 |
+
self.embedding_table_symmetry_type(
|
102 |
+
torch.tensor(POSE_MAPPING[label["pose"][0]]).to(
|
103 |
+
get_device()
|
104 |
+
)
|
105 |
+
)
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
tpose_label_embeds.append(
|
109 |
+
self.embedding_table_tpose(
|
110 |
+
torch.tensor(DEFAULT_POSE).to(get_device())
|
111 |
+
)
|
112 |
+
)
|
113 |
+
|
114 |
+
if "symmetry" in label.keys():
|
115 |
+
if label["symmetry"] is None or label["symmetry"] == "":
|
116 |
+
symmetry_type_label_embeds.append(
|
117 |
+
torch.zeros(self.cfg.hidden_size).detach().to(get_device())
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
symmetry_type_label_embeds.append(
|
121 |
+
self.embedding_table_symmetry_type(
|
122 |
+
torch.tensor(
|
123 |
+
SYMMETRY_TYPE_MAPPING[label["symmetry"][0]]
|
124 |
+
).to(get_device())
|
125 |
+
)
|
126 |
+
)
|
127 |
+
else:
|
128 |
+
symmetry_type_label_embeds.append(
|
129 |
+
self.embedding_table_symmetry_type(
|
130 |
+
torch.tensor(DEFAULT_SYMMETRY_TYPE).to(get_device())
|
131 |
+
)
|
132 |
+
)
|
133 |
+
|
134 |
+
if "geometry_type" in label.keys():
|
135 |
+
if label["geometry_type"] is None or label["geometry_type"] == "":
|
136 |
+
geometry_quality_label_embeds.append(
|
137 |
+
torch.zeros(self.cfg.hidden_size).detach().to(get_device())
|
138 |
+
)
|
139 |
+
else:
|
140 |
+
geometry_quality_label_embeds.append(
|
141 |
+
self.embedding_table_geometry_quality(
|
142 |
+
torch.tensor(
|
143 |
+
GEOMETRY_QUALITY_MAPPING[label["geometry_type"][0]]
|
144 |
+
).to(get_device())
|
145 |
+
)
|
146 |
+
)
|
147 |
+
else:
|
148 |
+
geometry_quality_label_embeds.append(
|
149 |
+
self.embedding_table_geometry_quality(
|
150 |
+
torch.tensor(DEFAULT_GEOMETRY_QUALITY).to(get_device())
|
151 |
+
)
|
152 |
+
)
|
153 |
+
|
154 |
+
tpose_label_embeds = torch.stack(tpose_label_embeds)
|
155 |
+
symmetry_type_label_embeds = torch.stack(symmetry_type_label_embeds)
|
156 |
+
geometry_quality_label_embeds = torch.stack(geometry_quality_label_embeds)
|
157 |
+
|
158 |
+
label_embeds = torch.stack(
|
159 |
+
[
|
160 |
+
tpose_label_embeds,
|
161 |
+
symmetry_type_label_embeds,
|
162 |
+
geometry_quality_label_embeds,
|
163 |
+
],
|
164 |
+
dim=1,
|
165 |
+
).to(self.dtype)
|
166 |
+
|
167 |
+
return label_embeds
|
step1x3d_geometry/models/conditional_encoders/t5_encoder.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import numpy as np
|
5 |
+
import re
|
6 |
+
import urllib.parse as ul
|
7 |
+
from bs4 import BeautifulSoup
|
8 |
+
from einops import rearrange
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from torchvision import transforms
|
11 |
+
from diffusers.models.modeling_utils import ModelMixin
|
12 |
+
|
13 |
+
from transformers import AutoImageProcessor, AutoModel
|
14 |
+
from transformers import T5EncoderModel, T5Tokenizer, AutoTokenizer
|
15 |
+
from transformers.utils import ModelOutput
|
16 |
+
from typing import Iterable, Optional, Union, List
|
17 |
+
|
18 |
+
import step1x3d_geometry
|
19 |
+
from step1x3d_geometry.utils.typing import *
|
20 |
+
|
21 |
+
from .base import BaseCaptionEncoder
|
22 |
+
|
23 |
+
bad_punct_regex = re.compile(
|
24 |
+
r"["
|
25 |
+
+ "#®•©™&@·º½¾¿¡§~"
|
26 |
+
+ "\)"
|
27 |
+
+ "\("
|
28 |
+
+ "\]"
|
29 |
+
+ "\["
|
30 |
+
+ "\}"
|
31 |
+
+ "\{"
|
32 |
+
+ "\|"
|
33 |
+
+ "\\"
|
34 |
+
+ "\/"
|
35 |
+
+ "\*"
|
36 |
+
+ r"]{1,}"
|
37 |
+
) # noqa
|
38 |
+
|
39 |
+
|
40 |
+
@step1x3d_geometry.register("t5-encoder")
|
41 |
+
class T5Encoder(BaseCaptionEncoder, ModelMixin):
|
42 |
+
|
43 |
+
@dataclass
|
44 |
+
class Config(BaseCaptionEncoder.Config):
|
45 |
+
pretrained_model_name_or_path: Optional[str] = (
|
46 |
+
None # the pretrained model name or path for condition model
|
47 |
+
)
|
48 |
+
pretrained_t5_name_or_path: Optional[str] = (
|
49 |
+
None # the pretrained model name or path for T5
|
50 |
+
)
|
51 |
+
preprocessing_text: bool = False
|
52 |
+
text_max_length: int = 77
|
53 |
+
t5_type: Optional[str] = None
|
54 |
+
|
55 |
+
cfg: Config
|
56 |
+
|
57 |
+
def configure(self) -> None:
|
58 |
+
super().configure()
|
59 |
+
|
60 |
+
# Load the T5 model and tokenizer
|
61 |
+
if self.cfg.pretrained_t5_name_or_path is not None:
|
62 |
+
self.cfg.t5_type = f"google-t5/{self.cfg.pretrained_t5_name_or_path.split('google-t5--')[-1].split('/')[0]}"
|
63 |
+
self.tokenizer = T5Tokenizer.from_pretrained(
|
64 |
+
self.cfg.pretrained_t5_name_or_path
|
65 |
+
)
|
66 |
+
self.text_model = T5EncoderModel.from_pretrained(
|
67 |
+
self.cfg.pretrained_t5_name_or_path, torch_dtype=torch.bfloat16
|
68 |
+
)
|
69 |
+
else:
|
70 |
+
if (
|
71 |
+
self.cfg.pretrained_model_name_or_path is None
|
72 |
+
): # default to load t5-base model
|
73 |
+
assert self.cfg.t5_type is not None, "The t5_type should be provided"
|
74 |
+
print(f"Loading T5 model from {self.cfg.t5_type}")
|
75 |
+
self.text_model = T5EncoderModel(
|
76 |
+
config=T5EncoderModel.config_class.from_pretrained(
|
77 |
+
self.cfg.t5_type,
|
78 |
+
)
|
79 |
+
).to(torch.bfloat16)
|
80 |
+
elif "t5small" in self.cfg.pretrained_model_name_or_path:
|
81 |
+
print("Loading Dinov2 model from google-t5/t5-small")
|
82 |
+
self.cfg.t5_type = "google-t5/t5-small"
|
83 |
+
self.text_model = T5EncoderModel.from_pretrained(
|
84 |
+
self.cfg.t5_type, torch_dtype=torch.bfloat16
|
85 |
+
)
|
86 |
+
elif "t5base" in self.cfg.pretrained_model_name_or_path:
|
87 |
+
print("Loading Dinov2 model from google-t5/t5-base")
|
88 |
+
self.cfg.t5_type = "google-t5/t5-base"
|
89 |
+
self.text_model = T5EncoderModel.from_pretrained(
|
90 |
+
self.cfg.t5_type, torch_dtype=torch.bfloat16
|
91 |
+
)
|
92 |
+
else:
|
93 |
+
raise ValueError(
|
94 |
+
f"Unknown T5 model: {self.cfg.pretrained_model_name_or_path}"
|
95 |
+
)
|
96 |
+
self.tokenizer = T5Tokenizer.from_pretrained(self.cfg.t5_type)
|
97 |
+
|
98 |
+
# Set the empty image/text embeds
|
99 |
+
if self.cfg.zero_uncond_embeds:
|
100 |
+
self.empty_text_embeds = torch.zeros(
|
101 |
+
(1, self.cfg.text_max_length, self.text_model.config.hidden_size)
|
102 |
+
).detach()
|
103 |
+
else:
|
104 |
+
self.empty_text_embeds = self.encode_text([""]).detach()
|
105 |
+
|
106 |
+
# load pretrained_model_name_or_path
|
107 |
+
if self.cfg.pretrained_model_name_or_path is not None:
|
108 |
+
print(f"Loading ckpt from {self.cfg.pretrained_model_name_or_path}")
|
109 |
+
ckpt = torch.load(
|
110 |
+
self.cfg.pretrained_model_name_or_path, map_location="cpu"
|
111 |
+
)["state_dict"]
|
112 |
+
pretrained_model_ckpt = {}
|
113 |
+
for k, v in ckpt.items():
|
114 |
+
if k.startswith("caption_condition."):
|
115 |
+
pretrained_model_ckpt[k.replace("caption_condition.", "")] = v
|
116 |
+
self.load_state_dict(pretrained_model_ckpt, strict=True)
|
117 |
+
|
118 |
+
def clean_caption(self, caption):
|
119 |
+
caption = str(caption)
|
120 |
+
caption = ul.unquote_plus(caption)
|
121 |
+
caption = caption.strip().lower()
|
122 |
+
caption = re.sub("<person>", "person", caption)
|
123 |
+
# urls:
|
124 |
+
caption = re.sub(
|
125 |
+
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
126 |
+
"",
|
127 |
+
caption,
|
128 |
+
) # regex for urls
|
129 |
+
caption = re.sub(
|
130 |
+
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
|
131 |
+
"",
|
132 |
+
caption,
|
133 |
+
) # regex for urls
|
134 |
+
# html:
|
135 |
+
caption = BeautifulSoup(caption, features="html.parser").text
|
136 |
+
|
137 |
+
# @<nickname>
|
138 |
+
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
139 |
+
|
140 |
+
# 31C0—31EF CJK Strokes
|
141 |
+
# 31F0—31FF Katakana Phonetic Extensions
|
142 |
+
# 3200—32FF Enclosed CJK Letters and Months
|
143 |
+
# 3300—33FF CJK Compatibility
|
144 |
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
145 |
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
146 |
+
# 4E00—9FFF CJK Unified Ideographs
|
147 |
+
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
148 |
+
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
149 |
+
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
150 |
+
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
151 |
+
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
152 |
+
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
153 |
+
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
154 |
+
#######################################################
|
155 |
+
|
156 |
+
# все виды тире / all types of dash --> "-"
|
157 |
+
caption = re.sub(
|
158 |
+
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
|
159 |
+
"-",
|
160 |
+
caption,
|
161 |
+
)
|
162 |
+
|
163 |
+
# кавычки к одному стандарту
|
164 |
+
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
165 |
+
caption = re.sub(r"[‘’]", "'", caption)
|
166 |
+
|
167 |
+
# "
|
168 |
+
caption = re.sub(r""?", "", caption)
|
169 |
+
# &
|
170 |
+
caption = re.sub(r"&", "", caption)
|
171 |
+
|
172 |
+
# ip adresses:
|
173 |
+
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
174 |
+
|
175 |
+
# article ids:
|
176 |
+
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
177 |
+
|
178 |
+
# \n
|
179 |
+
caption = re.sub(r"\\n", " ", caption)
|
180 |
+
|
181 |
+
# "#123"
|
182 |
+
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
183 |
+
# "#12345.."
|
184 |
+
caption = re.sub(r"#\d{5,}\b", "", caption)
|
185 |
+
# "123456.."
|
186 |
+
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
187 |
+
# filenames:
|
188 |
+
caption = re.sub(
|
189 |
+
r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption
|
190 |
+
)
|
191 |
+
|
192 |
+
#
|
193 |
+
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
194 |
+
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
195 |
+
|
196 |
+
caption = re.sub(
|
197 |
+
bad_punct_regex, r" ", caption
|
198 |
+
) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
199 |
+
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
200 |
+
|
201 |
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
202 |
+
regex2 = re.compile(r"(?:\-|\_)")
|
203 |
+
if len(re.findall(regex2, caption)) > 3:
|
204 |
+
caption = re.sub(regex2, " ", caption)
|
205 |
+
|
206 |
+
caption = self.basic_clean(caption)
|
207 |
+
|
208 |
+
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
209 |
+
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
210 |
+
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
211 |
+
|
212 |
+
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
213 |
+
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
214 |
+
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
215 |
+
caption = re.sub(
|
216 |
+
r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption
|
217 |
+
)
|
218 |
+
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
219 |
+
|
220 |
+
caption = re.sub(
|
221 |
+
r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption
|
222 |
+
) # j2d1a2a...
|
223 |
+
|
224 |
+
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
225 |
+
|
226 |
+
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
227 |
+
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
228 |
+
caption = re.sub(r"\s+", " ", caption)
|
229 |
+
|
230 |
+
caption.strip()
|
231 |
+
|
232 |
+
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
233 |
+
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
234 |
+
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
235 |
+
caption = re.sub(r"^\.\S+$", "", caption)
|
236 |
+
|
237 |
+
return caption.strip()
|
238 |
+
|
239 |
+
def text_preprocessing(self, text):
|
240 |
+
if self.cfg.preprocessing_text:
|
241 |
+
# The exact text cleaning as was in the training stage:
|
242 |
+
text = self.clean_caption(text)
|
243 |
+
return text
|
244 |
+
else:
|
245 |
+
return text.lower().strip()
|
246 |
+
|
247 |
+
def encode_text(self, texts: List[str]) -> torch.FloatTensor:
|
248 |
+
texts = [self.text_preprocessing(text) for text in texts]
|
249 |
+
|
250 |
+
text_tokens_and_mask = self.tokenizer(
|
251 |
+
texts,
|
252 |
+
max_length=self.cfg.text_max_length,
|
253 |
+
padding="max_length",
|
254 |
+
truncation=True,
|
255 |
+
return_attention_mask=True,
|
256 |
+
add_special_tokens=True,
|
257 |
+
return_tensors="pt",
|
258 |
+
)
|
259 |
+
|
260 |
+
text_tokens_and_mask["input_ids"] = text_tokens_and_mask["input_ids"] # N x 77
|
261 |
+
text_tokens_and_mask["attention_mask"] = text_tokens_and_mask["attention_mask"]
|
262 |
+
|
263 |
+
with torch.no_grad():
|
264 |
+
label_embeds = self.text_model(
|
265 |
+
input_ids=text_tokens_and_mask["input_ids"].to(self.text_model.device),
|
266 |
+
attention_mask=text_tokens_and_mask["attention_mask"].to(
|
267 |
+
self.text_model.device
|
268 |
+
),
|
269 |
+
)["last_hidden_state"].detach()
|
270 |
+
|
271 |
+
return label_embeds
|
step1x3d_geometry/models/pipelines/pipeline.py
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Some parts of this file are refer to Hugging Face Diffusers library.
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import warnings
|
5 |
+
from typing import Callable, List, Optional, Union, Dict, Any
|
6 |
+
import PIL.Image
|
7 |
+
import trimesh
|
8 |
+
import rembg
|
9 |
+
import torch
|
10 |
+
import numpy as np
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
|
13 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
14 |
+
from diffusers.utils import BaseOutput
|
15 |
+
from diffusers.utils.torch_utils import randn_tensor
|
16 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
17 |
+
from diffusers.loaders import (
|
18 |
+
FluxIPAdapterMixin,
|
19 |
+
FluxLoraLoaderMixin,
|
20 |
+
FromSingleFileMixin,
|
21 |
+
TextualInversionLoaderMixin,
|
22 |
+
)
|
23 |
+
from .pipeline_utils import (
|
24 |
+
TransformerDiffusionMixin,
|
25 |
+
preprocess_image,
|
26 |
+
retrieve_timesteps,
|
27 |
+
remove_floater,
|
28 |
+
remove_degenerate_face,
|
29 |
+
reduce_face,
|
30 |
+
smart_load_model,
|
31 |
+
)
|
32 |
+
from transformers import (
|
33 |
+
BitImageProcessor,
|
34 |
+
)
|
35 |
+
|
36 |
+
import step1x3d_geometry
|
37 |
+
from step1x3d_geometry.models.autoencoders.surface_extractors import MeshExtractResult
|
38 |
+
from step1x3d_geometry.utils.config import ExperimentConfig, load_config
|
39 |
+
from ..autoencoders.michelangelo_autoencoder import MichelangeloAutoencoder
|
40 |
+
from ..conditional_encoders.dinov2_encoder import Dinov2Encoder
|
41 |
+
from ..conditional_encoders.t5_encoder import T5Encoder
|
42 |
+
from ..conditional_encoders.label_encoder import LabelEncoder
|
43 |
+
from ..transformers.flux_transformer_1d import FluxDenoiser
|
44 |
+
|
45 |
+
|
46 |
+
class Step1X3DGeometryPipelineOutput(BaseOutput):
|
47 |
+
"""
|
48 |
+
Output class for image pipelines.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
images (`List[PIL.Image.Image]` or `torch.Tensor`):
|
52 |
+
List of PIL images or a tensor representing the input images.
|
53 |
+
meshes (`List[trimesh.Trimesh]` or `np.ndarray`)
|
54 |
+
List of denoised trimesh meshes of length `batch_size` or a tuple of NumPy array with shape `((vertices, 3), (faces, 3)) of length `batch_size``.
|
55 |
+
"""
|
56 |
+
|
57 |
+
image: PIL.Image.Image
|
58 |
+
mesh: Union[trimesh.Trimesh, MeshExtractResult, np.ndarray]
|
59 |
+
|
60 |
+
|
61 |
+
class Step1X3DGeometryPipeline(
|
62 |
+
DiffusionPipeline, FromSingleFileMixin, TransformerDiffusionMixin
|
63 |
+
):
|
64 |
+
"""
|
65 |
+
Step1X-3D Geometry Pipeline, generate high-quality meshes conditioned on image/caption/label inputs
|
66 |
+
|
67 |
+
Args:
|
68 |
+
scheduler (FlowMatchEulerDiscreteScheduler):
|
69 |
+
The diffusion scheduler controlling the denoising process
|
70 |
+
vae (MichelangeloAutoencoder):
|
71 |
+
Variational Autoencoder for latent space compression/reconstruction
|
72 |
+
transformer (FluxDenoiser):
|
73 |
+
Transformer-based denoising model
|
74 |
+
visual_encoder (Dinov2Encoder):
|
75 |
+
Pretrained visual encoder for image feature extraction
|
76 |
+
caption_encoder (T5Encoder):
|
77 |
+
Text encoder for processing natural language captions
|
78 |
+
label_encoder (LabelEncoder):
|
79 |
+
Auxiliary text encoder for label conditioning
|
80 |
+
visual_eature_extractor (BitImageProcessor):
|
81 |
+
Preprocessor for input images
|
82 |
+
|
83 |
+
Note:
|
84 |
+
- CPU offloading sequence: visual_encoder → caption_encoder → label_encoder → transformer → vae
|
85 |
+
- Optional components: visual_encoder, visual_eature_extractor, caption_encoder, label_encoder
|
86 |
+
"""
|
87 |
+
|
88 |
+
model_cpu_offload_seq = (
|
89 |
+
"visual_encoder->caption_encoder->label_encoder->transformer->vae"
|
90 |
+
)
|
91 |
+
_optional_components = [
|
92 |
+
"visual_encoder",
|
93 |
+
"visual_eature_extractor",
|
94 |
+
"caption_encoder",
|
95 |
+
"label_encoder",
|
96 |
+
]
|
97 |
+
|
98 |
+
@classmethod
|
99 |
+
def from_pretrained(cls, model_path, subfolder='.', **kwargs):
|
100 |
+
local_model_path = smart_load_model(model_path, subfolder)
|
101 |
+
return super().from_pretrained(local_model_path, **kwargs)
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
106 |
+
vae: MichelangeloAutoencoder,
|
107 |
+
transformer: FluxDenoiser,
|
108 |
+
visual_encoder: Dinov2Encoder,
|
109 |
+
caption_encoder: T5Encoder,
|
110 |
+
label_encoder: LabelEncoder,
|
111 |
+
visual_eature_extractor: BitImageProcessor,
|
112 |
+
):
|
113 |
+
super().__init__()
|
114 |
+
|
115 |
+
self.register_modules(
|
116 |
+
vae=vae,
|
117 |
+
transformer=transformer,
|
118 |
+
scheduler=scheduler,
|
119 |
+
visual_encoder=visual_encoder,
|
120 |
+
caption_encoder=caption_encoder,
|
121 |
+
label_encoder=label_encoder,
|
122 |
+
visual_eature_extractor=visual_eature_extractor,
|
123 |
+
)
|
124 |
+
|
125 |
+
@property
|
126 |
+
def guidance_scale(self):
|
127 |
+
return self._guidance_scale
|
128 |
+
|
129 |
+
@property
|
130 |
+
def do_classifier_free_guidance(self):
|
131 |
+
return self._guidance_scale > 1
|
132 |
+
|
133 |
+
@property
|
134 |
+
def num_timesteps(self):
|
135 |
+
return self._num_timesteps
|
136 |
+
|
137 |
+
def check_inputs(
|
138 |
+
self,
|
139 |
+
image,
|
140 |
+
):
|
141 |
+
r"""
|
142 |
+
Check if the inputs are valid. Raise an error if not.
|
143 |
+
"""
|
144 |
+
if isinstance(image, str):
|
145 |
+
assert os.path.isfile(image) or image.startswith(
|
146 |
+
"http"
|
147 |
+
), "Input image must be a valid URL or a file path."
|
148 |
+
elif isinstance(image, (torch.Tensor, PIL.Image.Image)):
|
149 |
+
raise ValueError(
|
150 |
+
"Input image must be a `torch.Tensor` or `PIL.Image.Image`."
|
151 |
+
)
|
152 |
+
|
153 |
+
def encode_image(self, image, device, num_meshes_per_prompt):
|
154 |
+
dtype = next(self.visual_encoder.parameters()).dtype
|
155 |
+
|
156 |
+
image_embeds = self.visual_encoder.encode_image(image)
|
157 |
+
image_embeds = image_embeds.repeat_interleave(num_meshes_per_prompt, dim=0)
|
158 |
+
|
159 |
+
uncond_image_embeds = self.visual_encoder.empty_image_embeds.repeat(
|
160 |
+
image_embeds.shape[0], 1, 1
|
161 |
+
).to(image_embeds)
|
162 |
+
|
163 |
+
return image_embeds, uncond_image_embeds
|
164 |
+
|
165 |
+
def encode_caption(self, caption, device, num_meshes_per_prompt):
|
166 |
+
dtype = next(self.label_encoder.parameters()).dtype
|
167 |
+
|
168 |
+
caption_embeds = self.caption_encoder.encode_text([caption])
|
169 |
+
caption_embeds = caption_embeds.repeat_interleave(num_meshes_per_prompt, dim=0)
|
170 |
+
|
171 |
+
uncond_caption_embeds = self.caption_encoder.empty_text_embeds.repeat(
|
172 |
+
caption_embeds.shape[0], 1, 1
|
173 |
+
).to(caption_embeds)
|
174 |
+
|
175 |
+
return caption_embeds, uncond_caption_embeds
|
176 |
+
|
177 |
+
def encode_label(self, label, device, num_meshes_per_prompt):
|
178 |
+
dtype = next(self.label_encoder.parameters()).dtype
|
179 |
+
|
180 |
+
label_embeds = self.label_encoder.encode_label([label])
|
181 |
+
label_embeds = label_embeds.repeat_interleave(num_meshes_per_prompt, dim=0)
|
182 |
+
|
183 |
+
uncond_label_embeds = self.label_encoder.empty_label_embeds.repeat(
|
184 |
+
label_embeds.shape[0], 1, 1
|
185 |
+
).to(label_embeds)
|
186 |
+
|
187 |
+
return label_embeds, uncond_label_embeds
|
188 |
+
|
189 |
+
def prepare_latents(
|
190 |
+
self,
|
191 |
+
batch_size,
|
192 |
+
num_tokens,
|
193 |
+
num_channels_latents,
|
194 |
+
dtype,
|
195 |
+
device,
|
196 |
+
generator,
|
197 |
+
latents: Optional[torch.Tensor] = None,
|
198 |
+
):
|
199 |
+
if latents is not None:
|
200 |
+
return latents.to(device=device, dtype=dtype)
|
201 |
+
|
202 |
+
shape = (batch_size, num_tokens, num_channels_latents)
|
203 |
+
|
204 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
205 |
+
raise ValueError(
|
206 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
207 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
208 |
+
)
|
209 |
+
|
210 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
211 |
+
|
212 |
+
return latents
|
213 |
+
|
214 |
+
@torch.no_grad()
|
215 |
+
def __call__(
|
216 |
+
self,
|
217 |
+
image: Union[torch.FloatTensor, PIL.Image.Image, str],
|
218 |
+
label: Optional[str] = None,
|
219 |
+
caption: Optional[str] = None,
|
220 |
+
num_inference_steps: int = 30,
|
221 |
+
timesteps: List[int] = None,
|
222 |
+
num_meshes_per_prompt: int = 1,
|
223 |
+
guidance_scale: float = 7.5,
|
224 |
+
generator: Optional[int] = None,
|
225 |
+
latents: Optional[torch.FloatTensor] = None,
|
226 |
+
force_remove_background: bool = False,
|
227 |
+
background_color: List[int] = [255, 255, 255],
|
228 |
+
foreground_ratio: float = 0.95,
|
229 |
+
surface_extractor_type: Optional[str] = None,
|
230 |
+
bounds: float = 1.05,
|
231 |
+
mc_level: float = 0.0,
|
232 |
+
octree_resolution: int = 384,
|
233 |
+
output_type: str = "trimesh",
|
234 |
+
do_remove_floater: bool = True,
|
235 |
+
do_remove_degenerate_face: bool = False,
|
236 |
+
do_reduce_face: bool = True,
|
237 |
+
do_shade_smooth: bool = True,
|
238 |
+
max_facenum: int = 200000,
|
239 |
+
return_dict: bool = True,
|
240 |
+
use_zero_init: Optional[bool] = True,
|
241 |
+
zero_steps: Optional[int] = 0,
|
242 |
+
):
|
243 |
+
r"""
|
244 |
+
Function invoked when calling the pipeline for generation.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
image (`torch.FloatTensor` or `PIL.Image.Image` or `str`):
|
248 |
+
`Image`, or tensor representing an image batch, or path to an image file. The image will be encoded to
|
249 |
+
its CLIP/DINO-v2 embedding which the DiT will be conditioned on.
|
250 |
+
label (`str`):
|
251 |
+
The label of the generated mesh, like {"symmetry": "asymmetry", "edge_type": "smooth"}
|
252 |
+
num_inference_steps (`int`, *optional*, defaults to 30):
|
253 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality mesh at the expense
|
254 |
+
of slower inference.
|
255 |
+
timesteps (`List[int]`, *optional*):
|
256 |
+
Custom timesteps to use for the denoising process. If not provided, will use equally spaced timesteps.
|
257 |
+
num_meshes_per_prompt (`int`, *optional*, defaults to 1):
|
258 |
+
The number of meshes to generate per input image.
|
259 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
260 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
261 |
+
Higher guidance scale encourages generation that closely matches the input image.
|
262 |
+
generator (`int`, *optional*):
|
263 |
+
A seed to make the generation deterministic.
|
264 |
+
latents (`torch.FloatTensor`, *optional*):
|
265 |
+
Pre-generated noisy latents to use as inputs for mesh generation.
|
266 |
+
force_remove_background (`bool`, *optional*, defaults to `False`):
|
267 |
+
Whether to force remove the background from the input image before processing.
|
268 |
+
background_color (`List[int]`, *optional*, defaults to `[255, 255, 255]`):
|
269 |
+
RGB color values for the background if it needs to be removed or modified.
|
270 |
+
foreground_ratio (`float`, *optional*, defaults to 0.95):
|
271 |
+
Ratio of the image to consider as foreground when processing.
|
272 |
+
surface_extractor_type (`str`, *optional*, defaults to "mc"):
|
273 |
+
Type of surface extraction method to use ("mc" for Marching Cubes or other available methods).
|
274 |
+
bounds (`float`, *optional*, defaults to 1.05):
|
275 |
+
Bounding box size for the generated mesh.
|
276 |
+
mc_level (`float`, *optional*, defaults to 0.0):
|
277 |
+
Iso-surface level value for Marching Cubes extraction.
|
278 |
+
octree_resolution (`int`, *optional*, defaults to 256):
|
279 |
+
Resolution of the octree used for mesh generation.
|
280 |
+
output_type (`str`, *optional*, defaults to "trimesh"):
|
281 |
+
Type of output mesh format ("trimesh" or other supported formats).
|
282 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
283 |
+
Whether or not to return a `MeshPipelineOutput` instead of a plain tuple.
|
284 |
+
|
285 |
+
Returns:
|
286 |
+
[`MeshPipelineOutput`] or `tuple`:
|
287 |
+
If `return_dict` is `True`, [`MeshPipelineOutput`] is returned, otherwise a `tuple` is returned where the
|
288 |
+
first element is a list of generated meshes and the second element is a list of corresponding metadata.
|
289 |
+
"""
|
290 |
+
# 0. Check inputs. Raise error if not correct
|
291 |
+
self.check_inputs(
|
292 |
+
image=image,
|
293 |
+
)
|
294 |
+
device = self._execution_device
|
295 |
+
self._guidance_scale = guidance_scale
|
296 |
+
|
297 |
+
# 1. Define call parameters
|
298 |
+
if isinstance(image, torch.Tensor):
|
299 |
+
batch_size = image.shape[0]
|
300 |
+
elif isinstance(image, PIL.Image.Image) or isinstance(image, str):
|
301 |
+
batch_size = 1
|
302 |
+
|
303 |
+
# 2. Preprocess input image
|
304 |
+
if isinstance(image, torch.Tensor):
|
305 |
+
assert image.ndim == 3 # H, W, 3
|
306 |
+
image_pil = TF.to_pil_image(image)
|
307 |
+
elif isinstance(image, PIL.Image.Image):
|
308 |
+
image_pil = image
|
309 |
+
elif isinstance(image, str):
|
310 |
+
if image.startswith("http"):
|
311 |
+
import requests
|
312 |
+
|
313 |
+
image_pil = PIL.Image.open(requests.get(image, stream=True).raw)
|
314 |
+
else:
|
315 |
+
image_pil = PIL.Image.open(image)
|
316 |
+
image_pil = preprocess_image(image_pil, force=force_remove_background, background_color=background_color, foreground_ratio=foreground_ratio) # remove the background images
|
317 |
+
|
318 |
+
# 3. Encode condition
|
319 |
+
image_embeds, negative_image_embeds = self.encode_image(
|
320 |
+
image_pil, device, num_meshes_per_prompt
|
321 |
+
)
|
322 |
+
if self.do_classifier_free_guidance and image_embeds is not None:
|
323 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
|
324 |
+
# 3.1 Encode label condition
|
325 |
+
label_embeds = None
|
326 |
+
if self.transformer.cfg.use_label_condition:
|
327 |
+
if label is not None:
|
328 |
+
label_embeds, negative_label_embeds = self.encode_label(
|
329 |
+
label, device, num_meshes_per_prompt
|
330 |
+
)
|
331 |
+
if self.do_classifier_free_guidance:
|
332 |
+
label_embeds = torch.cat(
|
333 |
+
[negative_label_embeds, label_embeds], dim=0
|
334 |
+
)
|
335 |
+
else:
|
336 |
+
uncond_label_embeds = self.label_encoder.empty_label_embeds.repeat(
|
337 |
+
num_meshes_per_prompt, 1, 1
|
338 |
+
).to(image_embeds)
|
339 |
+
if self.do_classifier_free_guidance:
|
340 |
+
label_embeds = torch.cat(
|
341 |
+
[uncond_label_embeds, uncond_label_embeds], dim=0
|
342 |
+
)
|
343 |
+
# 3.3 Encode caption condition
|
344 |
+
caption_embeds = None
|
345 |
+
if self.transformer.cfg.use_caption_condition:
|
346 |
+
if caption is not None:
|
347 |
+
caption_embeds, negative_caption_embeds = self.encode_caption(
|
348 |
+
caption, device, num_meshes_per_prompt
|
349 |
+
)
|
350 |
+
if self.do_classifier_free_guidance:
|
351 |
+
caption_embeds = torch.cat(
|
352 |
+
[negative_caption_embeds, caption_embeds], dim=0
|
353 |
+
)
|
354 |
+
else:
|
355 |
+
uncond_caption_embeds = self.caption_encoder.empty_text_embeds.repeat(
|
356 |
+
num_meshes_per_prompt, 1, 1
|
357 |
+
).to(image_embeds)
|
358 |
+
if self.do_classifier_free_guidance:
|
359 |
+
caption_embeds = torch.cat(
|
360 |
+
[uncond_caption_embeds, uncond_caption_embeds], dim=0
|
361 |
+
)
|
362 |
+
|
363 |
+
# 4. Prepare timesteps
|
364 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
365 |
+
self.scheduler, num_inference_steps, device, timesteps
|
366 |
+
)
|
367 |
+
num_warmup_steps = max(
|
368 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
369 |
+
)
|
370 |
+
self._num_timesteps = len(timesteps)
|
371 |
+
|
372 |
+
# 5. Prepare latent variables
|
373 |
+
num_latents = self.vae.cfg.num_latents
|
374 |
+
num_channels_latents = self.transformer.cfg.input_channels
|
375 |
+
latents = self.prepare_latents(
|
376 |
+
batch_size * num_meshes_per_prompt,
|
377 |
+
num_latents,
|
378 |
+
num_channels_latents,
|
379 |
+
image_embeds.dtype,
|
380 |
+
device,
|
381 |
+
generator,
|
382 |
+
latents,
|
383 |
+
)
|
384 |
+
|
385 |
+
# 6. Denoising loop
|
386 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
387 |
+
for i, t in enumerate(timesteps):
|
388 |
+
# expand the latents if we are doing classifier free guidance
|
389 |
+
latent_model_input = (
|
390 |
+
torch.cat([latents] * 2)
|
391 |
+
if self.do_classifier_free_guidance
|
392 |
+
else latents
|
393 |
+
)
|
394 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
395 |
+
timestep = t.expand(latent_model_input.shape[0])
|
396 |
+
|
397 |
+
noise_pred = self.transformer(
|
398 |
+
latent_model_input,
|
399 |
+
timestep,
|
400 |
+
visual_condition=image_embeds,
|
401 |
+
label_condition=label_embeds,
|
402 |
+
caption_condition=caption_embeds,
|
403 |
+
return_dict=False,
|
404 |
+
)[0]
|
405 |
+
|
406 |
+
# perform guidance
|
407 |
+
if self.do_classifier_free_guidance:
|
408 |
+
noise_pred_uncond, noise_pred_image = noise_pred.chunk(2)
|
409 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
410 |
+
noise_pred_image - noise_pred_uncond
|
411 |
+
)
|
412 |
+
|
413 |
+
if (i <= zero_steps) and use_zero_init:
|
414 |
+
noise_pred = noise_pred * 0.0
|
415 |
+
|
416 |
+
# compute the previous noisy sample x_t -> x_t-1
|
417 |
+
latents_dtype = latents.dtype
|
418 |
+
latents = self.scheduler.step(
|
419 |
+
noise_pred, t, latents, return_dict=False
|
420 |
+
)[0]
|
421 |
+
|
422 |
+
if latents.dtype != latents_dtype:
|
423 |
+
if torch.backends.mps.is_available():
|
424 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
425 |
+
latents = latents.to(latents_dtype)
|
426 |
+
|
427 |
+
if i == len(timesteps) - 1 or (
|
428 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
429 |
+
):
|
430 |
+
progress_bar.update()
|
431 |
+
|
432 |
+
# 4. Post-processing
|
433 |
+
if not output_type == "latent":
|
434 |
+
if latents.dtype == torch.bfloat16:
|
435 |
+
self.vae.to(torch.float16)
|
436 |
+
latents = latents.to(torch.float16)
|
437 |
+
mesh = self.vae.extract_geometry(
|
438 |
+
self.vae.decode(latents),
|
439 |
+
surface_extractor_type=surface_extractor_type,
|
440 |
+
bounds=bounds,
|
441 |
+
mc_level=mc_level,
|
442 |
+
octree_resolution=octree_resolution,
|
443 |
+
enable_pbar=False,
|
444 |
+
)
|
445 |
+
if output_type != "raw":
|
446 |
+
mesh_list = []
|
447 |
+
for i, cur_mesh in enumerate(mesh):
|
448 |
+
print(f"Generating mesh {i+1}/{num_meshes_per_prompt}")
|
449 |
+
if output_type == "trimesh":
|
450 |
+
import trimesh
|
451 |
+
|
452 |
+
cur_mesh = trimesh.Trimesh(
|
453 |
+
vertices=cur_mesh.verts.cpu().numpy(),
|
454 |
+
faces=cur_mesh.faces.cpu().numpy(),
|
455 |
+
)
|
456 |
+
cur_mesh.fix_normals()
|
457 |
+
cur_mesh.face_normals
|
458 |
+
cur_mesh.vertex_normals
|
459 |
+
cur_mesh.visual = trimesh.visual.TextureVisuals(
|
460 |
+
material=trimesh.visual.material.PBRMaterial(
|
461 |
+
baseColorFactor=(255, 255, 255),
|
462 |
+
main_color=(255, 255, 255),
|
463 |
+
metallicFactor=0.05,
|
464 |
+
roughnessFactor=1.0,
|
465 |
+
)
|
466 |
+
)
|
467 |
+
if do_remove_floater:
|
468 |
+
cur_mesh = remove_floater(cur_mesh)
|
469 |
+
if do_remove_degenerate_face:
|
470 |
+
cur_mesh = remove_degenerate_face(cur_mesh)
|
471 |
+
if do_reduce_face and max_facenum > 0:
|
472 |
+
cur_mesh = reduce_face(cur_mesh, max_facenum)
|
473 |
+
if do_shade_smooth:
|
474 |
+
cur_mesh = cur_mesh.smooth_shaded
|
475 |
+
mesh_list.append(cur_mesh)
|
476 |
+
elif output_type == "np":
|
477 |
+
if do_remove_floater:
|
478 |
+
print(
|
479 |
+
'remove floater is NOT used when output_type is "np". '
|
480 |
+
)
|
481 |
+
if do_remove_degenerate_face:
|
482 |
+
print(
|
483 |
+
'remove degenerate face is NOT used when output_type is "np". '
|
484 |
+
)
|
485 |
+
if do_reduce_face:
|
486 |
+
print(
|
487 |
+
'reduce floater is NOT used when output_type is "np". '
|
488 |
+
)
|
489 |
+
if do_shade_smooth:
|
490 |
+
print('shade smooth is NOT used when output_type is "np". ')
|
491 |
+
mesh_list.append(
|
492 |
+
[
|
493 |
+
cur_mesh[0].verts.cpu().numpy(),
|
494 |
+
cur_mesh[0].faces.cpu().numpy(),
|
495 |
+
]
|
496 |
+
)
|
497 |
+
mesh = mesh_list
|
498 |
+
else:
|
499 |
+
if do_remove_floater:
|
500 |
+
print('remove floater is NOT used when output_type is "raw". ')
|
501 |
+
if do_remove_degenerate_face:
|
502 |
+
print(
|
503 |
+
'remove degenerate face is NOT used when output_type is "raw". '
|
504 |
+
)
|
505 |
+
if do_reduce_face:
|
506 |
+
print('reduce floater is NOT used when output_type is "raw". ')
|
507 |
+
|
508 |
+
else:
|
509 |
+
mesh = latents
|
510 |
+
|
511 |
+
if not return_dict:
|
512 |
+
return tuple(image_pil), tuple(mesh)
|
513 |
+
return Step1X3DGeometryPipelineOutput(image=image_pil, mesh=mesh)
|
step1x3d_geometry/models/pipelines/pipeline_utils.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, List, Optional, Union, Dict, Any
|
2 |
+
import os
|
3 |
+
from diffusers.utils import logging
|
4 |
+
import PIL.Image
|
5 |
+
import torch
|
6 |
+
import trimesh
|
7 |
+
import pymeshlab
|
8 |
+
import tempfile
|
9 |
+
from step1x3d_geometry.models.autoencoders.surface_extractors import MeshExtractResult
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
def preprocess_image(
|
15 |
+
images_pil: Union[List[PIL.Image.Image], PIL.Image.Image],
|
16 |
+
force: bool = False,
|
17 |
+
background_color: List[int] = [255, 255, 255],
|
18 |
+
foreground_ratio: float = 0.9,
|
19 |
+
rembg_backend: str = "bria",
|
20 |
+
**rembg_kwargs,
|
21 |
+
):
|
22 |
+
r"""
|
23 |
+
Crop and remote the background of the input image
|
24 |
+
Args:
|
25 |
+
image_pil (`List[PIL.Image.Image]`):
|
26 |
+
List of `PIL.Image.Image` objects representing the input image.
|
27 |
+
force (`bool`, *optional*, defaults to `False`):
|
28 |
+
Whether to force remove the background even if the image has an alpha channel.
|
29 |
+
Returns:
|
30 |
+
`List[PIL.Image.Image]`: List of `PIL.Image.Image` objects representing the preprocessed image.
|
31 |
+
"""
|
32 |
+
is_single_image = False
|
33 |
+
if isinstance(images_pil, PIL.Image.Image):
|
34 |
+
images_pil = [images_pil]
|
35 |
+
is_single_image = True
|
36 |
+
preprocessed_images = []
|
37 |
+
for i in range(len(images_pil)):
|
38 |
+
image = images_pil[i]
|
39 |
+
width, height, size = image.width, image.height, image.size
|
40 |
+
do_remove = True
|
41 |
+
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
42 |
+
# explain why current do not rm bg
|
43 |
+
print(
|
44 |
+
"alhpa channl not empty, skip remove background, using alpha channel as mask"
|
45 |
+
)
|
46 |
+
do_remove = False
|
47 |
+
do_remove = do_remove or force
|
48 |
+
if do_remove:
|
49 |
+
import rembg # lazy import
|
50 |
+
|
51 |
+
if rembg_backend == "default":
|
52 |
+
image = rembg.remove(image, **rembg_kwargs)
|
53 |
+
else:
|
54 |
+
image = rembg.remove(
|
55 |
+
image,
|
56 |
+
session=rembg.new_session(
|
57 |
+
model_name="bria",
|
58 |
+
providers=[
|
59 |
+
(
|
60 |
+
"CUDAExecutionProvider",
|
61 |
+
{
|
62 |
+
"device_id": 0,
|
63 |
+
"arena_extend_strategy": "kSameAsRequested",
|
64 |
+
"gpu_mem_limit": 6 * 1024 * 1024 * 1024,
|
65 |
+
"cudnn_conv_algo_search": "HEURISTIC",
|
66 |
+
},
|
67 |
+
),
|
68 |
+
"CPUExecutionProvider",
|
69 |
+
],
|
70 |
+
),
|
71 |
+
**rembg_kwargs,
|
72 |
+
)
|
73 |
+
|
74 |
+
# calculate the min bbox of the image
|
75 |
+
alpha = image.split()[-1]
|
76 |
+
bboxs = alpha.getbbox()
|
77 |
+
x1, y1, x2, y2 = bboxs
|
78 |
+
dy, dx = y2 - y1, x2 - x1
|
79 |
+
s = min(height * foreground_ratio / dy, width * foreground_ratio / dx)
|
80 |
+
Ht, Wt = int(dy * s), int(dx * s)
|
81 |
+
|
82 |
+
background = PIL.Image.new("RGBA", image.size, (*background_color, 255))
|
83 |
+
image = PIL.Image.alpha_composite(background, image)
|
84 |
+
image = image.crop(alpha.getbbox())
|
85 |
+
alpha = alpha.crop(alpha.getbbox())
|
86 |
+
|
87 |
+
# Calculate the new size after rescaling
|
88 |
+
new_size = tuple(int(dim * foreground_ratio) for dim in size)
|
89 |
+
# Resize the image while maintaining the aspect ratio
|
90 |
+
resized_image = image.resize((Wt, Ht))
|
91 |
+
resized_alpha = alpha.resize((Wt, Ht))
|
92 |
+
# Create a new image with the original size and white background
|
93 |
+
padded_image = PIL.Image.new("RGB", size, tuple(background_color))
|
94 |
+
padded_alpha = PIL.Image.new("L", size, (0))
|
95 |
+
paste_position = (
|
96 |
+
(width - resized_image.width) // 2,
|
97 |
+
(height - resized_image.height) // 2,
|
98 |
+
)
|
99 |
+
padded_image.paste(resized_image, paste_position)
|
100 |
+
padded_alpha.paste(resized_alpha, paste_position)
|
101 |
+
|
102 |
+
# expand image to 1:1
|
103 |
+
width, height = padded_image.size
|
104 |
+
if width == height:
|
105 |
+
padded_image.putalpha(padded_alpha)
|
106 |
+
preprocessed_images.append(padded_image)
|
107 |
+
continue
|
108 |
+
new_size = (max(width, height), max(width, height))
|
109 |
+
new_image = PIL.Image.new("RGB", new_size, tuple(background_color))
|
110 |
+
new_alpha = PIL.Image.new("L", new_size, (0))
|
111 |
+
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
|
112 |
+
new_image.paste(padded_image, paste_position)
|
113 |
+
new_alpha.paste(padded_alpha, paste_position)
|
114 |
+
new_image.putalpha(new_alpha)
|
115 |
+
preprocessed_images.append(new_image)
|
116 |
+
|
117 |
+
if is_single_image:
|
118 |
+
return preprocessed_images[0]
|
119 |
+
return preprocessed_images
|
120 |
+
|
121 |
+
|
122 |
+
def load_mesh(path):
|
123 |
+
if path.endswith(".glb"):
|
124 |
+
mesh = trimesh.load(path)
|
125 |
+
else:
|
126 |
+
mesh = pymeshlab.MeshSet()
|
127 |
+
mesh.load_new_mesh(path)
|
128 |
+
return mesh
|
129 |
+
|
130 |
+
|
131 |
+
def trimesh2pymeshlab(mesh: trimesh.Trimesh):
|
132 |
+
with tempfile.NamedTemporaryFile(suffix=".ply", delete=False) as temp_file:
|
133 |
+
if isinstance(mesh, trimesh.scene.Scene):
|
134 |
+
for idx, obj in enumerate(mesh.geometry.values()):
|
135 |
+
if idx == 0:
|
136 |
+
temp_mesh = obj
|
137 |
+
else:
|
138 |
+
temp_mesh = temp_mesh + obj
|
139 |
+
mesh = temp_mesh
|
140 |
+
mesh.export(temp_file.name)
|
141 |
+
mesh = pymeshlab.MeshSet()
|
142 |
+
mesh.load_new_mesh(temp_file.name)
|
143 |
+
return mesh
|
144 |
+
|
145 |
+
|
146 |
+
def pymeshlab2trimesh(mesh: pymeshlab.MeshSet):
|
147 |
+
with tempfile.NamedTemporaryFile(suffix=".ply", delete=False) as temp_file:
|
148 |
+
mesh.save_current_mesh(temp_file.name)
|
149 |
+
mesh = trimesh.load(temp_file.name)
|
150 |
+
if isinstance(mesh, trimesh.Scene):
|
151 |
+
combined_mesh = trimesh.Trimesh()
|
152 |
+
for geom in mesh.geometry.values():
|
153 |
+
combined_mesh = trimesh.util.concatenate([combined_mesh, geom])
|
154 |
+
mesh = combined_mesh
|
155 |
+
return mesh
|
156 |
+
|
157 |
+
|
158 |
+
def import_mesh(mesh):
|
159 |
+
mesh_type = type(mesh)
|
160 |
+
if isinstance(mesh, str):
|
161 |
+
mesh = load_mesh(mesh)
|
162 |
+
elif isinstance(mesh, MeshExtractResult):
|
163 |
+
mesh = pymeshlab.MeshSet()
|
164 |
+
mesh_pymeshlab = pymeshlab.Mesh(
|
165 |
+
vertex_matrix=mesh.verts.cpu().numpy(), face_matrix=mesh.faces.cpu().numpy()
|
166 |
+
)
|
167 |
+
mesh.add_mesh(mesh_pymeshlab, "converted_mesh")
|
168 |
+
|
169 |
+
if isinstance(mesh, (trimesh.Trimesh, trimesh.scene.Scene)):
|
170 |
+
mesh = trimesh2pymeshlab(mesh)
|
171 |
+
|
172 |
+
return mesh, mesh_type
|
173 |
+
|
174 |
+
|
175 |
+
def remove_floater(mesh):
|
176 |
+
mesh, mesh_type = import_mesh(mesh)
|
177 |
+
|
178 |
+
mesh.apply_filter(
|
179 |
+
"compute_selection_by_small_disconnected_components_per_face", nbfaceratio=0.001
|
180 |
+
)
|
181 |
+
mesh.apply_filter("compute_selection_transfer_face_to_vertex", inclusive=False)
|
182 |
+
mesh.apply_filter("meshing_remove_selected_vertices_and_faces")
|
183 |
+
|
184 |
+
return pymeshlab2trimesh(mesh)
|
185 |
+
|
186 |
+
|
187 |
+
def remove_degenerate_face(mesh):
|
188 |
+
mesh, mesh_type = import_mesh(mesh)
|
189 |
+
|
190 |
+
with tempfile.NamedTemporaryFile(suffix=".ply", delete=False) as temp_file:
|
191 |
+
mesh.save_current_mesh(temp_file.name)
|
192 |
+
mesh = pymeshlab.MeshSet()
|
193 |
+
mesh.load_new_mesh(temp_file.name)
|
194 |
+
|
195 |
+
return pymeshlab2trimesh(mesh)
|
196 |
+
|
197 |
+
|
198 |
+
def reduce_face(mesh, max_facenum=50000):
|
199 |
+
mesh, mesh_type = import_mesh(mesh)
|
200 |
+
|
201 |
+
if max_facenum > mesh.current_mesh().face_number():
|
202 |
+
return pymeshlab2trimesh(mesh)
|
203 |
+
|
204 |
+
mesh.apply_filter(
|
205 |
+
"meshing_decimation_quadric_edge_collapse",
|
206 |
+
targetfacenum=max_facenum,
|
207 |
+
qualitythr=1.0,
|
208 |
+
preserveboundary=True,
|
209 |
+
boundaryweight=3,
|
210 |
+
preservenormal=True,
|
211 |
+
preservetopology=True,
|
212 |
+
autoclean=True,
|
213 |
+
)
|
214 |
+
|
215 |
+
return pymeshlab2trimesh(mesh)
|
216 |
+
|
217 |
+
|
218 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
219 |
+
def retrieve_timesteps(
|
220 |
+
scheduler,
|
221 |
+
num_inference_steps: Optional[int] = None,
|
222 |
+
device: Optional[Union[str, torch.device]] = None,
|
223 |
+
timesteps: Optional[List[int]] = None,
|
224 |
+
sigmas: Optional[List[float]] = None,
|
225 |
+
**kwargs,
|
226 |
+
):
|
227 |
+
r"""
|
228 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
229 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
230 |
+
|
231 |
+
Args:
|
232 |
+
scheduler (`SchedulerMixin`):
|
233 |
+
The scheduler to get timesteps from.
|
234 |
+
num_inference_steps (`int`):
|
235 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
236 |
+
must be `None`.
|
237 |
+
device (`str` or `torch.device`, *optional*):
|
238 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
239 |
+
timesteps (`List[int]`, *optional*):
|
240 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
241 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
242 |
+
sigmas (`List[float]`, *optional*):
|
243 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
244 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
245 |
+
|
246 |
+
Returns:
|
247 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
248 |
+
second element is the number of inference steps.
|
249 |
+
"""
|
250 |
+
if timesteps is not None and sigmas is not None:
|
251 |
+
raise ValueError(
|
252 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
253 |
+
)
|
254 |
+
if timesteps is not None:
|
255 |
+
accepts_timesteps = "timesteps" in set(
|
256 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
257 |
+
)
|
258 |
+
if not accepts_timesteps:
|
259 |
+
raise ValueError(
|
260 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
261 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
262 |
+
)
|
263 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
264 |
+
timesteps = scheduler.timesteps
|
265 |
+
num_inference_steps = len(timesteps)
|
266 |
+
elif sigmas is not None:
|
267 |
+
accept_sigmas = "sigmas" in set(
|
268 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
269 |
+
)
|
270 |
+
if not accept_sigmas:
|
271 |
+
raise ValueError(
|
272 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
273 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
274 |
+
)
|
275 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
276 |
+
timesteps = scheduler.timesteps
|
277 |
+
num_inference_steps = len(timesteps)
|
278 |
+
else:
|
279 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
280 |
+
timesteps = scheduler.timesteps
|
281 |
+
return timesteps, num_inference_steps
|
282 |
+
|
283 |
+
|
284 |
+
class TransformerDiffusionMixin:
|
285 |
+
r"""
|
286 |
+
Helper for DiffusionPipeline with vae and transformer.(mainly for DIT)
|
287 |
+
"""
|
288 |
+
|
289 |
+
def enable_vae_slicing(self):
|
290 |
+
r"""
|
291 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
292 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
293 |
+
"""
|
294 |
+
self.vae.enable_slicing()
|
295 |
+
|
296 |
+
def disable_vae_slicing(self):
|
297 |
+
r"""
|
298 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
299 |
+
computing decoding in one step.
|
300 |
+
"""
|
301 |
+
self.vae.disable_slicing()
|
302 |
+
|
303 |
+
def enable_vae_tiling(self):
|
304 |
+
r"""
|
305 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
306 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
307 |
+
processing larger images.
|
308 |
+
"""
|
309 |
+
self.vae.enable_tiling()
|
310 |
+
|
311 |
+
def disable_vae_tiling(self):
|
312 |
+
r"""
|
313 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
314 |
+
computing decoding in one step.
|
315 |
+
"""
|
316 |
+
self.vae.disable_tiling()
|
317 |
+
|
318 |
+
def fuse_qkv_projections(self, transformer: bool = True, vae: bool = True):
|
319 |
+
"""
|
320 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
321 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
322 |
+
|
323 |
+
<Tip warning={true}>
|
324 |
+
|
325 |
+
This API is 🧪 experimental.
|
326 |
+
|
327 |
+
</Tip>
|
328 |
+
|
329 |
+
Args:
|
330 |
+
transformer (`bool`, defaults to `True`): To apply fusion on the Transformer.
|
331 |
+
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
332 |
+
"""
|
333 |
+
self.fusing_transformer = False
|
334 |
+
self.fusing_vae = False
|
335 |
+
|
336 |
+
if transformer:
|
337 |
+
self.fusing_transformer = True
|
338 |
+
self.transformer.fuse_qkv_projections()
|
339 |
+
|
340 |
+
if vae:
|
341 |
+
self.fusing_vae = True
|
342 |
+
self.vae.fuse_qkv_projections()
|
343 |
+
|
344 |
+
def unfuse_qkv_projections(self, transformer: bool = True, vae: bool = True):
|
345 |
+
"""Disable QKV projection fusion if enabled.
|
346 |
+
|
347 |
+
<Tip warning={true}>
|
348 |
+
|
349 |
+
This API is 🧪 experimental.
|
350 |
+
|
351 |
+
</Tip>
|
352 |
+
|
353 |
+
Args:
|
354 |
+
transformer (`bool`, defaults to `True`): To apply fusion on the Transformer.
|
355 |
+
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
356 |
+
|
357 |
+
"""
|
358 |
+
if transformer:
|
359 |
+
if not self.fusing_transformer:
|
360 |
+
logger.warning(
|
361 |
+
"The UNet was not initially fused for QKV projections. Doing nothing."
|
362 |
+
)
|
363 |
+
else:
|
364 |
+
self.transformer.unfuse_qkv_projections()
|
365 |
+
self.fusing_transformer = False
|
366 |
+
|
367 |
+
if vae:
|
368 |
+
if not self.fusing_vae:
|
369 |
+
logger.warning(
|
370 |
+
"The VAE was not initially fused for QKV projections. Doing nothing."
|
371 |
+
)
|
372 |
+
else:
|
373 |
+
self.vae.unfuse_qkv_projections()
|
374 |
+
self.fusing_vae = False
|
375 |
+
|
376 |
+
def try_download(model_id, subfolder):
|
377 |
+
try:
|
378 |
+
from huggingface_hub import snapshot_download
|
379 |
+
|
380 |
+
path = snapshot_download(
|
381 |
+
repo_id=model_id,
|
382 |
+
allow_patterns=[f"{subfolder}/*"],
|
383 |
+
)
|
384 |
+
print(path)
|
385 |
+
model_path = os.path.join(path, subfolder)
|
386 |
+
return model_path
|
387 |
+
except Exception as e:
|
388 |
+
raise e
|
389 |
+
|
390 |
+
|
391 |
+
def smart_load_model(model_path, subfolder = ""):
|
392 |
+
if subfolder == "":
|
393 |
+
if os.path.exists(model_path):
|
394 |
+
return model_path
|
395 |
+
else:
|
396 |
+
return try_download(model_path, '.')
|
397 |
+
else:
|
398 |
+
if os.path.exists(os.path.join(model_path, subfolder)):
|
399 |
+
return os.path.join(model_path, subfolder)
|
400 |
+
else:
|
401 |
+
return try_download(model_path, subfolder)
|
402 |
+
|
403 |
+
|
404 |
+
|
step1x3d_geometry/models/transformers/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from . import flux_transformer_1d, pixart_transformer_1d
|
step1x3d_geometry/models/transformers/flux_transformer_1d.py
ADDED
@@ -0,0 +1,600 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Some parts of this file are adapted from Hugging Face Diffusers library.
|
2 |
+
from typing import Any, Dict, Optional, Union, Tuple
|
3 |
+
from dataclasses import dataclass
|
4 |
+
|
5 |
+
import re
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
+
from diffusers.loaders import PeftAdapterMixin
|
11 |
+
from diffusers.models.attention_processor import (
|
12 |
+
Attention,
|
13 |
+
AttentionProcessor,
|
14 |
+
AttnProcessor,
|
15 |
+
)
|
16 |
+
from diffusers.models.modeling_utils import ModelMixin
|
17 |
+
from diffusers.models.embeddings import (
|
18 |
+
GaussianFourierProjection,
|
19 |
+
TimestepEmbedding,
|
20 |
+
Timesteps,
|
21 |
+
)
|
22 |
+
from diffusers.utils import (
|
23 |
+
USE_PEFT_BACKEND,
|
24 |
+
is_torch_version,
|
25 |
+
logging,
|
26 |
+
scale_lora_layers,
|
27 |
+
unscale_lora_layers,
|
28 |
+
)
|
29 |
+
from diffusers.models.normalization import (
|
30 |
+
AdaLayerNormSingle,
|
31 |
+
AdaLayerNormContinuous,
|
32 |
+
FP32LayerNorm,
|
33 |
+
LayerNorm,
|
34 |
+
)
|
35 |
+
|
36 |
+
from ..attention_processor import FusedFluxAttnProcessor2_0, FluxAttnProcessor2_0
|
37 |
+
from ..attention import FluxTransformerBlock, FluxSingleTransformerBlock
|
38 |
+
|
39 |
+
import step1x3d_geometry
|
40 |
+
from step1x3d_geometry.utils.base import BaseModule
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
43 |
+
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
class Transformer1DModelOutput:
|
47 |
+
sample: torch.FloatTensor
|
48 |
+
|
49 |
+
|
50 |
+
class FluxTransformer1DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
51 |
+
r"""
|
52 |
+
The Transformer model introduced in Flux.
|
53 |
+
|
54 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-la
|
55 |
+
|
56 |
+
Parameters:
|
57 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
58 |
+
The number of heads to use for multi-head attention.
|
59 |
+
width (`int`, *optional*, defaults to 2048):
|
60 |
+
Maximum sequence length in latent space (equivalent to max_seq_length in Transformers).
|
61 |
+
Determines the first dimension size of positional embedding matrices[1](@ref).
|
62 |
+
in_channels (`int`, *optional*, defaults to 64):
|
63 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
64 |
+
num_layers (`int`, *optional*, defaults to 1):
|
65 |
+
The number of layers of Transformer blocks to use.
|
66 |
+
cross_attention_dim (`int`, *optional*):
|
67 |
+
Dimensionality of conditional embeddings for cross-attention mechanisms
|
68 |
+
"""
|
69 |
+
|
70 |
+
_supports_gradient_checkpointing = True
|
71 |
+
_no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
|
72 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
73 |
+
|
74 |
+
@register_to_config
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
num_attention_heads: int = 16,
|
78 |
+
width: int = 2048,
|
79 |
+
in_channels: int = 4,
|
80 |
+
num_layers: int = 19,
|
81 |
+
num_single_layers: int = 38,
|
82 |
+
cross_attention_dim: int = 768,
|
83 |
+
):
|
84 |
+
super().__init__()
|
85 |
+
# Set some common variables used across the board.
|
86 |
+
self.out_channels = in_channels
|
87 |
+
self.num_heads = num_attention_heads
|
88 |
+
self.inner_dim = width
|
89 |
+
|
90 |
+
# self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
91 |
+
# self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim)
|
92 |
+
time_embed_dim, timestep_input_dim = self._set_time_proj(
|
93 |
+
"positional",
|
94 |
+
inner_dim=self.inner_dim,
|
95 |
+
flip_sin_to_cos=False,
|
96 |
+
freq_shift=0,
|
97 |
+
time_embedding_dim=None,
|
98 |
+
)
|
99 |
+
self.time_proj = TimestepEmbedding(
|
100 |
+
timestep_input_dim, time_embed_dim, act_fn="gelu", out_dim=self.inner_dim
|
101 |
+
)
|
102 |
+
self.proj_in = nn.Linear(self.config.in_channels, self.inner_dim, bias=True)
|
103 |
+
self.proj_cross_attention = nn.Linear(
|
104 |
+
self.config.cross_attention_dim, self.inner_dim, bias=True
|
105 |
+
)
|
106 |
+
|
107 |
+
# 2. Initialize the transformer blocks.
|
108 |
+
self.transformer_blocks = nn.ModuleList(
|
109 |
+
[
|
110 |
+
FluxTransformerBlock(
|
111 |
+
dim=self.inner_dim,
|
112 |
+
num_attention_heads=num_attention_heads,
|
113 |
+
attention_head_dim=width // num_attention_heads,
|
114 |
+
)
|
115 |
+
for _ in range(self.config.num_layers)
|
116 |
+
]
|
117 |
+
)
|
118 |
+
self.single_transformer_blocks = nn.ModuleList(
|
119 |
+
[
|
120 |
+
FluxSingleTransformerBlock(
|
121 |
+
dim=self.inner_dim,
|
122 |
+
num_attention_heads=num_attention_heads,
|
123 |
+
attention_head_dim=width // num_attention_heads,
|
124 |
+
)
|
125 |
+
for _ in range(self.config.num_single_layers)
|
126 |
+
]
|
127 |
+
)
|
128 |
+
|
129 |
+
# 3. Output blocks.
|
130 |
+
self.norm_out = AdaLayerNormContinuous(
|
131 |
+
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
|
132 |
+
)
|
133 |
+
self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=True)
|
134 |
+
|
135 |
+
self.gradient_checkpointing = False
|
136 |
+
|
137 |
+
def _set_time_proj(
|
138 |
+
self,
|
139 |
+
time_embedding_type: str,
|
140 |
+
inner_dim: int,
|
141 |
+
flip_sin_to_cos: bool,
|
142 |
+
freq_shift: float,
|
143 |
+
time_embedding_dim: int,
|
144 |
+
) -> Tuple[int, int]:
|
145 |
+
if time_embedding_type == "fourier":
|
146 |
+
time_embed_dim = time_embedding_dim or inner_dim * 2
|
147 |
+
if time_embed_dim % 2 != 0:
|
148 |
+
raise ValueError(
|
149 |
+
f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}."
|
150 |
+
)
|
151 |
+
self.time_embed = GaussianFourierProjection(
|
152 |
+
time_embed_dim // 2,
|
153 |
+
set_W_to_weight=False,
|
154 |
+
log=False,
|
155 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
156 |
+
)
|
157 |
+
timestep_input_dim = time_embed_dim
|
158 |
+
elif time_embedding_type == "positional":
|
159 |
+
time_embed_dim = time_embedding_dim or inner_dim * 4
|
160 |
+
|
161 |
+
self.time_embed = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
|
162 |
+
timestep_input_dim = inner_dim
|
163 |
+
else:
|
164 |
+
raise ValueError(
|
165 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
166 |
+
)
|
167 |
+
|
168 |
+
return time_embed_dim, timestep_input_dim
|
169 |
+
|
170 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
171 |
+
def fuse_qkv_projections(self):
|
172 |
+
"""
|
173 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
174 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
175 |
+
|
176 |
+
<Tip warning={true}>
|
177 |
+
|
178 |
+
This API is 🧪 experimental.
|
179 |
+
|
180 |
+
</Tip>
|
181 |
+
"""
|
182 |
+
self.original_attn_processors = None
|
183 |
+
|
184 |
+
for _, attn_processor in self.attn_processors.items():
|
185 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
186 |
+
raise ValueError(
|
187 |
+
"`fuse_qkv_projections()` is not supported for models having added KV projections."
|
188 |
+
)
|
189 |
+
|
190 |
+
self.original_attn_processors = self.attn_processors
|
191 |
+
|
192 |
+
for module in self.modules():
|
193 |
+
if isinstance(module, Attention):
|
194 |
+
module.fuse_projections(fuse=True)
|
195 |
+
|
196 |
+
self.set_attn_processor(FusedFluxAttnProcessor2_0())
|
197 |
+
|
198 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
199 |
+
def unfuse_qkv_projections(self):
|
200 |
+
"""Disables the fused QKV projection if enabled.
|
201 |
+
|
202 |
+
<Tip warning={true}>
|
203 |
+
|
204 |
+
This API is 🧪 experimental.
|
205 |
+
|
206 |
+
</Tip>
|
207 |
+
|
208 |
+
"""
|
209 |
+
if self.original_attn_processors is not None:
|
210 |
+
self.set_attn_processor(self.original_attn_processors)
|
211 |
+
|
212 |
+
@property
|
213 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
214 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
215 |
+
r"""
|
216 |
+
Returns:
|
217 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
218 |
+
indexed by its weight name.
|
219 |
+
"""
|
220 |
+
# set recursively
|
221 |
+
processors = {}
|
222 |
+
|
223 |
+
def fn_recursive_add_processors(
|
224 |
+
name: str,
|
225 |
+
module: torch.nn.Module,
|
226 |
+
processors: Dict[str, AttentionProcessor],
|
227 |
+
):
|
228 |
+
if hasattr(module, "get_processor"):
|
229 |
+
processors[f"{name}.processor"] = module.get_processor()
|
230 |
+
|
231 |
+
for sub_name, child in module.named_children():
|
232 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
233 |
+
|
234 |
+
return processors
|
235 |
+
|
236 |
+
for name, module in self.named_children():
|
237 |
+
fn_recursive_add_processors(name, module, processors)
|
238 |
+
|
239 |
+
return processors
|
240 |
+
|
241 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
242 |
+
def set_attn_processor(
|
243 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
|
244 |
+
):
|
245 |
+
r"""
|
246 |
+
Sets the attention processor to use to compute attention.
|
247 |
+
|
248 |
+
Parameters:
|
249 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
250 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
251 |
+
for **all** `Attention` layers.
|
252 |
+
|
253 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
254 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
255 |
+
|
256 |
+
"""
|
257 |
+
count = len(self.attn_processors.keys())
|
258 |
+
|
259 |
+
if isinstance(processor, dict) and len(processor) != count:
|
260 |
+
raise ValueError(
|
261 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
262 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
263 |
+
)
|
264 |
+
|
265 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
266 |
+
if hasattr(module, "set_processor"):
|
267 |
+
if not isinstance(processor, dict):
|
268 |
+
module.set_processor(processor)
|
269 |
+
else:
|
270 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
271 |
+
|
272 |
+
for sub_name, child in module.named_children():
|
273 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
274 |
+
|
275 |
+
for name, module in self.named_children():
|
276 |
+
fn_recursive_attn_processor(name, module, processor)
|
277 |
+
|
278 |
+
def set_default_attn_processor(self):
|
279 |
+
"""
|
280 |
+
Disables custom attention processors and sets the default attention implementation.
|
281 |
+
"""
|
282 |
+
self.set_attn_processor(FluxAttnProcessor2_0())
|
283 |
+
|
284 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
285 |
+
def enable_forward_chunking(
|
286 |
+
self, chunk_size: Optional[int] = None, dim: int = 0
|
287 |
+
) -> None:
|
288 |
+
"""
|
289 |
+
Sets the attention processor to use [feed forward
|
290 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
291 |
+
|
292 |
+
Parameters:
|
293 |
+
chunk_size (`int`, *optional*):
|
294 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
295 |
+
over each tensor of dim=`dim`.
|
296 |
+
dim (`int`, *optional*, defaults to `0`):
|
297 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
298 |
+
or dim=1 (sequence length).
|
299 |
+
"""
|
300 |
+
if dim not in [0, 1]:
|
301 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
302 |
+
|
303 |
+
# By default chunk size is 1
|
304 |
+
chunk_size = chunk_size or 1
|
305 |
+
|
306 |
+
def fn_recursive_feed_forward(
|
307 |
+
module: torch.nn.Module, chunk_size: int, dim: int
|
308 |
+
):
|
309 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
310 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
311 |
+
|
312 |
+
for child in module.children():
|
313 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
314 |
+
|
315 |
+
for module in self.children():
|
316 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
317 |
+
|
318 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
|
319 |
+
def disable_forward_chunking(self):
|
320 |
+
def fn_recursive_feed_forward(
|
321 |
+
module: torch.nn.Module, chunk_size: int, dim: int
|
322 |
+
):
|
323 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
324 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
325 |
+
|
326 |
+
for child in module.children():
|
327 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
328 |
+
|
329 |
+
for module in self.children():
|
330 |
+
fn_recursive_feed_forward(module, None, 0)
|
331 |
+
|
332 |
+
def forward(
|
333 |
+
self,
|
334 |
+
hidden_states: Optional[torch.Tensor],
|
335 |
+
timestep: Union[int, float, torch.LongTensor],
|
336 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
337 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
338 |
+
return_dict: bool = True,
|
339 |
+
):
|
340 |
+
"""
|
341 |
+
The [`HunyuanDiT2DModel`] forward method.
|
342 |
+
|
343 |
+
Args:
|
344 |
+
hidden_states (`torch.Tensor` of shape `(batch size, dim, latents_size)`):
|
345 |
+
The input tensor.
|
346 |
+
timestep ( `torch.LongTensor`, *optional*):
|
347 |
+
Used to indicate denoising step.
|
348 |
+
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
349 |
+
Conditional embeddings for cross attention layer.
|
350 |
+
encoder_hidden_states_2 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
351 |
+
Conditional embeddings for cross attention layer.
|
352 |
+
return_dict: bool
|
353 |
+
Whether to return a dictionary.
|
354 |
+
"""
|
355 |
+
|
356 |
+
if attention_kwargs is not None:
|
357 |
+
attention_kwargs = attention_kwargs.copy()
|
358 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
359 |
+
else:
|
360 |
+
lora_scale = 1.0
|
361 |
+
|
362 |
+
if USE_PEFT_BACKEND:
|
363 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
364 |
+
scale_lora_layers(self, lora_scale)
|
365 |
+
else:
|
366 |
+
if (
|
367 |
+
attention_kwargs is not None
|
368 |
+
and attention_kwargs.get("scale", None) is not None
|
369 |
+
):
|
370 |
+
logger.warning(
|
371 |
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
372 |
+
)
|
373 |
+
|
374 |
+
_, N, _ = hidden_states.shape
|
375 |
+
|
376 |
+
# import pdb; pdb.set_trace()
|
377 |
+
# timesteps_proj = self.time_proj(timestep) # N x 256
|
378 |
+
# temb = self.time_embed(timesteps_proj).to(hidden_states.dtype)
|
379 |
+
temb = self.time_embed(timestep).to(hidden_states.dtype) # N x 1280
|
380 |
+
temb = self.time_proj(temb) # N x 1280
|
381 |
+
|
382 |
+
hidden_states = self.proj_in(hidden_states)
|
383 |
+
encoder_hidden_states = self.proj_cross_attention(encoder_hidden_states)
|
384 |
+
|
385 |
+
for layer, block in enumerate(self.transformer_blocks):
|
386 |
+
if self.training and self.gradient_checkpointing:
|
387 |
+
|
388 |
+
def create_custom_forward(module):
|
389 |
+
def custom_forward(*inputs):
|
390 |
+
return module(*inputs)
|
391 |
+
|
392 |
+
return custom_forward
|
393 |
+
|
394 |
+
ckpt_kwargs: Dict[str, Any] = (
|
395 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
396 |
+
)
|
397 |
+
encoder_hidden_states, hidden_states = (
|
398 |
+
torch.utils.checkpoint.checkpoint(
|
399 |
+
create_custom_forward(block),
|
400 |
+
hidden_states,
|
401 |
+
encoder_hidden_states,
|
402 |
+
temb,
|
403 |
+
None, # image_rotary_emb
|
404 |
+
attention_kwargs,
|
405 |
+
)
|
406 |
+
)
|
407 |
+
else:
|
408 |
+
encoder_hidden_states, hidden_states = block(
|
409 |
+
hidden_states,
|
410 |
+
encoder_hidden_states=encoder_hidden_states,
|
411 |
+
temb=temb,
|
412 |
+
image_rotary_emb=None,
|
413 |
+
joint_attention_kwargs=attention_kwargs,
|
414 |
+
) # (N, L, D)
|
415 |
+
|
416 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
417 |
+
|
418 |
+
for layer, block in enumerate(self.single_transformer_blocks):
|
419 |
+
if self.training and self.gradient_checkpointing:
|
420 |
+
|
421 |
+
def create_custom_forward(module):
|
422 |
+
def custom_forward(*inputs):
|
423 |
+
return module(*inputs)
|
424 |
+
|
425 |
+
return custom_forward
|
426 |
+
|
427 |
+
ckpt_kwargs: Dict[str, Any] = (
|
428 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
429 |
+
)
|
430 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
431 |
+
create_custom_forward(block),
|
432 |
+
hidden_states,
|
433 |
+
temb,
|
434 |
+
None, # image_rotary_emb
|
435 |
+
attention_kwargs,
|
436 |
+
)
|
437 |
+
else:
|
438 |
+
hidden_states = block(
|
439 |
+
hidden_states,
|
440 |
+
temb=temb,
|
441 |
+
image_rotary_emb=None,
|
442 |
+
joint_attention_kwargs=attention_kwargs,
|
443 |
+
) # (N, L, D)
|
444 |
+
|
445 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
446 |
+
|
447 |
+
# final layer
|
448 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
449 |
+
hidden_states = self.proj_out(hidden_states)
|
450 |
+
|
451 |
+
if USE_PEFT_BACKEND:
|
452 |
+
# remove `lora_scale` from each PEFT layer
|
453 |
+
unscale_lora_layers(self, lora_scale)
|
454 |
+
|
455 |
+
if not return_dict:
|
456 |
+
return (hidden_states,)
|
457 |
+
|
458 |
+
return Transformer1DModelOutput(sample=hidden_states)
|
459 |
+
|
460 |
+
|
461 |
+
@step1x3d_geometry.register("flux-denoiser")
|
462 |
+
class FluxDenoiser(BaseModule):
|
463 |
+
@dataclass
|
464 |
+
class Config(BaseModule.Config):
|
465 |
+
pretrained_model_name_or_path: Optional[str] = None
|
466 |
+
input_channels: int = 32
|
467 |
+
width: int = 768
|
468 |
+
layers: int = 12
|
469 |
+
num_single_layers: int = 12
|
470 |
+
num_heads: int = 16
|
471 |
+
condition_dim: int = 1024
|
472 |
+
multi_condition_type: str = "in_context"
|
473 |
+
use_visual_condition: bool = False
|
474 |
+
visual_condition_dim: int = 1024
|
475 |
+
n_views: int = 1
|
476 |
+
use_caption_condition: bool = False
|
477 |
+
caption_condition_dim: int = 1024
|
478 |
+
use_label_condition: bool = False
|
479 |
+
label_condition_dim: int = 1024
|
480 |
+
|
481 |
+
identity_init: bool = False
|
482 |
+
|
483 |
+
cfg: Config
|
484 |
+
|
485 |
+
def configure(self) -> None:
|
486 |
+
assert (
|
487 |
+
self.cfg.multi_condition_type == "in_context"
|
488 |
+
), "Flux Denoiser only support in_context learning of multiple conditions"
|
489 |
+
self.dit_model = FluxTransformer1DModel(
|
490 |
+
num_attention_heads=self.cfg.num_heads,
|
491 |
+
width=self.cfg.width,
|
492 |
+
in_channels=self.cfg.input_channels,
|
493 |
+
num_layers=self.cfg.layers,
|
494 |
+
num_single_layers=self.cfg.num_single_layers,
|
495 |
+
cross_attention_dim=self.cfg.condition_dim,
|
496 |
+
)
|
497 |
+
if (
|
498 |
+
self.cfg.use_visual_condition
|
499 |
+
and self.cfg.visual_condition_dim != self.cfg.condition_dim
|
500 |
+
):
|
501 |
+
self.proj_visual_condtion = nn.Sequential(
|
502 |
+
nn.RMSNorm(self.cfg.visual_condition_dim),
|
503 |
+
nn.Linear(self.cfg.visual_condition_dim, self.cfg.condition_dim),
|
504 |
+
)
|
505 |
+
if (
|
506 |
+
self.cfg.use_caption_condition
|
507 |
+
and self.cfg.caption_condition_dim != self.cfg.condition_dim
|
508 |
+
):
|
509 |
+
self.proj_caption_condtion = nn.Sequential(
|
510 |
+
nn.RMSNorm(self.cfg.caption_condition_dim),
|
511 |
+
nn.Linear(self.cfg.caption_condition_dim, self.cfg.condition_dim),
|
512 |
+
)
|
513 |
+
if (
|
514 |
+
self.cfg.use_label_condition
|
515 |
+
and self.cfg.label_condition_dim != self.cfg.condition_dim
|
516 |
+
):
|
517 |
+
self.proj_label_condtion = nn.Sequential(
|
518 |
+
nn.RMSNorm(self.cfg.label_condition_dim),
|
519 |
+
nn.Linear(self.cfg.label_condition_dim, self.cfg.condition_dim),
|
520 |
+
)
|
521 |
+
|
522 |
+
if self.cfg.identity_init:
|
523 |
+
self.identity_initialize()
|
524 |
+
|
525 |
+
if self.cfg.pretrained_model_name_or_path:
|
526 |
+
print(
|
527 |
+
f"Loading pretrained DiT model from {self.cfg.pretrained_model_name_or_path}"
|
528 |
+
)
|
529 |
+
ckpt = torch.load(
|
530 |
+
self.cfg.pretrained_model_name_or_path,
|
531 |
+
map_location="cpu",
|
532 |
+
weights_only=True,
|
533 |
+
)
|
534 |
+
if "state_dict" in ckpt.keys():
|
535 |
+
ckpt = ckpt["state_dict"]
|
536 |
+
|
537 |
+
self.load_state_dict(ckpt, strict=True)
|
538 |
+
|
539 |
+
def identity_initialize(self):
|
540 |
+
for block in self.dit_model.blocks:
|
541 |
+
nn.init.constant_(block.attn.c_proj.weight, 0)
|
542 |
+
nn.init.constant_(block.attn.c_proj.bias, 0)
|
543 |
+
nn.init.constant_(block.cross_attn.c_proj.weight, 0)
|
544 |
+
nn.init.constant_(block.cross_attn.c_proj.bias, 0)
|
545 |
+
nn.init.constant_(block.mlp.c_proj.weight, 0)
|
546 |
+
nn.init.constant_(block.mlp.c_proj.bias, 0)
|
547 |
+
|
548 |
+
def forward(
|
549 |
+
self,
|
550 |
+
model_input: torch.FloatTensor,
|
551 |
+
timestep: torch.LongTensor,
|
552 |
+
visual_condition: Optional[torch.FloatTensor] = None,
|
553 |
+
caption_condition: Optional[torch.FloatTensor] = None,
|
554 |
+
label_condition: Optional[torch.FloatTensor] = None,
|
555 |
+
attention_kwargs: Dict[str, torch.Tensor] = None,
|
556 |
+
return_dict: bool = True,
|
557 |
+
):
|
558 |
+
r"""
|
559 |
+
Args:
|
560 |
+
model_input (torch.FloatTensor): [bs, n_data, c]
|
561 |
+
timestep (torch.LongTensor): [bs,]
|
562 |
+
visual_condition (torch.FloatTensor): [bs, visual_context_tokens, c]
|
563 |
+
caption_condition (torch.FloatTensor): [bs, text_context_tokens, c]
|
564 |
+
label_condition (torch.FloatTensor): [bs, c]
|
565 |
+
|
566 |
+
Returns:
|
567 |
+
sample (torch.FloatTensor): [bs, n_data, c]
|
568 |
+
|
569 |
+
"""
|
570 |
+
|
571 |
+
B, n_data, _ = model_input.shape
|
572 |
+
|
573 |
+
# 0. conditions projector
|
574 |
+
condition = []
|
575 |
+
if self.cfg.use_visual_condition:
|
576 |
+
assert visual_condition.shape[-1] == self.cfg.visual_condition_dim
|
577 |
+
if self.cfg.visual_condition_dim != self.cfg.condition_dim:
|
578 |
+
visual_condition = self.proj_visual_condtion(visual_condition)
|
579 |
+
condition.append(visual_condition)
|
580 |
+
if self.cfg.use_caption_condition:
|
581 |
+
assert caption_condition.shape[-1] == self.cfg.caption_condition_dim
|
582 |
+
if self.cfg.caption_condition_dim != self.cfg.condition_dim:
|
583 |
+
caption_condition = self.proj_caption_condtion(caption_condition)
|
584 |
+
condition.append(caption_condition)
|
585 |
+
if self.cfg.use_label_condition:
|
586 |
+
assert label_condition.shape[-1] == self.cfg.label_condition_dim
|
587 |
+
if self.cfg.label_condition_dim != self.cfg.condition_dim:
|
588 |
+
label_condition = self.proj_label_condtion(label_condition)
|
589 |
+
condition.append(label_condition)
|
590 |
+
|
591 |
+
# 1. denoise
|
592 |
+
output = self.dit_model(
|
593 |
+
model_input,
|
594 |
+
timestep,
|
595 |
+
torch.cat(condition, dim=1),
|
596 |
+
attention_kwargs,
|
597 |
+
return_dict=return_dict,
|
598 |
+
)
|
599 |
+
|
600 |
+
return output
|
step1x3d_geometry/models/transformers/pixart_transformer_1d.py
ADDED
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Some parts of this file are adapted from Hugging Face Diffusers library.
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
import re
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from typing import Callable, List, Optional, Union, Dict, Any
|
9 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
+
from diffusers.utils import logging
|
11 |
+
from diffusers.models.attention_processor import (
|
12 |
+
Attention,
|
13 |
+
AttentionProcessor,
|
14 |
+
AttnProcessor,
|
15 |
+
)
|
16 |
+
from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
|
17 |
+
from diffusers.models.modeling_utils import ModelMixin
|
18 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
19 |
+
|
20 |
+
from ..attention_processor import FusedAttnProcessor2_0, AttnProcessor2_0
|
21 |
+
from ..attention import MultiCondBasicTransformerBlock
|
22 |
+
|
23 |
+
import step1x3d_geometry
|
24 |
+
from step1x3d_geometry.utils.base import BaseModule
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass
|
30 |
+
class Transformer1DModelOutput:
|
31 |
+
sample: torch.FloatTensor
|
32 |
+
|
33 |
+
|
34 |
+
class PixArtTransformer1DModel(ModelMixin, ConfigMixin):
|
35 |
+
r"""
|
36 |
+
A 1D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426,
|
37 |
+
https://arxiv.org/abs/2403.04692).
|
38 |
+
|
39 |
+
Parameters:
|
40 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
41 |
+
The number of heads to use for multi-head attention.
|
42 |
+
width (`int`, *optional*, defaults to 2048):
|
43 |
+
Maximum sequence length in latent space (equivalent to max_seq_length in Transformers).
|
44 |
+
Determines the first dimension size of positional embedding matrices[1](@ref).
|
45 |
+
in_channels (`int`, *optional*, defaults to 64):
|
46 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
47 |
+
num_layers (`int`, *optional*, defaults to 1):
|
48 |
+
The number of layers of Transformer blocks to use.
|
49 |
+
cross_attention_dim (`int`, *optional*):
|
50 |
+
Dimensionality of conditional embeddings for cross-attention mechanisms
|
51 |
+
use_cross_attention_2 (`bool`, *optional*):
|
52 |
+
Flag to enable secondary cross-attention mechanism. Used for multi-modal conditioning
|
53 |
+
when processing hybrid inputs (e.g., text + image prompts)[1](@ref).
|
54 |
+
cross_attention_2_dim (`int`, *optional*, defaults to 1024):
|
55 |
+
Dimensionality of secondary cross-attention embeddings. Specifies encoding dimensions
|
56 |
+
for additional conditional modalities when use_cross_attention_2 is enabled[1](@ref).
|
57 |
+
"""
|
58 |
+
|
59 |
+
_supports_gradient_checkpointing = True
|
60 |
+
_no_split_modules = ["MultiCondBasicTransformerBlock", "PatchEmbed"]
|
61 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm", "adaln_single"]
|
62 |
+
|
63 |
+
@register_to_config
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
num_attention_heads: int = 16,
|
67 |
+
width: int = 2048,
|
68 |
+
in_channels: int = 4,
|
69 |
+
num_layers: int = 28,
|
70 |
+
cross_attention_dim: int = 768,
|
71 |
+
use_cross_attention_2: bool = True,
|
72 |
+
cross_attention_2_dim: int = 1024,
|
73 |
+
use_cross_attention_3: bool = True,
|
74 |
+
cross_attention_3_dim: int = 1024,
|
75 |
+
):
|
76 |
+
super().__init__()
|
77 |
+
# Set some common variables used across the board.
|
78 |
+
self.out_channels = in_channels
|
79 |
+
self.num_heads = num_attention_heads
|
80 |
+
self.inner_dim = width
|
81 |
+
|
82 |
+
self.proj_in = nn.Linear(self.config.in_channels, self.inner_dim, bias=True)
|
83 |
+
|
84 |
+
# 2. Initialize the transformer blocks.
|
85 |
+
self.transformer_blocks = nn.ModuleList(
|
86 |
+
[
|
87 |
+
MultiCondBasicTransformerBlock(
|
88 |
+
self.inner_dim,
|
89 |
+
self.config.num_attention_heads,
|
90 |
+
use_self_attention=True,
|
91 |
+
use_cross_attention=True,
|
92 |
+
self_attention_norm_type="ada_norm_single",
|
93 |
+
cross_attention_dim=self.config.cross_attention_dim,
|
94 |
+
cross_attention_norm_type="ada_norm_single",
|
95 |
+
use_cross_attention_2=self.config.use_cross_attention_2,
|
96 |
+
cross_attention_2_dim=self.config.cross_attention_2_dim,
|
97 |
+
cross_attention_2_norm_type="ada_norm_single",
|
98 |
+
use_cross_attention_3=self.config.use_cross_attention_3,
|
99 |
+
cross_attention_3_dim=self.config.cross_attention_3_dim,
|
100 |
+
cross_attention_3_norm_type="ada_norm_single",
|
101 |
+
dropout=0.0,
|
102 |
+
attention_bias=False,
|
103 |
+
activation_fn="gelu-approximate",
|
104 |
+
num_embeds_ada_norm=1000,
|
105 |
+
norm_elementwise_affine=True,
|
106 |
+
upcast_attention=False,
|
107 |
+
norm_eps=1e-6,
|
108 |
+
attention_type="default",
|
109 |
+
)
|
110 |
+
for _ in range(self.config.num_layers)
|
111 |
+
]
|
112 |
+
)
|
113 |
+
|
114 |
+
# 3. Output blocks.
|
115 |
+
self.norm_out = nn.RMSNorm(self.inner_dim, elementwise_affine=True, eps=1e-6)
|
116 |
+
self.scale_shift_table = nn.Parameter(
|
117 |
+
torch.randn(2, self.inner_dim) / self.inner_dim**0.5
|
118 |
+
)
|
119 |
+
self.proj_out = nn.Linear(self.inner_dim, self.out_channels)
|
120 |
+
|
121 |
+
self.adaln_single = AdaLayerNormSingle(
|
122 |
+
self.inner_dim, use_additional_conditions=None
|
123 |
+
)
|
124 |
+
self.gradient_checkpointing = False
|
125 |
+
|
126 |
+
@property
|
127 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
128 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
129 |
+
r"""
|
130 |
+
Returns:
|
131 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
132 |
+
indexed by its weight name.
|
133 |
+
"""
|
134 |
+
# set recursively
|
135 |
+
processors = {}
|
136 |
+
|
137 |
+
def fn_recursive_add_processors(
|
138 |
+
name: str,
|
139 |
+
module: torch.nn.Module,
|
140 |
+
processors: Dict[str, AttentionProcessor],
|
141 |
+
):
|
142 |
+
if hasattr(module, "get_processor"):
|
143 |
+
processors[f"{name}.processor"] = module.get_processor()
|
144 |
+
|
145 |
+
for sub_name, child in module.named_children():
|
146 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
147 |
+
|
148 |
+
return processors
|
149 |
+
|
150 |
+
for name, module in self.named_children():
|
151 |
+
fn_recursive_add_processors(name, module, processors)
|
152 |
+
|
153 |
+
return processors
|
154 |
+
|
155 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
156 |
+
def set_attn_processor(
|
157 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
|
158 |
+
):
|
159 |
+
r"""
|
160 |
+
Sets the attention processor to use to compute attention.
|
161 |
+
|
162 |
+
Parameters:
|
163 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
164 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
165 |
+
for **all** `Attention` layers.
|
166 |
+
|
167 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
168 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
169 |
+
|
170 |
+
"""
|
171 |
+
count = len(self.attn_processors.keys())
|
172 |
+
|
173 |
+
if isinstance(processor, dict) and len(processor) != count:
|
174 |
+
raise ValueError(
|
175 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
176 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
177 |
+
)
|
178 |
+
|
179 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
180 |
+
if hasattr(module, "set_processor"):
|
181 |
+
if not isinstance(processor, dict):
|
182 |
+
module.set_processor(processor)
|
183 |
+
else:
|
184 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
185 |
+
|
186 |
+
for sub_name, child in module.named_children():
|
187 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
188 |
+
|
189 |
+
for name, module in self.named_children():
|
190 |
+
fn_recursive_attn_processor(name, module, processor)
|
191 |
+
|
192 |
+
def set_default_attn_processor(self):
|
193 |
+
"""
|
194 |
+
Disables custom attention processors and sets the default attention implementation.
|
195 |
+
"""
|
196 |
+
self.set_attn_processor(AttnProcessor2_0())
|
197 |
+
|
198 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
199 |
+
def fuse_qkv_projections(self):
|
200 |
+
"""
|
201 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
202 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
203 |
+
|
204 |
+
<Tip warning={true}>
|
205 |
+
|
206 |
+
This API is 🧪 experimental.
|
207 |
+
|
208 |
+
</Tip>
|
209 |
+
"""
|
210 |
+
self.original_attn_processors = None
|
211 |
+
|
212 |
+
for _, attn_processor in self.attn_processors.items():
|
213 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
214 |
+
raise ValueError(
|
215 |
+
"`fuse_qkv_projections()` is not supported for models having added KV projections."
|
216 |
+
)
|
217 |
+
|
218 |
+
self.original_attn_processors = self.attn_processors
|
219 |
+
|
220 |
+
for module in self.modules():
|
221 |
+
if isinstance(module, Attention):
|
222 |
+
module.fuse_projections(fuse=True)
|
223 |
+
|
224 |
+
self.set_attn_processor(FusedAttnProcessor2_0())
|
225 |
+
|
226 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
227 |
+
def unfuse_qkv_projections(self):
|
228 |
+
"""Disables the fused QKV projection if enabled.
|
229 |
+
|
230 |
+
<Tip warning={true}>
|
231 |
+
|
232 |
+
This API is 🧪 experimental.
|
233 |
+
|
234 |
+
</Tip>
|
235 |
+
|
236 |
+
"""
|
237 |
+
if self.original_attn_processors is not None:
|
238 |
+
self.set_attn_processor(self.original_attn_processors)
|
239 |
+
|
240 |
+
def forward(
|
241 |
+
self,
|
242 |
+
hidden_states: torch.Tensor,
|
243 |
+
timestep: Optional[torch.LongTensor] = None,
|
244 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
245 |
+
encoder_hidden_states_2: Optional[torch.Tensor] = None,
|
246 |
+
encoder_hidden_states_3: Optional[torch.Tensor] = None,
|
247 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
248 |
+
attention_mask: Optional[torch.Tensor] = None,
|
249 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
250 |
+
encoder_attention_mask_2: Optional[torch.Tensor] = None,
|
251 |
+
encoder_attention_mask_3: Optional[torch.Tensor] = None,
|
252 |
+
return_dict: bool = True,
|
253 |
+
):
|
254 |
+
"""
|
255 |
+
The [`PixArtTransformer2DModel`] forward method.
|
256 |
+
|
257 |
+
Args:
|
258 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, n_tokens)`):
|
259 |
+
Input `hidden_states`.
|
260 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
261 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
262 |
+
self-attention.
|
263 |
+
encoder_hidden_states_2 (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
264 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
265 |
+
self-attention.
|
266 |
+
encoder_hidden_states_3 (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
267 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
268 |
+
self-attention.
|
269 |
+
timestep (`torch.LongTensor`, *optional*):
|
270 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
271 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
272 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
273 |
+
`self.processor` in
|
274 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
275 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
276 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
277 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
278 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
279 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
280 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
281 |
+
|
282 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
283 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
284 |
+
|
285 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
286 |
+
above. This bias will be added to the cross-attention scores.
|
287 |
+
encoder_attention_mask_2 ( `torch.Tensor`, *optional*):
|
288 |
+
Cross-attention mask applied to `encoder_hidden_states_2`. Two formats supported:
|
289 |
+
|
290 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
291 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
292 |
+
|
293 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
294 |
+
above. This bias will be added to the cross-attention scores.
|
295 |
+
encoder_attention_mask_3 ( `torch.Tensor`, *optional*):
|
296 |
+
Cross-attention mask applied to `encoder_hidden_states_3`. Two formats supported:
|
297 |
+
|
298 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
299 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
300 |
+
|
301 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
302 |
+
above. This bias will be added to the cross-attention scores.
|
303 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
304 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
305 |
+
tuple.
|
306 |
+
|
307 |
+
Returns:
|
308 |
+
If `return_dict` is True, an [`~Transformer1DModelOutput`] is returned, otherwise a
|
309 |
+
`tuple` where the first element is the sample tensor.
|
310 |
+
"""
|
311 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
312 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
313 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
314 |
+
# expects mask of shape:
|
315 |
+
# [batch, key_tokens]
|
316 |
+
# adds singleton query_tokens dimension:
|
317 |
+
# [batch, 1, key_tokens]
|
318 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
319 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
320 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
321 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
322 |
+
# assume that mask is expressed as:
|
323 |
+
# (1 = keep, 0 = discard)
|
324 |
+
# convert mask into a bias that can be added to attention scores:
|
325 |
+
# (keep = +0, discard = -10000.0)
|
326 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
327 |
+
attention_mask = attention_mask.unsqueeze(1)
|
328 |
+
|
329 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
330 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
331 |
+
encoder_attention_mask = (
|
332 |
+
1 - encoder_attention_mask.to(hidden_states.dtype)
|
333 |
+
) * -10000.0
|
334 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
335 |
+
|
336 |
+
# convert encoder_attention_mask_2 to a bias the same way we do for attention_mask
|
337 |
+
if encoder_attention_mask_2 is not None and encoder_attention_mask_2.ndim == 2:
|
338 |
+
encoder_attention_mask_2 = (
|
339 |
+
1 - encoder_attention_mask_2.to(hidden_states.dtype)
|
340 |
+
) * -10000.0
|
341 |
+
encoder_attention_mask_2 = encoder_attention_mask_2.unsqueeze(1)
|
342 |
+
|
343 |
+
# convert encoder_attention_mask_2 to a bias the same way we do for attention_mask
|
344 |
+
if encoder_attention_mask_3 is not None and encoder_attention_mask_3.ndim == 2:
|
345 |
+
encoder_attention_mask_3 = (
|
346 |
+
1 - encoder_attention_mask_3.to(hidden_states.dtype)
|
347 |
+
) * -10000.0
|
348 |
+
encoder_attention_mask_3 = encoder_attention_mask_3.unsqueeze(1)
|
349 |
+
|
350 |
+
# 1. Input
|
351 |
+
batch_size = hidden_states.shape[0]
|
352 |
+
timestep, embedded_timestep = self.adaln_single(
|
353 |
+
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
354 |
+
)
|
355 |
+
|
356 |
+
hidden_states = self.proj_in(hidden_states)
|
357 |
+
|
358 |
+
# 2. Blocks
|
359 |
+
for block in self.transformer_blocks:
|
360 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
361 |
+
hidden_states = self._gradient_checkpointing_func(
|
362 |
+
block,
|
363 |
+
hidden_states,
|
364 |
+
attention_mask,
|
365 |
+
encoder_hidden_states,
|
366 |
+
encoder_hidden_states_2,
|
367 |
+
encoder_hidden_states_3,
|
368 |
+
encoder_attention_mask,
|
369 |
+
encoder_attention_mask_2,
|
370 |
+
encoder_attention_mask_3,
|
371 |
+
timestep,
|
372 |
+
cross_attention_kwargs,
|
373 |
+
None,
|
374 |
+
)
|
375 |
+
else:
|
376 |
+
hidden_states = block(
|
377 |
+
hidden_states,
|
378 |
+
attention_mask=attention_mask,
|
379 |
+
encoder_hidden_states=encoder_hidden_states,
|
380 |
+
encoder_hidden_states_2=encoder_hidden_states_2,
|
381 |
+
encoder_hidden_states_3=encoder_hidden_states_3,
|
382 |
+
encoder_attention_mask=encoder_attention_mask,
|
383 |
+
encoder_attention_mask_2=encoder_attention_mask_2,
|
384 |
+
encoder_attention_mask_3=encoder_attention_mask_3,
|
385 |
+
timestep=timestep,
|
386 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
387 |
+
class_labels=None,
|
388 |
+
)
|
389 |
+
|
390 |
+
# 3. Output
|
391 |
+
shift, scale = (
|
392 |
+
self.scale_shift_table[None]
|
393 |
+
+ embedded_timestep[:, None].to(self.scale_shift_table.device)
|
394 |
+
).chunk(2, dim=1)
|
395 |
+
hidden_states = self.norm_out(hidden_states)
|
396 |
+
# Modulation
|
397 |
+
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(
|
398 |
+
hidden_states.device
|
399 |
+
)
|
400 |
+
hidden_states = self.proj_out(hidden_states)
|
401 |
+
hidden_states = hidden_states.squeeze(1)
|
402 |
+
|
403 |
+
if not return_dict:
|
404 |
+
return (hidden_states,)
|
405 |
+
|
406 |
+
return Transformer1DModelOutput(sample=hidden_states)
|
407 |
+
|
408 |
+
|
409 |
+
@step1x3d_geometry.register("pixart-denoiser")
|
410 |
+
class PixArtDenoiser(BaseModule):
|
411 |
+
@dataclass
|
412 |
+
class Config(BaseModule.Config):
|
413 |
+
pretrained_model_name_or_path: Optional[str] = None
|
414 |
+
input_channels: int = 32
|
415 |
+
width: int = 768
|
416 |
+
layers: int = 28
|
417 |
+
num_heads: int = 16
|
418 |
+
condition_dim: int = 1024
|
419 |
+
multi_condition_type: str = "cross_attention"
|
420 |
+
use_visual_condition: bool = False
|
421 |
+
visual_condition_dim: int = 1024
|
422 |
+
n_views: int = 1 # for multi-view condition
|
423 |
+
use_caption_condition: bool = False
|
424 |
+
caption_condition_dim: int = 1024
|
425 |
+
use_label_condition: bool = False
|
426 |
+
label_condition_dim: int = 1024
|
427 |
+
|
428 |
+
identity_init: bool = False
|
429 |
+
|
430 |
+
cfg: Config
|
431 |
+
|
432 |
+
def configure(self) -> None:
|
433 |
+
self.dit_model = PixArtTransformer1DModel(
|
434 |
+
num_attention_heads=self.cfg.num_heads,
|
435 |
+
width=self.cfg.width,
|
436 |
+
in_channels=self.cfg.input_channels,
|
437 |
+
num_layers=self.cfg.layers,
|
438 |
+
cross_attention_dim=self.cfg.condition_dim,
|
439 |
+
use_cross_attention_2=self.cfg.use_caption_condition
|
440 |
+
and self.cfg.multi_condition_type == "cross_attention",
|
441 |
+
cross_attention_2_dim=self.cfg.condition_dim,
|
442 |
+
use_cross_attention_3=self.cfg.use_label_condition
|
443 |
+
and self.cfg.multi_condition_type == "cross_attention",
|
444 |
+
cross_attention_3_dim=self.cfg.condition_dim,
|
445 |
+
)
|
446 |
+
if (
|
447 |
+
self.cfg.use_visual_condition
|
448 |
+
and self.cfg.visual_condition_dim != self.cfg.condition_dim
|
449 |
+
):
|
450 |
+
self.proj_visual_condtion = nn.Sequential(
|
451 |
+
nn.RMSNorm(self.cfg.visual_condition_dim),
|
452 |
+
nn.Linear(self.cfg.visual_condition_dim, self.cfg.condition_dim),
|
453 |
+
)
|
454 |
+
if (
|
455 |
+
self.cfg.use_caption_condition
|
456 |
+
and self.cfg.caption_condition_dim != self.cfg.condition_dim
|
457 |
+
):
|
458 |
+
self.proj_caption_condtion = nn.Sequential(
|
459 |
+
nn.RMSNorm(self.cfg.caption_condition_dim),
|
460 |
+
nn.Linear(self.cfg.caption_condition_dim, self.cfg.condition_dim),
|
461 |
+
)
|
462 |
+
if (
|
463 |
+
self.cfg.use_label_condition
|
464 |
+
and self.cfg.label_condition_dim != self.cfg.condition_dim
|
465 |
+
):
|
466 |
+
self.proj_label_condtion = nn.Sequential(
|
467 |
+
nn.RMSNorm(self.cfg.label_condition_dim),
|
468 |
+
nn.Linear(self.cfg.label_condition_dim, self.cfg.condition_dim),
|
469 |
+
)
|
470 |
+
|
471 |
+
if self.cfg.identity_init:
|
472 |
+
self.identity_initialize()
|
473 |
+
|
474 |
+
if self.cfg.pretrained_model_name_or_path:
|
475 |
+
print(
|
476 |
+
f"Loading pretrained DiT model from {self.cfg.pretrained_model_name_or_path}"
|
477 |
+
)
|
478 |
+
ckpt = torch.load(
|
479 |
+
self.cfg.pretrained_model_name_or_path,
|
480 |
+
map_location="cpu",
|
481 |
+
weights_only=False,
|
482 |
+
)
|
483 |
+
if "state_dict" in ckpt.keys():
|
484 |
+
ckpt = ckpt["state_dict"]
|
485 |
+
self.load_state_dict(ckpt, strict=True)
|
486 |
+
|
487 |
+
def identity_initialize(self):
|
488 |
+
for block in self.dit_model.blocks:
|
489 |
+
nn.init.constant_(block.attn.c_proj.weight, 0)
|
490 |
+
nn.init.constant_(block.attn.c_proj.bias, 0)
|
491 |
+
nn.init.constant_(block.cross_attn.c_proj.weight, 0)
|
492 |
+
nn.init.constant_(block.cross_attn.c_proj.bias, 0)
|
493 |
+
nn.init.constant_(block.mlp.c_proj.weight, 0)
|
494 |
+
nn.init.constant_(block.mlp.c_proj.bias, 0)
|
495 |
+
|
496 |
+
def forward(
|
497 |
+
self,
|
498 |
+
model_input: torch.FloatTensor,
|
499 |
+
timestep: torch.LongTensor,
|
500 |
+
visual_condition: Optional[torch.FloatTensor] = None,
|
501 |
+
caption_condition: Optional[torch.FloatTensor] = None,
|
502 |
+
label_condition: Optional[torch.FloatTensor] = None,
|
503 |
+
attention_kwargs: Dict[str, torch.Tensor] = None,
|
504 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
505 |
+
return_dict: bool = True,
|
506 |
+
):
|
507 |
+
r"""
|
508 |
+
Args:
|
509 |
+
model_input (torch.FloatTensor): [bs, n_data, c]
|
510 |
+
timestep (torch.LongTensor): [bs,]
|
511 |
+
visual_condition (torch.FloatTensor): [bs, visual_context_tokens, c]
|
512 |
+
text_condition (torch.FloatTensor): [bs, text_context_tokens, c]
|
513 |
+
|
514 |
+
Returns:
|
515 |
+
sample (torch.FloatTensor): [bs, n_data, c]
|
516 |
+
|
517 |
+
"""
|
518 |
+
|
519 |
+
B, n_data, _ = model_input.shape
|
520 |
+
|
521 |
+
# 0. conditions projector
|
522 |
+
condition = []
|
523 |
+
if self.cfg.use_visual_condition:
|
524 |
+
assert visual_condition.shape[-1] == self.cfg.visual_condition_dim
|
525 |
+
if self.cfg.visual_condition_dim != self.cfg.condition_dim:
|
526 |
+
visual_condition = self.proj_visual_condtion(visual_condition)
|
527 |
+
condition.append(visual_condition)
|
528 |
+
else:
|
529 |
+
visual_condition = None
|
530 |
+
if self.cfg.use_caption_condition:
|
531 |
+
assert caption_condition.shape[-1] == self.cfg.caption_condition_dim
|
532 |
+
if self.cfg.caption_condition_dim != self.cfg.condition_dim:
|
533 |
+
caption_condition = self.proj_caption_condtion(caption_condition)
|
534 |
+
condition.append(caption_condition)
|
535 |
+
else:
|
536 |
+
caption_condition = None
|
537 |
+
if self.cfg.use_label_condition:
|
538 |
+
assert label_condition.shape[-1] == self.cfg.label_condition_dim
|
539 |
+
if self.cfg.label_condition_dim != self.cfg.condition_dim:
|
540 |
+
label_condition = self.proj_label_condtion(label_condition)
|
541 |
+
condition.append(label_condition)
|
542 |
+
else:
|
543 |
+
label_condition = None
|
544 |
+
assert not (
|
545 |
+
visual_condition is None
|
546 |
+
and caption_condition is None
|
547 |
+
and label_condition is None
|
548 |
+
)
|
549 |
+
|
550 |
+
# 1. denoise
|
551 |
+
if self.cfg.multi_condition_type == "cross_attention":
|
552 |
+
output = self.dit_model(
|
553 |
+
model_input,
|
554 |
+
timestep,
|
555 |
+
visual_condition,
|
556 |
+
caption_condition,
|
557 |
+
label_condition,
|
558 |
+
cross_attention_kwargs,
|
559 |
+
return_dict=return_dict,
|
560 |
+
)
|
561 |
+
elif self.cfg.multi_condition_type == "in_context":
|
562 |
+
output = self.dit_model(
|
563 |
+
model_input,
|
564 |
+
timestep,
|
565 |
+
torch.cat(condition, dim=1),
|
566 |
+
None,
|
567 |
+
None,
|
568 |
+
cross_attention_kwargs,
|
569 |
+
return_dict=return_dict,
|
570 |
+
)
|
571 |
+
else:
|
572 |
+
raise ValueError
|
573 |
+
|
574 |
+
return output
|
step1x3d_geometry/systems/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from . import shape_autoencoder, shape_diffusion, shape_rectified_flow
|
step1x3d_geometry/systems/base.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dataclasses import dataclass, field
|
3 |
+
|
4 |
+
import pytorch_lightning as pl
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
import step1x3d_geometry
|
8 |
+
from step1x3d_geometry.utils.base import (
|
9 |
+
Updateable,
|
10 |
+
update_end_if_possible,
|
11 |
+
update_if_possible,
|
12 |
+
)
|
13 |
+
from step1x3d_geometry.utils.scheduler import parse_optimizer, parse_scheduler
|
14 |
+
from step1x3d_geometry.utils.config import parse_structured
|
15 |
+
from step1x3d_geometry.utils.misc import C, cleanup, get_device, load_module_weights
|
16 |
+
from step1x3d_geometry.utils.saving import SaverMixin
|
17 |
+
from step1x3d_geometry.utils.typing import *
|
18 |
+
|
19 |
+
|
20 |
+
class BaseSystem(pl.LightningModule, Updateable, SaverMixin):
|
21 |
+
@dataclass
|
22 |
+
class Config:
|
23 |
+
loggers: dict = field(default_factory=dict)
|
24 |
+
loss: dict = field(default_factory=dict)
|
25 |
+
optimizer: dict = field(default_factory=dict)
|
26 |
+
scheduler: Optional[dict] = None
|
27 |
+
weights: Optional[str] = None
|
28 |
+
weights_ignore_modules: Optional[List[str]] = None
|
29 |
+
cleanup_after_validation_step: bool = False
|
30 |
+
cleanup_after_test_step: bool = False
|
31 |
+
|
32 |
+
pretrained_model_path: Optional[str] = None
|
33 |
+
strict_load: bool = True
|
34 |
+
|
35 |
+
cfg: Config
|
36 |
+
|
37 |
+
def __init__(self, cfg, resumed=False) -> None:
|
38 |
+
super().__init__()
|
39 |
+
self.cfg = parse_structured(self.Config, cfg)
|
40 |
+
self._save_dir: Optional[str] = None
|
41 |
+
self._resumed: bool = resumed
|
42 |
+
self._resumed_eval: bool = False
|
43 |
+
self._resumed_eval_status: dict = {"global_step": 0, "current_epoch": 0}
|
44 |
+
if "loggers" in cfg:
|
45 |
+
self.create_loggers(cfg.loggers)
|
46 |
+
|
47 |
+
self.configure()
|
48 |
+
if self.cfg.weights is not None:
|
49 |
+
self.load_weights(self.cfg.weights, self.cfg.weights_ignore_modules)
|
50 |
+
self.post_configure()
|
51 |
+
|
52 |
+
def load_weights(self, weights: str, ignore_modules: Optional[List[str]] = None):
|
53 |
+
state_dict, epoch, global_step = load_module_weights(
|
54 |
+
weights, ignore_modules=ignore_modules, map_location="cpu"
|
55 |
+
)
|
56 |
+
self.load_state_dict(state_dict, strict=False)
|
57 |
+
# restore step-dependent states
|
58 |
+
self.do_update_step(epoch, global_step, on_load_weights=True)
|
59 |
+
|
60 |
+
def set_resume_status(self, current_epoch: int, global_step: int):
|
61 |
+
# restore correct epoch and global step in eval
|
62 |
+
self._resumed_eval = True
|
63 |
+
self._resumed_eval_status["current_epoch"] = current_epoch
|
64 |
+
self._resumed_eval_status["global_step"] = global_step
|
65 |
+
|
66 |
+
@property
|
67 |
+
def resumed(self):
|
68 |
+
# whether from resumed checkpoint
|
69 |
+
return self._resumed
|
70 |
+
|
71 |
+
@property
|
72 |
+
def true_global_step(self):
|
73 |
+
if self._resumed_eval:
|
74 |
+
return self._resumed_eval_status["global_step"]
|
75 |
+
else:
|
76 |
+
return self.global_step
|
77 |
+
|
78 |
+
@property
|
79 |
+
def true_current_epoch(self):
|
80 |
+
if self._resumed_eval:
|
81 |
+
return self._resumed_eval_status["current_epoch"]
|
82 |
+
else:
|
83 |
+
return self.current_epoch
|
84 |
+
|
85 |
+
def configure(self) -> None:
|
86 |
+
pass
|
87 |
+
|
88 |
+
def post_configure(self) -> None:
|
89 |
+
"""
|
90 |
+
executed after weights are loaded
|
91 |
+
"""
|
92 |
+
pass
|
93 |
+
|
94 |
+
def C(self, value: Any) -> float:
|
95 |
+
return C(value, self.true_current_epoch, self.true_global_step)
|
96 |
+
|
97 |
+
def configure_optimizers(self):
|
98 |
+
optim = parse_optimizer(self.cfg.optimizer, self)
|
99 |
+
ret = {
|
100 |
+
"optimizer": optim,
|
101 |
+
}
|
102 |
+
if self.cfg.scheduler is not None:
|
103 |
+
ret.update(
|
104 |
+
{
|
105 |
+
"lr_scheduler": parse_scheduler(self.cfg.scheduler, optim),
|
106 |
+
}
|
107 |
+
)
|
108 |
+
return ret
|
109 |
+
|
110 |
+
def training_step(self, batch, batch_idx):
|
111 |
+
raise NotImplementedError
|
112 |
+
|
113 |
+
def validation_step(self, batch, batch_idx):
|
114 |
+
raise NotImplementedError
|
115 |
+
|
116 |
+
def on_train_batch_end(self, outputs, batch, batch_idx):
|
117 |
+
self.dataset = self.trainer.train_dataloader.dataset
|
118 |
+
update_end_if_possible(
|
119 |
+
self.dataset, self.true_current_epoch, self.true_global_step
|
120 |
+
)
|
121 |
+
self.do_update_step_end(self.true_current_epoch, self.true_global_step)
|
122 |
+
|
123 |
+
def on_validation_batch_end(self, outputs, batch, batch_idx):
|
124 |
+
self.dataset = self.trainer.val_dataloaders.dataset
|
125 |
+
update_end_if_possible(
|
126 |
+
self.dataset, self.true_current_epoch, self.true_global_step
|
127 |
+
)
|
128 |
+
self.do_update_step_end(self.true_current_epoch, self.true_global_step)
|
129 |
+
if self.cfg.cleanup_after_validation_step:
|
130 |
+
# cleanup to save vram
|
131 |
+
cleanup()
|
132 |
+
|
133 |
+
def on_validation_epoch_end(self):
|
134 |
+
raise NotImplementedError
|
135 |
+
|
136 |
+
def test_step(self, batch, batch_idx):
|
137 |
+
raise NotImplementedError
|
138 |
+
|
139 |
+
def on_test_batch_end(self, outputs, batch, batch_idx):
|
140 |
+
self.dataset = self.trainer.test_dataloaders.dataset
|
141 |
+
update_end_if_possible(
|
142 |
+
self.dataset, self.true_current_epoch, self.true_global_step
|
143 |
+
)
|
144 |
+
self.do_update_step_end(self.true_current_epoch, self.true_global_step)
|
145 |
+
if self.cfg.cleanup_after_test_step:
|
146 |
+
# cleanup to save vram
|
147 |
+
cleanup()
|
148 |
+
|
149 |
+
def on_test_epoch_end(self):
|
150 |
+
pass
|
151 |
+
|
152 |
+
def predict_step(self, batch, batch_idx):
|
153 |
+
raise NotImplementedError
|
154 |
+
|
155 |
+
def on_predict_batch_end(self, outputs, batch, batch_idx):
|
156 |
+
self.dataset = self.trainer.predict_dataloaders.dataset
|
157 |
+
update_end_if_possible(
|
158 |
+
self.dataset, self.true_current_epoch, self.true_global_step
|
159 |
+
)
|
160 |
+
self.do_update_step_end(self.true_current_epoch, self.true_global_step)
|
161 |
+
if self.cfg.cleanup_after_test_step:
|
162 |
+
# cleanup to save vram
|
163 |
+
cleanup()
|
164 |
+
|
165 |
+
def on_predict_epoch_end(self):
|
166 |
+
pass
|
167 |
+
|
168 |
+
def preprocess_data(self, batch, stage):
|
169 |
+
pass
|
170 |
+
|
171 |
+
"""
|
172 |
+
Implementing on_after_batch_transfer of DataModule does the same.
|
173 |
+
But on_after_batch_transfer does not support DP.
|
174 |
+
"""
|
175 |
+
|
176 |
+
def on_train_batch_start(self, batch, batch_idx, unused=0):
|
177 |
+
self.preprocess_data(batch, "train")
|
178 |
+
self.dataset = self.trainer.train_dataloader.dataset
|
179 |
+
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
|
180 |
+
self.do_update_step(self.true_current_epoch, self.true_global_step)
|
181 |
+
|
182 |
+
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx=0):
|
183 |
+
self.preprocess_data(batch, "validation")
|
184 |
+
self.dataset = self.trainer.val_dataloaders.dataset
|
185 |
+
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
|
186 |
+
self.do_update_step(self.true_current_epoch, self.true_global_step)
|
187 |
+
|
188 |
+
def on_test_batch_start(self, batch, batch_idx, dataloader_idx=0):
|
189 |
+
self.preprocess_data(batch, "test")
|
190 |
+
self.dataset = self.trainer.test_dataloaders.dataset
|
191 |
+
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
|
192 |
+
self.do_update_step(self.true_current_epoch, self.true_global_step)
|
193 |
+
|
194 |
+
def on_predict_batch_start(self, batch, batch_idx, dataloader_idx=0):
|
195 |
+
self.preprocess_data(batch, "predict")
|
196 |
+
self.dataset = self.trainer.predict_dataloaders.dataset
|
197 |
+
update_if_possible(self.dataset, self.true_current_epoch, self.true_global_step)
|
198 |
+
self.do_update_step(self.true_current_epoch, self.true_global_step)
|
199 |
+
|
200 |
+
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
|
201 |
+
pass
|
202 |
+
|
203 |
+
def on_before_optimizer_step(self, optimizer):
|
204 |
+
"""
|
205 |
+
# some gradient-related debugging goes here, example:
|
206 |
+
from lightning.pytorch.utilities import grad_norm
|
207 |
+
norms = grad_norm(self.geometry, norm_type=2)
|
208 |
+
print(norms)
|
209 |
+
"""
|
210 |
+
pass
|
step1x3d_geometry/systems/shape_autoencoder.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from skimage import measure
|
5 |
+
from einops import repeat, rearrange
|
6 |
+
|
7 |
+
import step1x3d_geometry
|
8 |
+
from step1x3d_geometry.systems.base import BaseSystem
|
9 |
+
from step1x3d_geometry.utils.ops import generate_dense_grid_points
|
10 |
+
from step1x3d_geometry.utils.typing import *
|
11 |
+
from step1x3d_geometry.utils.misc import get_rank
|
12 |
+
|
13 |
+
|
14 |
+
@step1x3d_geometry.register("shape-autoencoder-system")
|
15 |
+
class ShapeAutoEncoderSystem(BaseSystem):
|
16 |
+
@dataclass
|
17 |
+
class Config(BaseSystem.Config):
|
18 |
+
shape_model_type: str = None
|
19 |
+
shape_model: dict = field(default_factory=dict)
|
20 |
+
|
21 |
+
sample_posterior: bool = True
|
22 |
+
|
23 |
+
# for mesh extraction
|
24 |
+
bounds: float = 1.05
|
25 |
+
mc_level: float = 0.0
|
26 |
+
octree_resolution: int = 256
|
27 |
+
|
28 |
+
cfg: Config
|
29 |
+
|
30 |
+
def configure(self):
|
31 |
+
super().configure()
|
32 |
+
|
33 |
+
self.shape_model = step1x3d_geometry.find(self.cfg.shape_model_type)(
|
34 |
+
self.cfg.shape_model
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]:
|
38 |
+
rand_points = batch["rand_points"]
|
39 |
+
if "sdf" in batch:
|
40 |
+
target = batch["sdf"]
|
41 |
+
criteria = torch.nn.MSELoss()
|
42 |
+
elif "occupancies" in batch:
|
43 |
+
target = batch["occupancies"]
|
44 |
+
criteria = torch.nn.BCEWithLogitsLoss()
|
45 |
+
else:
|
46 |
+
raise NotImplementedError
|
47 |
+
|
48 |
+
# forward pass
|
49 |
+
num_point_feats = 3 + self.cfg.shape_model.point_feats
|
50 |
+
shape_latents, kl_embed, posterior = self.shape_model.encode(
|
51 |
+
batch["surface"][..., :num_point_feats],
|
52 |
+
sharp_surface=(
|
53 |
+
batch["sharp_surface"][..., :num_point_feats]
|
54 |
+
if "sharp_surface" in batch
|
55 |
+
else None
|
56 |
+
),
|
57 |
+
sample_posterior=self.cfg.sample_posterior,
|
58 |
+
)
|
59 |
+
latents = self.shape_model.decode(kl_embed) # [B, num_latents, width]
|
60 |
+
logits = self.shape_model.query(rand_points, latents).squeeze(
|
61 |
+
-1
|
62 |
+
) # [B, num_rand_points]
|
63 |
+
|
64 |
+
if self.cfg.sample_posterior:
|
65 |
+
loss_kl = posterior.kl()
|
66 |
+
loss_kl = torch.sum(loss_kl) / loss_kl.shape[0]
|
67 |
+
|
68 |
+
return {
|
69 |
+
"loss_logits": criteria(logits, target).mean(),
|
70 |
+
"loss_kl": loss_kl,
|
71 |
+
"logits": logits,
|
72 |
+
"target": target,
|
73 |
+
"latents": latents,
|
74 |
+
}
|
75 |
+
else:
|
76 |
+
return {
|
77 |
+
"loss_logits": criteria(logits, target).mean(),
|
78 |
+
"latents": latents,
|
79 |
+
"logits": logits,
|
80 |
+
}
|
81 |
+
|
82 |
+
def training_step(self, batch, batch_idx):
|
83 |
+
"""
|
84 |
+
Description:
|
85 |
+
|
86 |
+
Args:
|
87 |
+
batch:
|
88 |
+
batch_idx:
|
89 |
+
Returns:
|
90 |
+
loss:
|
91 |
+
"""
|
92 |
+
out = self(batch)
|
93 |
+
|
94 |
+
loss = 0.0
|
95 |
+
for name, value in out.items():
|
96 |
+
if name.startswith("loss_"):
|
97 |
+
self.log(f"train/{name}", value)
|
98 |
+
loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")])
|
99 |
+
|
100 |
+
for name, value in self.cfg.loss.items():
|
101 |
+
self.log(f"train_params/{name}", self.C(value))
|
102 |
+
|
103 |
+
return {"loss": loss}
|
104 |
+
|
105 |
+
@torch.no_grad()
|
106 |
+
def validation_step(self, batch, batch_idx):
|
107 |
+
self.eval()
|
108 |
+
out = self(batch)
|
109 |
+
|
110 |
+
meshes = self.shape_model.extract_geometry(
|
111 |
+
out["latents"],
|
112 |
+
bounds=self.cfg.bounds,
|
113 |
+
mc_level=self.cfg.mc_level,
|
114 |
+
octree_resolution=self.cfg.octree_resolution,
|
115 |
+
enable_pbar=False,
|
116 |
+
)
|
117 |
+
for idx, name in enumerate(batch["uid"]):
|
118 |
+
self.save_mesh(
|
119 |
+
f"it{self.true_global_step}/{name}.obj",
|
120 |
+
meshes[idx].verts,
|
121 |
+
meshes[idx].faces,
|
122 |
+
)
|
123 |
+
|
124 |
+
threshold = 0
|
125 |
+
outputs = out["logits"]
|
126 |
+
labels = out["target"]
|
127 |
+
pred = torch.zeros_like(outputs)
|
128 |
+
pred[outputs >= threshold] = 1
|
129 |
+
|
130 |
+
accuracy = (pred == labels).float().sum(dim=1) / labels.shape[1]
|
131 |
+
accuracy = accuracy.mean()
|
132 |
+
intersection = (pred * labels).sum(dim=1)
|
133 |
+
union = (pred + labels).gt(0).sum(dim=1)
|
134 |
+
iou = intersection * 1.0 / union + 1e-5
|
135 |
+
iou = iou.mean()
|
136 |
+
self.log("val/accuracy", accuracy)
|
137 |
+
self.log("val/iou", iou)
|
138 |
+
|
139 |
+
torch.cuda.empty_cache()
|
140 |
+
|
141 |
+
return {
|
142 |
+
"val/loss": out["loss_logits"],
|
143 |
+
"val/accuracy": accuracy,
|
144 |
+
"val/iou": iou,
|
145 |
+
}
|
146 |
+
|
147 |
+
def on_validation_epoch_end(self):
|
148 |
+
pass
|
149 |
+
|
150 |
+
def test_step(self, batch, batch_idx):
|
151 |
+
return
|
step1x3d_geometry/systems/shape_diffusion.py
ADDED
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
|
3 |
+
from step1x3d_geometry.models.pipelines.pipeline import Step1X3DGeometryPipeline
|
4 |
+
import numpy as np
|
5 |
+
import json
|
6 |
+
import copy
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from skimage import measure
|
10 |
+
from einops import repeat
|
11 |
+
from tqdm import tqdm
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
from diffusers import (
|
15 |
+
DDPMScheduler,
|
16 |
+
DDIMScheduler,
|
17 |
+
UniPCMultistepScheduler,
|
18 |
+
KarrasVeScheduler,
|
19 |
+
DPMSolverMultistepScheduler,
|
20 |
+
)
|
21 |
+
from diffusers.training_utils import (
|
22 |
+
compute_snr,
|
23 |
+
free_memory,
|
24 |
+
)
|
25 |
+
import step1x3d_geometry
|
26 |
+
from step1x3d_geometry.systems.base import BaseSystem
|
27 |
+
from step1x3d_geometry.utils.misc import get_rank
|
28 |
+
from step1x3d_geometry.utils.typing import *
|
29 |
+
from diffusers import DDIMScheduler
|
30 |
+
from step1x3d_geometry.systems.utils import read_image, ddim_sample
|
31 |
+
|
32 |
+
|
33 |
+
# DEBUG = True
|
34 |
+
@step1x3d_geometry.register("diffusion-system")
|
35 |
+
class DiffusionSystem(BaseSystem):
|
36 |
+
@dataclass
|
37 |
+
class Config(BaseSystem.Config):
|
38 |
+
val_samples_json: str = ""
|
39 |
+
bounds: float = 1.05
|
40 |
+
mc_level: float = 0.0
|
41 |
+
octree_resolution: int = 256
|
42 |
+
skip_validation: bool = True
|
43 |
+
|
44 |
+
# diffusion config
|
45 |
+
z_scale_factor: float = 1.0
|
46 |
+
guidance_scale: float = 7.5
|
47 |
+
num_inference_steps: int = 50
|
48 |
+
eta: float = 0.0
|
49 |
+
snr_gamma: float = 5.0
|
50 |
+
|
51 |
+
# shape vae model
|
52 |
+
shape_model_type: str = None
|
53 |
+
shape_model: dict = field(default_factory=dict)
|
54 |
+
|
55 |
+
# condition model
|
56 |
+
visual_condition_type: Optional[str] = None
|
57 |
+
visual_condition: dict = field(default_factory=dict)
|
58 |
+
caption_condition_type: Optional[str] = None
|
59 |
+
caption_condition: dict = field(default_factory=dict)
|
60 |
+
label_condition_type: Optional[str] = None
|
61 |
+
label_condition: dict = field(default_factory=dict)
|
62 |
+
|
63 |
+
# diffusion model
|
64 |
+
denoiser_model_type: str = None
|
65 |
+
denoiser_model: dict = field(default_factory=dict)
|
66 |
+
|
67 |
+
# noise scheduler
|
68 |
+
noise_scheduler_type: str = None
|
69 |
+
noise_scheduler: dict = field(default_factory=dict)
|
70 |
+
|
71 |
+
# denoise scheduler
|
72 |
+
denoise_scheduler_type: str = None
|
73 |
+
denoise_scheduler: dict = field(default_factory=dict)
|
74 |
+
|
75 |
+
cfg: Config
|
76 |
+
|
77 |
+
def configure(self):
|
78 |
+
super().configure()
|
79 |
+
|
80 |
+
self.shape_model = step1x3d_geometry.find(self.cfg.shape_model_type)(
|
81 |
+
self.cfg.shape_model
|
82 |
+
)
|
83 |
+
self.shape_model.eval()
|
84 |
+
self.shape_model.requires_grad_(False)
|
85 |
+
|
86 |
+
if self.cfg.visual_condition_type is not None:
|
87 |
+
self.visual_condition = step1x3d_geometry.find(
|
88 |
+
self.cfg.visual_condition_type
|
89 |
+
)(self.cfg.visual_condition)
|
90 |
+
|
91 |
+
if self.cfg.caption_condition_type is not None:
|
92 |
+
self.caption_condition = step1x3d_geometry.find(
|
93 |
+
self.cfg.caption_condition_type
|
94 |
+
)(self.cfg.caption_condition)
|
95 |
+
|
96 |
+
if self.cfg.label_condition_type is not None:
|
97 |
+
self.label_condition = step1x3d_geometry.find(
|
98 |
+
self.cfg.label_condition_type
|
99 |
+
)(self.cfg.label_condition)
|
100 |
+
|
101 |
+
self.denoiser_model = step1x3d_geometry.find(self.cfg.denoiser_model_type)(
|
102 |
+
self.cfg.denoiser_model
|
103 |
+
)
|
104 |
+
|
105 |
+
self.noise_scheduler = step1x3d_geometry.find(self.cfg.noise_scheduler_type)(
|
106 |
+
**self.cfg.noise_scheduler
|
107 |
+
)
|
108 |
+
|
109 |
+
self.denoise_scheduler = step1x3d_geometry.find(
|
110 |
+
self.cfg.denoise_scheduler_type
|
111 |
+
)(**self.cfg.denoise_scheduler)
|
112 |
+
|
113 |
+
def forward(self, batch: Dict[str, Any], skip_noise=False) -> Dict[str, Any]:
|
114 |
+
# 1. encode shape latents
|
115 |
+
if "sharp_surface" in batch.keys():
|
116 |
+
sharp_surface = batch["sharp_surface"][
|
117 |
+
..., : 3 + self.cfg.shape_model.point_feats
|
118 |
+
]
|
119 |
+
else:
|
120 |
+
sharp_surface = None
|
121 |
+
shape_embeds, kl_embed, _ = self.shape_model.encode(
|
122 |
+
batch["surface"][..., : 3 + self.cfg.shape_model.point_feats],
|
123 |
+
sample_posterior=True,
|
124 |
+
sharp_surface=sharp_surface,
|
125 |
+
)
|
126 |
+
|
127 |
+
latents = kl_embed * self.cfg.z_scale_factor
|
128 |
+
|
129 |
+
# 2. gain visual condition
|
130 |
+
visual_cond_latents = None
|
131 |
+
if self.cfg.visual_condition_type is not None:
|
132 |
+
if "image" in batch and batch["image"].dim() == 5:
|
133 |
+
if self.training:
|
134 |
+
bs, n_images = batch["image"].shape[:2]
|
135 |
+
batch["image"] = batch["image"].view(
|
136 |
+
bs * n_images, *batch["image"].shape[-3:]
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
batch["image"] = batch["image"][:, 0, ...]
|
140 |
+
n_images = 1
|
141 |
+
bs = batch["image"].shape[0]
|
142 |
+
visual_cond_latents = self.visual_condition(batch).to(latents)
|
143 |
+
latents = latents.unsqueeze(1).repeat(1, n_images, 1, 1)
|
144 |
+
latents = latents.view(bs * n_images, *latents.shape[-2:])
|
145 |
+
else:
|
146 |
+
visual_cond_latents = self.visual_condition(batch).to(latents)
|
147 |
+
|
148 |
+
## 2.1 text condition if provided
|
149 |
+
caption_cond_latents = None
|
150 |
+
if self.cfg.caption_condition_type is not None:
|
151 |
+
assert "caption" in batch.keys(), "caption is required for caption encoder"
|
152 |
+
assert bs == len(
|
153 |
+
batch["caption"]
|
154 |
+
), "Batch size must be the same as the caption length."
|
155 |
+
caption_cond_latents = (
|
156 |
+
self.caption_condition(batch)
|
157 |
+
.repeat_interleave(n_images, dim=0)
|
158 |
+
.to(latents)
|
159 |
+
)
|
160 |
+
|
161 |
+
## 2.2 label condition if provided
|
162 |
+
label_cond_latents = None
|
163 |
+
if self.cfg.label_condition_type is not None:
|
164 |
+
assert "label" in batch.keys(), "label is required for label encoder"
|
165 |
+
assert bs == len(
|
166 |
+
batch["label"]
|
167 |
+
), "Batch size must be the same as the label length."
|
168 |
+
label_cond_latents = (
|
169 |
+
self.label_condition(batch)
|
170 |
+
.repeat_interleave(n_images, dim=0)
|
171 |
+
.to(latents)
|
172 |
+
)
|
173 |
+
|
174 |
+
# 3. sample noise that we"ll add to the latents
|
175 |
+
noise = torch.randn_like(latents).to(
|
176 |
+
latents
|
177 |
+
) # [batch_size, n_token, latent_dim]
|
178 |
+
bs = latents.shape[0]
|
179 |
+
|
180 |
+
# 4. Sample a random timestep for each motion
|
181 |
+
timesteps = torch.randint(
|
182 |
+
0,
|
183 |
+
self.cfg.noise_scheduler.num_train_timesteps,
|
184 |
+
(bs,),
|
185 |
+
device=latents.device,
|
186 |
+
)
|
187 |
+
timesteps = timesteps.long()
|
188 |
+
|
189 |
+
# 5. add noise
|
190 |
+
noisy_z = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
191 |
+
|
192 |
+
# 6. diffusion model forward
|
193 |
+
output = self.denoiser_model(
|
194 |
+
noisy_z,
|
195 |
+
timesteps.long(),
|
196 |
+
visual_cond_latents,
|
197 |
+
caption_cond_latents,
|
198 |
+
label_cond_latents,
|
199 |
+
).sample
|
200 |
+
|
201 |
+
# 7. compute loss
|
202 |
+
if self.noise_scheduler.config.prediction_type == "epsilon":
|
203 |
+
target = noise
|
204 |
+
elif self.noise_scheduler.config.prediction_type == "v_prediction":
|
205 |
+
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
|
206 |
+
else:
|
207 |
+
raise ValueError(
|
208 |
+
f"Prediction Type: {self.noise_scheduler.prediction_type} not supported."
|
209 |
+
)
|
210 |
+
if self.cfg.snr_gamma == 0:
|
211 |
+
if self.cfg.loss.loss_type == "l1":
|
212 |
+
loss = F.l1_loss(output, target, reduction="mean")
|
213 |
+
elif self.cfg.loss.loss_type in ["mse", "l2"]:
|
214 |
+
loss = F.mse_loss(output, target, reduction="mean")
|
215 |
+
else:
|
216 |
+
raise ValueError(f"Loss Type: {self.cfg.loss.loss_type} not supported.")
|
217 |
+
else:
|
218 |
+
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
|
219 |
+
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
|
220 |
+
# This is discussed in Section 4.2 of the same paper.
|
221 |
+
snr = compute_snr(self.noise_scheduler, timesteps)
|
222 |
+
mse_loss_weights = torch.stack(
|
223 |
+
[snr, self.cfg.snr_gamma * torch.ones_like(timesteps)], dim=1
|
224 |
+
).min(dim=1)[0]
|
225 |
+
if self.noise_scheduler.config.prediction_type == "epsilon":
|
226 |
+
mse_loss_weights = mse_loss_weights / snr
|
227 |
+
elif self.noise_scheduler.config.prediction_type == "v_prediction":
|
228 |
+
mse_loss_weights = mse_loss_weights / (snr + 1)
|
229 |
+
|
230 |
+
if self.cfg.loss.loss_type == "l1":
|
231 |
+
loss = F.l1_loss(output, target, reduction="none")
|
232 |
+
elif self.cfg.loss.loss_type in ["mse", "l2"]:
|
233 |
+
loss = F.mse_loss(output, target, reduction="none")
|
234 |
+
else:
|
235 |
+
raise ValueError(f"Loss Type: {self.cfg.loss.loss_type} not supported.")
|
236 |
+
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
|
237 |
+
loss = loss.mean()
|
238 |
+
|
239 |
+
return {
|
240 |
+
"loss_diffusion": loss,
|
241 |
+
"latents": latents,
|
242 |
+
"x_t": noisy_z,
|
243 |
+
"noise": noise,
|
244 |
+
"noise_pred": output,
|
245 |
+
"timesteps": timesteps,
|
246 |
+
}
|
247 |
+
|
248 |
+
def training_step(self, batch, batch_idx):
|
249 |
+
out = self(batch)
|
250 |
+
|
251 |
+
loss = 0.0
|
252 |
+
for name, value in out.items():
|
253 |
+
if name.startswith("loss_"):
|
254 |
+
self.log(f"train/{name}", value)
|
255 |
+
loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")])
|
256 |
+
|
257 |
+
for name, value in self.cfg.loss.items():
|
258 |
+
if name.startswith("lambda_"):
|
259 |
+
self.log(f"train_params/{name}", self.C(value))
|
260 |
+
|
261 |
+
return {"loss": loss}
|
262 |
+
|
263 |
+
@torch.no_grad()
|
264 |
+
def validation_step(self, batch, batch_idx):
|
265 |
+
if self.cfg.skip_validation:
|
266 |
+
return {}
|
267 |
+
self.eval()
|
268 |
+
|
269 |
+
if get_rank() == 0:
|
270 |
+
sample_inputs = json.loads(
|
271 |
+
open(self.cfg.val_samples_json).read()
|
272 |
+
) # condition
|
273 |
+
sample_inputs_ = copy.deepcopy(sample_inputs)
|
274 |
+
sample_outputs = self.sample(sample_inputs) # list
|
275 |
+
for i, latents in enumerate(sample_outputs["latents"]):
|
276 |
+
meshes = self.shape_model.extract_geometry(
|
277 |
+
latents,
|
278 |
+
bounds=self.cfg.bounds,
|
279 |
+
mc_level=self.cfg.mc_level,
|
280 |
+
octree_resolution=self.cfg.octree_resolution,
|
281 |
+
enable_pbar=False,
|
282 |
+
)
|
283 |
+
|
284 |
+
for j in range(len(meshes)):
|
285 |
+
name = ""
|
286 |
+
if "image" in sample_inputs_:
|
287 |
+
name += (
|
288 |
+
sample_inputs_["image"][j]
|
289 |
+
.split("/")[-1]
|
290 |
+
.replace(".png", "")
|
291 |
+
)
|
292 |
+
elif "mvimages" in sample_inputs_:
|
293 |
+
name += (
|
294 |
+
sample_inputs_["mvimages"][j][0]
|
295 |
+
.split("/")[-2]
|
296 |
+
.replace(".png", "")
|
297 |
+
)
|
298 |
+
|
299 |
+
if "caption" in sample_inputs_:
|
300 |
+
name += "_" + sample_inputs_["caption"][j].replace(" ", "_")
|
301 |
+
|
302 |
+
if "label" in sample_inputs_:
|
303 |
+
name += (
|
304 |
+
"_"
|
305 |
+
+ sample_inputs_["label"][j]["symmetry"]
|
306 |
+
+ sample_inputs_["label"][j]["edge_type"]
|
307 |
+
)
|
308 |
+
|
309 |
+
if (
|
310 |
+
meshes[j].verts is not None
|
311 |
+
and meshes[j].verts.shape[0] > 0
|
312 |
+
and meshes[j].faces is not None
|
313 |
+
and meshes[j].faces.shape[0] > 0
|
314 |
+
):
|
315 |
+
self.save_mesh(
|
316 |
+
f"it{self.true_global_step}/{name}_{i}.obj",
|
317 |
+
meshes[j].verts,
|
318 |
+
meshes[j].faces,
|
319 |
+
)
|
320 |
+
torch.cuda.empty_cache()
|
321 |
+
|
322 |
+
out = self(batch)
|
323 |
+
if self.global_step == 0:
|
324 |
+
latents = self.shape_model.decode(out["latents"])
|
325 |
+
meshes = self.shape_model.extract_geometry(
|
326 |
+
latents,
|
327 |
+
bounds=self.cfg.bounds,
|
328 |
+
mc_level=self.cfg.mc_level,
|
329 |
+
octree_resolution=self.cfg.octree_resolution,
|
330 |
+
enable_pbar=False,
|
331 |
+
)
|
332 |
+
|
333 |
+
for i, mesh in enumerate(meshes):
|
334 |
+
self.save_mesh(
|
335 |
+
f"it{self.true_global_step}/{batch['uid'][i]}.obj",
|
336 |
+
mesh.verts,
|
337 |
+
mesh.faces,
|
338 |
+
)
|
339 |
+
|
340 |
+
return {"val/loss": out["loss_diffusion"]}
|
341 |
+
|
342 |
+
@torch.no_grad()
|
343 |
+
def sample(
|
344 |
+
self,
|
345 |
+
sample_inputs: Dict[str, Union[torch.FloatTensor, List[str]]],
|
346 |
+
sample_times: int = 1,
|
347 |
+
steps: Optional[int] = None,
|
348 |
+
guidance_scale: Optional[float] = None,
|
349 |
+
eta: float = 0.0,
|
350 |
+
seed: Optional[int] = None,
|
351 |
+
**kwargs,
|
352 |
+
):
|
353 |
+
|
354 |
+
if steps is None:
|
355 |
+
steps = self.cfg.num_inference_steps
|
356 |
+
if guidance_scale is None:
|
357 |
+
guidance_scale = self.cfg.guidance_scale
|
358 |
+
do_classifier_free_guidance = guidance_scale != 1.0
|
359 |
+
|
360 |
+
# conditional encode
|
361 |
+
visal_cond = None
|
362 |
+
if "image" in sample_inputs:
|
363 |
+
sample_inputs["image"] = [
|
364 |
+
Image.open(img) if type(img) == str else img
|
365 |
+
for img in sample_inputs["image"]
|
366 |
+
]
|
367 |
+
sample_inputs["image"] = Step1X3DGeometryPipeline.preprocess_image(
|
368 |
+
sample_inputs["image"], **kwargs
|
369 |
+
)
|
370 |
+
cond = self.visual_condition.encode_image(sample_inputs["image"])
|
371 |
+
if do_classifier_free_guidance:
|
372 |
+
un_cond = self.visual_condition.empty_image_embeds.repeat(
|
373 |
+
len(sample_inputs["image"]), 1, 1
|
374 |
+
).to(cond)
|
375 |
+
visal_cond = torch.cat([un_cond, cond], dim=0)
|
376 |
+
caption_cond = None
|
377 |
+
if "caption" in sample_inputs:
|
378 |
+
cond = self.label_condition.encode_label(sample_inputs["caption"])
|
379 |
+
if do_classifier_free_guidance:
|
380 |
+
un_cond = self.caption_condition.empty_caption_embeds.repeat(
|
381 |
+
len(sample_inputs["caption"]), 1, 1
|
382 |
+
).to(cond)
|
383 |
+
caption_cond = torch.cat([un_cond, cond], dim=0)
|
384 |
+
label_cond = None
|
385 |
+
if "label" in sample_inputs:
|
386 |
+
cond = self.label_condition.encode_label(sample_inputs["label"])
|
387 |
+
if do_classifier_free_guidance:
|
388 |
+
un_cond = self.label_condition.empty_label_embeds.repeat(
|
389 |
+
len(sample_inputs["label"]), 1
|
390 |
+
).to(cond)
|
391 |
+
label_cond = torch.cat([un_cond, cond], dim=0)
|
392 |
+
|
393 |
+
latents_list = []
|
394 |
+
if seed != None:
|
395 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
396 |
+
else:
|
397 |
+
generator = None
|
398 |
+
|
399 |
+
for _ in range(sample_times):
|
400 |
+
sample_loop = ddim_sample(
|
401 |
+
self.denoise_scheduler,
|
402 |
+
self.denoiser_model.eval(),
|
403 |
+
shape=self.shape_model.latent_shape,
|
404 |
+
visual_cond=visal_cond,
|
405 |
+
caption_cond=caption_cond,
|
406 |
+
label_cond=label_cond,
|
407 |
+
steps=steps,
|
408 |
+
guidance_scale=guidance_scale,
|
409 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
410 |
+
device=self.device,
|
411 |
+
eta=eta,
|
412 |
+
disable_prog=False,
|
413 |
+
generator=generator,
|
414 |
+
)
|
415 |
+
for sample, t in sample_loop:
|
416 |
+
latents = sample
|
417 |
+
latents_list.append(self.shape_model.decode(latents))
|
418 |
+
|
419 |
+
return {"latents": latents_list, "inputs": sample_inputs}
|
420 |
+
|
421 |
+
def on_validation_epoch_end(self):
|
422 |
+
pass
|
423 |
+
|
424 |
+
def test_step(self, batch, batch_idx):
|
425 |
+
return
|
step1x3d_geometry/systems/shape_rectified_flow.py
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import json
|
5 |
+
import copy
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from skimage import measure
|
10 |
+
from einops import repeat
|
11 |
+
from tqdm import tqdm
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
from diffusers import (
|
15 |
+
DDPMScheduler,
|
16 |
+
DDIMScheduler,
|
17 |
+
UniPCMultistepScheduler,
|
18 |
+
KarrasVeScheduler,
|
19 |
+
DPMSolverMultistepScheduler,
|
20 |
+
)
|
21 |
+
from diffusers.training_utils import (
|
22 |
+
compute_density_for_timestep_sampling,
|
23 |
+
compute_loss_weighting_for_sd3,
|
24 |
+
free_memory,
|
25 |
+
)
|
26 |
+
import step1x3d_geometry
|
27 |
+
from step1x3d_geometry.systems.base import BaseSystem
|
28 |
+
from step1x3d_geometry.utils.misc import get_rank
|
29 |
+
from step1x3d_geometry.utils.typing import *
|
30 |
+
from step1x3d_geometry.systems.utils import read_image, preprocess_image, flow_sample
|
31 |
+
|
32 |
+
|
33 |
+
def get_sigmas(noise_scheduler, timesteps, n_dim=4, dtype=torch.float32):
|
34 |
+
sigmas = noise_scheduler.sigmas.to(device=timesteps.device, dtype=dtype)
|
35 |
+
schedule_timesteps = noise_scheduler.timesteps.to(timesteps.device)
|
36 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
37 |
+
|
38 |
+
sigma = sigmas[step_indices].flatten()
|
39 |
+
while len(sigma.shape) < n_dim:
|
40 |
+
sigma = sigma.unsqueeze(-1)
|
41 |
+
return sigma
|
42 |
+
|
43 |
+
|
44 |
+
@step1x3d_geometry.register("rectified-flow-system")
|
45 |
+
class RectifiedFlowSystem(BaseSystem):
|
46 |
+
@dataclass
|
47 |
+
class Config(BaseSystem.Config):
|
48 |
+
skip_validation: bool = True
|
49 |
+
val_samples_json: str = ""
|
50 |
+
bounds: float = 1.05
|
51 |
+
mc_level: float = 0.0
|
52 |
+
octree_resolution: int = 256
|
53 |
+
|
54 |
+
# diffusion config
|
55 |
+
guidance_scale: float = 7.5
|
56 |
+
num_inference_steps: int = 30
|
57 |
+
eta: float = 0.0
|
58 |
+
snr_gamma: float = 5.0
|
59 |
+
|
60 |
+
# flow
|
61 |
+
weighting_scheme: str = "logit_normal"
|
62 |
+
logit_mean: float = 0
|
63 |
+
logit_std: float = 1.0
|
64 |
+
mode_scale: float = 1.29
|
65 |
+
precondition_outputs: bool = True
|
66 |
+
precondition_t: int = 1000
|
67 |
+
|
68 |
+
# shape vae model
|
69 |
+
shape_model_type: str = None
|
70 |
+
shape_model: dict = field(default_factory=dict)
|
71 |
+
|
72 |
+
# condition model
|
73 |
+
visual_condition_type: Optional[str] = None
|
74 |
+
visual_condition: dict = field(default_factory=dict)
|
75 |
+
caption_condition_type: Optional[str] = None
|
76 |
+
caption_condition: dict = field(default_factory=dict)
|
77 |
+
label_condition_type: Optional[str] = None
|
78 |
+
label_condition: dict = field(default_factory=dict)
|
79 |
+
|
80 |
+
# diffusion model
|
81 |
+
denoiser_model_type: str = None
|
82 |
+
denoiser_model: dict = field(default_factory=dict)
|
83 |
+
|
84 |
+
# noise scheduler
|
85 |
+
noise_scheduler_type: str = None
|
86 |
+
noise_scheduler: dict = field(default_factory=dict)
|
87 |
+
|
88 |
+
# denoise scheduler
|
89 |
+
denoise_scheduler_type: str = None
|
90 |
+
denoise_scheduler: dict = field(default_factory=dict)
|
91 |
+
|
92 |
+
# lora
|
93 |
+
use_lora: bool = False
|
94 |
+
lora_layers: Optional[str] = None
|
95 |
+
rank: int = 128 # The dimension of the LoRA update matrices.
|
96 |
+
alpha: int = 128
|
97 |
+
|
98 |
+
cfg: Config
|
99 |
+
|
100 |
+
def configure(self):
|
101 |
+
super().configure()
|
102 |
+
|
103 |
+
self.shape_model = step1x3d_geometry.find(self.cfg.shape_model_type)(
|
104 |
+
self.cfg.shape_model
|
105 |
+
)
|
106 |
+
self.shape_model.eval()
|
107 |
+
self.shape_model.requires_grad_(False)
|
108 |
+
|
109 |
+
if self.cfg.visual_condition_type is not None:
|
110 |
+
self.visual_condition = step1x3d_geometry.find(
|
111 |
+
self.cfg.visual_condition_type
|
112 |
+
)(self.cfg.visual_condition)
|
113 |
+
self.visual_condition.requires_grad_(False)
|
114 |
+
|
115 |
+
if self.cfg.caption_condition_type is not None:
|
116 |
+
self.caption_condition = step1x3d_geometry.find(
|
117 |
+
self.cfg.caption_condition_type
|
118 |
+
)(self.cfg.caption_condition)
|
119 |
+
self.caption_condition.requires_grad_(False)
|
120 |
+
|
121 |
+
if self.cfg.label_condition_type is not None:
|
122 |
+
self.label_condition = step1x3d_geometry.find(
|
123 |
+
self.cfg.label_condition_type
|
124 |
+
)(self.cfg.label_condition)
|
125 |
+
|
126 |
+
self.denoiser_model = step1x3d_geometry.find(self.cfg.denoiser_model_type)(
|
127 |
+
self.cfg.denoiser_model
|
128 |
+
)
|
129 |
+
if self.cfg.use_lora: # We only train the additional adapter LoRA layers
|
130 |
+
self.denoiser_model.requires_grad_(False)
|
131 |
+
|
132 |
+
self.noise_scheduler = step1x3d_geometry.find(self.cfg.noise_scheduler_type)(
|
133 |
+
**self.cfg.noise_scheduler
|
134 |
+
)
|
135 |
+
self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler)
|
136 |
+
|
137 |
+
self.denoise_scheduler = step1x3d_geometry.find(
|
138 |
+
self.cfg.denoise_scheduler_type
|
139 |
+
)(**self.cfg.denoise_scheduler)
|
140 |
+
|
141 |
+
if self.cfg.use_lora:
|
142 |
+
from peft import LoraConfig, set_peft_model_state_dict
|
143 |
+
|
144 |
+
if self.cfg.lora_layers is not None:
|
145 |
+
self.target_modules = [
|
146 |
+
layer.strip() for layer in self.cfg.lora_layers.split(",")
|
147 |
+
]
|
148 |
+
else:
|
149 |
+
self.target_modules = [
|
150 |
+
"attn.to_k",
|
151 |
+
"attn.to_q",
|
152 |
+
"attn.to_v",
|
153 |
+
"attn.to_out.0",
|
154 |
+
"attn.add_k_proj",
|
155 |
+
"attn.add_q_proj",
|
156 |
+
"attn.add_v_proj",
|
157 |
+
"attn.to_add_out",
|
158 |
+
"ff.net.0.proj",
|
159 |
+
"ff.net.2",
|
160 |
+
"ff_context.net.0.proj",
|
161 |
+
"ff_context.net.2",
|
162 |
+
]
|
163 |
+
self.transformer_lora_config = LoraConfig(
|
164 |
+
r=self.cfg.rank,
|
165 |
+
lora_alpha=self.cfg.alpha,
|
166 |
+
init_lora_weights="gaussian",
|
167 |
+
target_modules=self.target_modules,
|
168 |
+
)
|
169 |
+
self.denoiser_model.dit_model.add_adapter(self.transformer_lora_config)
|
170 |
+
|
171 |
+
def forward(self, batch: Dict[str, Any], skip_noise=False) -> Dict[str, Any]:
|
172 |
+
# 1. encode shape latents
|
173 |
+
if "sharp_surface" in batch.keys():
|
174 |
+
sharp_surface = batch["sharp_surface"][
|
175 |
+
..., : 3 + self.cfg.shape_model.point_feats
|
176 |
+
]
|
177 |
+
else:
|
178 |
+
sharp_surface = None
|
179 |
+
shape_embeds, latents, _ = self.shape_model.encode(
|
180 |
+
batch["surface"][..., : 3 + self.cfg.shape_model.point_feats],
|
181 |
+
sample_posterior=True,
|
182 |
+
sharp_surface=sharp_surface,
|
183 |
+
)
|
184 |
+
|
185 |
+
# 2. gain visual condition
|
186 |
+
visual_cond = None
|
187 |
+
if self.cfg.visual_condition_type is not None:
|
188 |
+
assert "image" in batch.keys(), "image is required for label encoder"
|
189 |
+
if "image" in batch and batch["image"].dim() == 5:
|
190 |
+
if self.training:
|
191 |
+
bs, n_images = batch["image"].shape[:2]
|
192 |
+
batch["image"] = batch["image"].view(
|
193 |
+
bs * n_images, *batch["image"].shape[-3:]
|
194 |
+
)
|
195 |
+
else:
|
196 |
+
batch["image"] = batch["image"][:, 0, ...]
|
197 |
+
n_images = 1
|
198 |
+
bs = batch["image"].shape[0]
|
199 |
+
visual_cond = self.visual_condition(batch).to(latents)
|
200 |
+
latents = latents.unsqueeze(1).repeat(1, n_images, 1, 1)
|
201 |
+
latents = latents.view(bs * n_images, *latents.shape[-2:])
|
202 |
+
else:
|
203 |
+
visual_cond = self.visual_condition(batch).to(latents)
|
204 |
+
bs = visual_cond.shape[0]
|
205 |
+
n_images = 1
|
206 |
+
|
207 |
+
## 2.1 text condition if provided
|
208 |
+
caption_cond = None
|
209 |
+
if self.cfg.caption_condition_type is not None:
|
210 |
+
assert "caption" in batch.keys(), "caption is required for caption encoder"
|
211 |
+
assert bs == len(
|
212 |
+
batch["caption"]
|
213 |
+
), "Batch size must be the same as the caption length."
|
214 |
+
caption_cond = (
|
215 |
+
self.caption_condition(batch)
|
216 |
+
.repeat_interleave(n_images, dim=0)
|
217 |
+
.to(latents)
|
218 |
+
)
|
219 |
+
|
220 |
+
## 2.2 label condition if provided
|
221 |
+
label_cond = None
|
222 |
+
if self.cfg.label_condition_type is not None:
|
223 |
+
assert "label" in batch.keys(), "label is required for label encoder"
|
224 |
+
assert bs == len(
|
225 |
+
batch["label"]
|
226 |
+
), "Batch size must be the same as the label length."
|
227 |
+
label_cond = (
|
228 |
+
self.label_condition(batch)
|
229 |
+
.repeat_interleave(n_images, dim=0)
|
230 |
+
.to(latents)
|
231 |
+
)
|
232 |
+
|
233 |
+
# 3. sample noise that we"ll add to the latents
|
234 |
+
noise = torch.randn_like(latents).to(
|
235 |
+
latents
|
236 |
+
) # [batch_size, n_token, latent_dim]
|
237 |
+
|
238 |
+
# 4. Sample a random timestep
|
239 |
+
u = compute_density_for_timestep_sampling(
|
240 |
+
weighting_scheme=self.cfg.weighting_scheme,
|
241 |
+
batch_size=bs * n_images,
|
242 |
+
logit_mean=self.cfg.logit_mean,
|
243 |
+
logit_std=self.cfg.logit_std,
|
244 |
+
mode_scale=self.cfg.mode_scale,
|
245 |
+
)
|
246 |
+
indices = (u * self.cfg.noise_scheduler.num_train_timesteps).long()
|
247 |
+
timesteps = self.noise_scheduler_copy.timesteps[indices].to(
|
248 |
+
device=latents.device
|
249 |
+
)
|
250 |
+
|
251 |
+
# 5. add noise
|
252 |
+
sigmas = get_sigmas(
|
253 |
+
self.noise_scheduler_copy, timesteps, n_dim=3, dtype=latents.dtype
|
254 |
+
)
|
255 |
+
noisy_z = (1.0 - sigmas) * latents + sigmas * noise
|
256 |
+
|
257 |
+
# 6. diffusion model forward
|
258 |
+
output = self.denoiser_model(
|
259 |
+
noisy_z, timesteps.long(), visual_cond, caption_cond, label_cond
|
260 |
+
).sample
|
261 |
+
|
262 |
+
# 7. compute loss
|
263 |
+
if self.cfg.precondition_outputs:
|
264 |
+
output = output * (-sigmas) + noisy_z
|
265 |
+
# these weighting schemes use a uniform timestep sampling
|
266 |
+
# and instead post-weight the loss
|
267 |
+
weighting = compute_loss_weighting_for_sd3(
|
268 |
+
weighting_scheme=self.cfg.weighting_scheme, sigmas=sigmas
|
269 |
+
)
|
270 |
+
# flow matching loss
|
271 |
+
if self.cfg.precondition_outputs:
|
272 |
+
target = latents
|
273 |
+
else:
|
274 |
+
target = noise - latents
|
275 |
+
|
276 |
+
# Compute regular loss.
|
277 |
+
loss = torch.mean(
|
278 |
+
(weighting.float() * (output.float() - target.float()) ** 2).reshape(
|
279 |
+
target.shape[0], -1
|
280 |
+
),
|
281 |
+
1,
|
282 |
+
)
|
283 |
+
loss = loss.mean()
|
284 |
+
|
285 |
+
return {
|
286 |
+
"loss_diffusion": loss,
|
287 |
+
"latents": latents,
|
288 |
+
"x_t": noisy_z,
|
289 |
+
"noise": noise,
|
290 |
+
"noise_pred": output,
|
291 |
+
"timesteps": timesteps,
|
292 |
+
}
|
293 |
+
|
294 |
+
def training_step(self, batch, batch_idx):
|
295 |
+
out = self(batch)
|
296 |
+
|
297 |
+
loss = 0.0
|
298 |
+
for name, value in out.items():
|
299 |
+
if name.startswith("loss_"):
|
300 |
+
self.log(f"train/{name}", value)
|
301 |
+
loss += value * self.C(self.cfg.loss[name.replace("loss_", "lambda_")])
|
302 |
+
if name.startswith("log_"):
|
303 |
+
self.log(f"log/{name.replace('log_', '')}", value.mean())
|
304 |
+
|
305 |
+
for name, value in self.cfg.loss.items():
|
306 |
+
if name.startswith("lambda_"):
|
307 |
+
self.log(f"train_params/{name}", self.C(value))
|
308 |
+
|
309 |
+
return {"loss": loss}
|
310 |
+
|
311 |
+
@torch.no_grad()
|
312 |
+
def validation_step(self, batch, batch_idx):
|
313 |
+
if self.cfg.skip_validation:
|
314 |
+
return {}
|
315 |
+
self.eval()
|
316 |
+
|
317 |
+
if get_rank() == 0:
|
318 |
+
sample_inputs = json.loads(
|
319 |
+
open(self.cfg.val_samples_json).read()
|
320 |
+
) # condition
|
321 |
+
sample_inputs_ = copy.deepcopy(sample_inputs)
|
322 |
+
sample_outputs = self.sample(sample_inputs) # list
|
323 |
+
for i, latents in enumerate(sample_outputs["latents"]):
|
324 |
+
meshes = self.shape_model.extract_geometry(
|
325 |
+
latents,
|
326 |
+
bounds=self.cfg.bounds,
|
327 |
+
mc_level=self.cfg.mc_level,
|
328 |
+
octree_resolution=self.cfg.octree_resolution,
|
329 |
+
enable_pbar=False,
|
330 |
+
)
|
331 |
+
|
332 |
+
for j in range(len(meshes)):
|
333 |
+
name = ""
|
334 |
+
if "image" in sample_inputs_:
|
335 |
+
name += (
|
336 |
+
sample_inputs_["image"][j]
|
337 |
+
.split("/")[-1]
|
338 |
+
.replace(".png", "")
|
339 |
+
)
|
340 |
+
|
341 |
+
elif "mvimages" in sample_inputs_:
|
342 |
+
name += (
|
343 |
+
sample_inputs_["mvimages"][j][0]
|
344 |
+
.split("/")[-2]
|
345 |
+
.replace(".png", "")
|
346 |
+
)
|
347 |
+
|
348 |
+
if "caption" in sample_inputs_:
|
349 |
+
name += "_" + sample_inputs_["caption"][j].replace(
|
350 |
+
" ", "_"
|
351 |
+
).replace(".", "")
|
352 |
+
|
353 |
+
if "label" in sample_inputs_:
|
354 |
+
name += (
|
355 |
+
"_"
|
356 |
+
+ sample_inputs_["label"][j]["symmetry"]
|
357 |
+
+ sample_inputs_["label"][j]["edge_type"]
|
358 |
+
)
|
359 |
+
|
360 |
+
if (
|
361 |
+
meshes[j].verts is not None
|
362 |
+
and meshes[j].verts.shape[0] > 0
|
363 |
+
and meshes[j].faces is not None
|
364 |
+
and meshes[j].faces.shape[0] > 0
|
365 |
+
):
|
366 |
+
self.save_mesh(
|
367 |
+
f"it{self.true_global_step}/{name}_{i}.obj",
|
368 |
+
meshes[j].verts,
|
369 |
+
meshes[j].faces,
|
370 |
+
)
|
371 |
+
torch.cuda.empty_cache()
|
372 |
+
|
373 |
+
out = self(batch)
|
374 |
+
if self.global_step == 0:
|
375 |
+
latents = self.shape_model.decode(out["latents"])
|
376 |
+
meshes = self.shape_model.extract_geometry(
|
377 |
+
latents,
|
378 |
+
bounds=self.cfg.bounds,
|
379 |
+
mc_level=self.cfg.mc_level,
|
380 |
+
octree_resolution=self.cfg.octree_resolution,
|
381 |
+
enable_pbar=False,
|
382 |
+
)
|
383 |
+
|
384 |
+
for i, mesh in enumerate(meshes):
|
385 |
+
self.save_mesh(
|
386 |
+
f"it{self.true_global_step}/{batch['uid'][i]}.obj",
|
387 |
+
mesh.verts,
|
388 |
+
mesh.faces,
|
389 |
+
)
|
390 |
+
|
391 |
+
return {"val/loss": out["loss_diffusion"]}
|
392 |
+
|
393 |
+
@torch.no_grad()
|
394 |
+
def sample(
|
395 |
+
self,
|
396 |
+
sample_inputs: Dict[str, Union[torch.FloatTensor, List[str]]],
|
397 |
+
sample_times: int = 1,
|
398 |
+
steps: Optional[int] = None,
|
399 |
+
guidance_scale: Optional[float] = None,
|
400 |
+
eta: float = 0.0,
|
401 |
+
seed: Optional[int] = None,
|
402 |
+
**kwargs,
|
403 |
+
):
|
404 |
+
|
405 |
+
if steps is None:
|
406 |
+
steps = self.cfg.num_inference_steps
|
407 |
+
if guidance_scale is None:
|
408 |
+
guidance_scale = self.cfg.guidance_scale
|
409 |
+
do_classifier_free_guidance = guidance_scale != 1.0
|
410 |
+
|
411 |
+
# conditional encode
|
412 |
+
visal_cond = None
|
413 |
+
if "image" in sample_inputs:
|
414 |
+
sample_inputs["image"] = [
|
415 |
+
Image.open(img) if type(img) == str else img
|
416 |
+
for img in sample_inputs["image"]
|
417 |
+
]
|
418 |
+
sample_inputs["image"] = preprocess_image(sample_inputs["image"], **kwargs)
|
419 |
+
cond = self.visual_condition.encode_image(sample_inputs["image"])
|
420 |
+
if do_classifier_free_guidance:
|
421 |
+
un_cond = self.visual_condition.empty_image_embeds.repeat(
|
422 |
+
len(sample_inputs["image"]), 1, 1
|
423 |
+
).to(cond)
|
424 |
+
visal_cond = torch.cat([un_cond, cond], dim=0)
|
425 |
+
caption_cond = None
|
426 |
+
if "caption" in sample_inputs:
|
427 |
+
cond = self.label_condition.encode_label(sample_inputs["caption"])
|
428 |
+
if do_classifier_free_guidance:
|
429 |
+
un_cond = self.caption_condition.empty_caption_embeds.repeat(
|
430 |
+
len(sample_inputs["caption"]), 1, 1
|
431 |
+
).to(cond)
|
432 |
+
caption_cond = torch.cat([un_cond, cond], dim=0)
|
433 |
+
label_cond = None
|
434 |
+
if "label" in sample_inputs:
|
435 |
+
cond = self.label_condition.encode_label(sample_inputs["label"])
|
436 |
+
if do_classifier_free_guidance:
|
437 |
+
un_cond = self.label_condition.empty_label_embeds.repeat(
|
438 |
+
len(sample_inputs["label"]), 1, 1
|
439 |
+
).to(cond)
|
440 |
+
label_cond = torch.cat([un_cond, cond], dim=0)
|
441 |
+
|
442 |
+
latents_list = []
|
443 |
+
if seed != None:
|
444 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
445 |
+
else:
|
446 |
+
generator = None
|
447 |
+
|
448 |
+
for _ in range(sample_times):
|
449 |
+
sample_loop = flow_sample(
|
450 |
+
self.denoise_scheduler,
|
451 |
+
self.denoiser_model.eval(),
|
452 |
+
shape=self.shape_model.latent_shape,
|
453 |
+
visual_cond=visal_cond,
|
454 |
+
caption_cond=caption_cond,
|
455 |
+
label_cond=label_cond,
|
456 |
+
steps=steps,
|
457 |
+
guidance_scale=guidance_scale,
|
458 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
459 |
+
device=self.device,
|
460 |
+
eta=eta,
|
461 |
+
disable_prog=False,
|
462 |
+
generator=generator,
|
463 |
+
)
|
464 |
+
for sample, t in sample_loop:
|
465 |
+
latents = sample
|
466 |
+
latents_list.append(self.shape_model.decode(latents))
|
467 |
+
|
468 |
+
return {"latents": latents_list, "inputs": sample_inputs}
|
469 |
+
|
470 |
+
def on_validation_epoch_end(self):
|
471 |
+
pass
|
472 |
+
|
473 |
+
def test_step(self, batch, batch_idx):
|
474 |
+
return
|
step1x3d_geometry/systems/utils.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
import rembg
|
5 |
+
from PIL import Image
|
6 |
+
from tqdm import tqdm
|
7 |
+
from diffusers import DDIMScheduler
|
8 |
+
from torchvision import transforms
|
9 |
+
|
10 |
+
from step1x3d_geometry.utils.typing import *
|
11 |
+
from step1x3d_geometry.utils.misc import get_device
|
12 |
+
|
13 |
+
|
14 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
15 |
+
def retrieve_timesteps(
|
16 |
+
scheduler,
|
17 |
+
num_inference_steps: Optional[int] = None,
|
18 |
+
device: Optional[Union[str, torch.device]] = None,
|
19 |
+
timesteps: Optional[List[int]] = None,
|
20 |
+
sigmas: Optional[List[float]] = None,
|
21 |
+
**kwargs,
|
22 |
+
):
|
23 |
+
r"""
|
24 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
25 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
scheduler (`SchedulerMixin`):
|
29 |
+
The scheduler to get timesteps from.
|
30 |
+
num_inference_steps (`int`):
|
31 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
32 |
+
must be `None`.
|
33 |
+
device (`str` or `torch.device`, *optional*):
|
34 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
35 |
+
timesteps (`List[int]`, *optional*):
|
36 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
37 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
38 |
+
sigmas (`List[float]`, *optional*):
|
39 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
40 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
44 |
+
second element is the number of inference steps.
|
45 |
+
"""
|
46 |
+
if timesteps is not None and sigmas is not None:
|
47 |
+
raise ValueError(
|
48 |
+
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
49 |
+
)
|
50 |
+
if timesteps is not None:
|
51 |
+
accepts_timesteps = "timesteps" in set(
|
52 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
53 |
+
)
|
54 |
+
if not accepts_timesteps:
|
55 |
+
raise ValueError(
|
56 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
57 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
58 |
+
)
|
59 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
60 |
+
timesteps = scheduler.timesteps
|
61 |
+
num_inference_steps = len(timesteps)
|
62 |
+
elif sigmas is not None:
|
63 |
+
accept_sigmas = "sigmas" in set(
|
64 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
65 |
+
)
|
66 |
+
if not accept_sigmas:
|
67 |
+
raise ValueError(
|
68 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
69 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
70 |
+
)
|
71 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
72 |
+
timesteps = scheduler.timesteps
|
73 |
+
num_inference_steps = len(timesteps)
|
74 |
+
else:
|
75 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
76 |
+
timesteps = scheduler.timesteps
|
77 |
+
return timesteps, num_inference_steps
|
78 |
+
|
79 |
+
|
80 |
+
@torch.no_grad()
|
81 |
+
def ddim_sample(
|
82 |
+
ddim_scheduler: DDIMScheduler,
|
83 |
+
diffusion_model: torch.nn.Module,
|
84 |
+
shape: Union[List[int], Tuple[int]],
|
85 |
+
visual_cond: torch.FloatTensor,
|
86 |
+
caption_cond: torch.FloatTensor,
|
87 |
+
label_cond: torch.FloatTensor,
|
88 |
+
steps: int,
|
89 |
+
eta: float = 0.0,
|
90 |
+
guidance_scale: float = 3.0,
|
91 |
+
do_classifier_free_guidance: bool = True,
|
92 |
+
generator: Optional[torch.Generator] = None,
|
93 |
+
device: torch.device = "cuda:0",
|
94 |
+
disable_prog: bool = True,
|
95 |
+
):
|
96 |
+
|
97 |
+
assert steps > 0, f"{steps} must > 0."
|
98 |
+
|
99 |
+
# init latents
|
100 |
+
if visual_cond is not None:
|
101 |
+
bsz = visual_cond.shape[0]
|
102 |
+
device = visual_cond.device
|
103 |
+
dtype = visual_cond.dtype
|
104 |
+
if caption_cond is not None:
|
105 |
+
bsz = caption_cond.shape[0]
|
106 |
+
device = caption_cond.device
|
107 |
+
dtype = caption_cond.dtype
|
108 |
+
if label_cond is not None:
|
109 |
+
bsz = label_cond.shape[0]
|
110 |
+
device = label_cond.device
|
111 |
+
dtype = label_cond.dtype
|
112 |
+
|
113 |
+
if do_classifier_free_guidance:
|
114 |
+
bsz = bsz // 2
|
115 |
+
latents = torch.randn(
|
116 |
+
(bsz, *shape),
|
117 |
+
generator=generator,
|
118 |
+
device=device,
|
119 |
+
dtype=dtype,
|
120 |
+
)
|
121 |
+
try:
|
122 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
123 |
+
latents = latents * scheduler.init_noise_sigma
|
124 |
+
except AttributeError:
|
125 |
+
pass
|
126 |
+
|
127 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
128 |
+
extra_step_kwargs = {"generator": generator}
|
129 |
+
|
130 |
+
# set timesteps
|
131 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
132 |
+
scheduler,
|
133 |
+
steps,
|
134 |
+
device,
|
135 |
+
)
|
136 |
+
if eta > 0:
|
137 |
+
assert 0 <= eta <= 1, f"eta must be between [0, 1]. Got {eta}."
|
138 |
+
assert (
|
139 |
+
scheduler.__class__.__name__ == "DDIMScheduler"
|
140 |
+
), f"eta is only used with the DDIMScheduler."
|
141 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
142 |
+
# eta (η) is only used with the DDIMScheduler, and between [0, 1]
|
143 |
+
extra_step_kwargs["eta"] = eta
|
144 |
+
|
145 |
+
# reverse
|
146 |
+
for i, t in enumerate(
|
147 |
+
tqdm(timesteps, disable=disable_prog, desc="DDIM Sampling:", leave=False)
|
148 |
+
):
|
149 |
+
# expand the latents if we are doing classifier free guidance
|
150 |
+
latent_model_input = (
|
151 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
152 |
+
)
|
153 |
+
|
154 |
+
# predict the noise residual
|
155 |
+
timestep_tensor = torch.tensor([t], dtype=torch.long, device=device)
|
156 |
+
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
|
157 |
+
noise_pred = diffusion_model.forward(
|
158 |
+
latent_model_input, timestep_tensor, visual_cond, caption_cond, label_cond
|
159 |
+
).sample
|
160 |
+
|
161 |
+
# perform guidance
|
162 |
+
if do_classifier_free_guidance:
|
163 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
164 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
165 |
+
noise_pred_text - noise_pred_uncond
|
166 |
+
)
|
167 |
+
|
168 |
+
# compute the previous noisy sample x_t -> x_t-1
|
169 |
+
latents = ddim_scheduler.step(
|
170 |
+
noise_pred, t, latents, **extra_step_kwargs
|
171 |
+
).prev_sample
|
172 |
+
|
173 |
+
yield latents, t
|
174 |
+
|
175 |
+
|
176 |
+
@torch.no_grad()
|
177 |
+
def flow_sample(
|
178 |
+
scheduler: DDIMScheduler,
|
179 |
+
diffusion_model: torch.nn.Module,
|
180 |
+
shape: Union[List[int], Tuple[int]],
|
181 |
+
visual_cond: torch.FloatTensor,
|
182 |
+
caption_cond: torch.FloatTensor,
|
183 |
+
label_cond: torch.FloatTensor,
|
184 |
+
steps: int,
|
185 |
+
eta: float = 0.0,
|
186 |
+
guidance_scale: float = 3.0,
|
187 |
+
do_classifier_free_guidance: bool = True,
|
188 |
+
generator: Optional[torch.Generator] = None,
|
189 |
+
device: torch.device = "cuda:0",
|
190 |
+
disable_prog: bool = True,
|
191 |
+
):
|
192 |
+
|
193 |
+
assert steps > 0, f"{steps} must > 0."
|
194 |
+
|
195 |
+
# init latents
|
196 |
+
if visual_cond is not None:
|
197 |
+
bsz = visual_cond.shape[0]
|
198 |
+
device = visual_cond.device
|
199 |
+
dtype = visual_cond.dtype
|
200 |
+
if caption_cond is not None:
|
201 |
+
bsz = caption_cond.shape[0]
|
202 |
+
device = caption_cond.device
|
203 |
+
dtype = caption_cond.dtype
|
204 |
+
if label_cond is not None:
|
205 |
+
bsz = label_cond.shape[0]
|
206 |
+
device = label_cond.device
|
207 |
+
dtype = label_cond.dtype
|
208 |
+
|
209 |
+
if do_classifier_free_guidance:
|
210 |
+
bsz = bsz // 2
|
211 |
+
latents = torch.randn(
|
212 |
+
(bsz, *shape),
|
213 |
+
generator=generator,
|
214 |
+
device=device,
|
215 |
+
dtype=dtype,
|
216 |
+
)
|
217 |
+
try:
|
218 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
219 |
+
latents = latents * scheduler.init_noise_sigma
|
220 |
+
except AttributeError:
|
221 |
+
pass
|
222 |
+
|
223 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
224 |
+
extra_step_kwargs = {"generator": generator}
|
225 |
+
|
226 |
+
# set timesteps
|
227 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
228 |
+
scheduler,
|
229 |
+
steps + 1,
|
230 |
+
device,
|
231 |
+
)
|
232 |
+
if eta > 0:
|
233 |
+
assert 0 <= eta <= 1, f"eta must be between [0, 1]. Got {eta}."
|
234 |
+
assert (
|
235 |
+
scheduler.__class__.__name__ == "DDIMScheduler"
|
236 |
+
), f"eta is only used with the DDIMScheduler."
|
237 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
238 |
+
# eta (η) is only used with the DDIMScheduler, and between [0, 1]
|
239 |
+
extra_step_kwargs["eta"] = eta
|
240 |
+
|
241 |
+
# reverse
|
242 |
+
distance = (timesteps[:-1] - timesteps[1:]) / scheduler.config.num_train_timesteps
|
243 |
+
for i, t in enumerate(
|
244 |
+
tqdm(timesteps[:-1], disable=disable_prog, desc="Flow Sampling:", leave=False)
|
245 |
+
):
|
246 |
+
# expand the latents if we are doing classifier free guidance
|
247 |
+
latent_model_input = (
|
248 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
249 |
+
)
|
250 |
+
# predict the noise residual
|
251 |
+
timestep_tensor = torch.tensor([t], dtype=latents.dtype, device=device)
|
252 |
+
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
|
253 |
+
noise_pred = diffusion_model.forward(
|
254 |
+
latent_model_input, timestep_tensor, visual_cond, caption_cond, label_cond
|
255 |
+
).sample
|
256 |
+
if isinstance(noise_pred, tuple):
|
257 |
+
noise_pred, layer_idx_list, ones_list, pred_c_list = noise_pred
|
258 |
+
|
259 |
+
# perform guidance
|
260 |
+
if do_classifier_free_guidance:
|
261 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
262 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
263 |
+
noise_pred_text - noise_pred_uncond
|
264 |
+
)
|
265 |
+
|
266 |
+
# compute the previous noisy sample x_t -> x_t-1
|
267 |
+
latents = latents - distance[i] * noise_pred
|
268 |
+
|
269 |
+
yield latents, t
|
270 |
+
|
271 |
+
|
272 |
+
def compute_snr(noise_scheduler, timesteps):
|
273 |
+
"""
|
274 |
+
Computes SNR as per
|
275 |
+
https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
|
276 |
+
"""
|
277 |
+
alphas_cumprod = noise_scheduler.alphas_cumprod
|
278 |
+
sqrt_alphas_cumprod = alphas_cumprod**0.5
|
279 |
+
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
|
280 |
+
|
281 |
+
# Expand the tensors.
|
282 |
+
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
|
283 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[
|
284 |
+
timesteps
|
285 |
+
].float()
|
286 |
+
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
|
287 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
|
288 |
+
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
|
289 |
+
|
290 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
|
291 |
+
device=timesteps.device
|
292 |
+
)[timesteps].float()
|
293 |
+
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
|
294 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
|
295 |
+
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
|
296 |
+
|
297 |
+
# Compute SNR.
|
298 |
+
snr = (alpha / sigma) ** 2
|
299 |
+
return snr
|
300 |
+
|
301 |
+
|
302 |
+
def read_image(img, img_size=224):
|
303 |
+
transform = transforms.Compose(
|
304 |
+
[
|
305 |
+
transforms.Resize(
|
306 |
+
img_size, transforms.InterpolationMode.BICUBIC, antialias=True
|
307 |
+
),
|
308 |
+
transforms.CenterCrop(img_size), # crop a (224, 224) square
|
309 |
+
transforms.ToTensor(),
|
310 |
+
]
|
311 |
+
)
|
312 |
+
rgb = Image.open(img)
|
313 |
+
rgb = transform(rgb)[:3, ...].permute(1, 2, 0)
|
314 |
+
return rgb
|
315 |
+
|
316 |
+
|
317 |
+
def preprocess_image(
|
318 |
+
images_pil: List[Image.Image],
|
319 |
+
force: bool = False,
|
320 |
+
background_color: List[int] = [255, 255, 255],
|
321 |
+
foreground_ratio: float = 0.95,
|
322 |
+
):
|
323 |
+
r"""
|
324 |
+
Crop and remote the background of the input image
|
325 |
+
Args:
|
326 |
+
image_pil (`List[PIL.Image.Image]`):
|
327 |
+
List of `PIL.Image.Image` objects representing the input image.
|
328 |
+
force (`bool`, *optional*, defaults to `False`):
|
329 |
+
Whether to force remove the background even if the image has an alpha channel.
|
330 |
+
Returns:
|
331 |
+
`List[PIL.Image.Image]`: List of `PIL.Image.Image` objects representing the preprocessed image.
|
332 |
+
"""
|
333 |
+
preprocessed_images = []
|
334 |
+
for i in range(len(images_pil)):
|
335 |
+
image = images_pil[i]
|
336 |
+
width, height, size = image.width, image.height, image.size
|
337 |
+
do_remove = True
|
338 |
+
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
339 |
+
# explain why current do not rm bg
|
340 |
+
print(
|
341 |
+
"alhpa channl not empty, skip remove background, using alpha channel as mask"
|
342 |
+
)
|
343 |
+
do_remove = False
|
344 |
+
do_remove = do_remove or force
|
345 |
+
if do_remove:
|
346 |
+
image = rembg.remove(image)
|
347 |
+
|
348 |
+
# calculate the min bbox of the image
|
349 |
+
alpha = image.split()[-1]
|
350 |
+
bboxs = alpha.getbbox()
|
351 |
+
x1, y1, x2, y2 = bboxs
|
352 |
+
dy, dx = y2 - y1, x2 - x1
|
353 |
+
s = min(height * foreground_ratio / dy, width * foreground_ratio / dx)
|
354 |
+
Ht, Wt = int(dy * s), int(dx * s)
|
355 |
+
|
356 |
+
background = Image.new("RGBA", image.size, (*background_color, 255))
|
357 |
+
image = Image.alpha_composite(background, image)
|
358 |
+
image = image.crop(alpha.getbbox())
|
359 |
+
alpha = alpha.crop(alpha.getbbox())
|
360 |
+
|
361 |
+
# Calculate the new size after rescaling
|
362 |
+
new_size = tuple(int(dim * foreground_ratio) for dim in size)
|
363 |
+
# Resize the image while maintaining the aspect ratio
|
364 |
+
resized_image = image.resize((Wt, Ht))
|
365 |
+
resized_alpha = alpha.resize((Wt, Ht))
|
366 |
+
# Create a new image with the original size and white background
|
367 |
+
padded_image = Image.new("RGB", size, tuple(background_color))
|
368 |
+
padded_alpha = Image.new("L", size, (0))
|
369 |
+
paste_position = (
|
370 |
+
(width - resized_image.width) // 2,
|
371 |
+
(height - resized_image.height) // 2,
|
372 |
+
)
|
373 |
+
padded_image.paste(resized_image, paste_position)
|
374 |
+
padded_alpha.paste(resized_alpha, paste_position)
|
375 |
+
|
376 |
+
# expand image to 1:1
|
377 |
+
width, height = padded_image.size
|
378 |
+
if width == height:
|
379 |
+
padded_image.putalpha(padded_alpha)
|
380 |
+
preprocessed_images.append(padded_image)
|
381 |
+
continue
|
382 |
+
new_size = (max(width, height), max(width, height))
|
383 |
+
new_image = Image.new("RGB", new_size, tuple(background_color))
|
384 |
+
new_alpha = Image.new("L", new_size, (0))
|
385 |
+
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
|
386 |
+
new_image.paste(padded_image, paste_position)
|
387 |
+
new_alpha.paste(padded_alpha, paste_position)
|
388 |
+
new_image.putalpha(new_alpha)
|
389 |
+
preprocessed_images.append(new_image)
|
390 |
+
|
391 |
+
return preprocessed_images
|
step1x3d_geometry/utils/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from . import base
|
step1x3d_geometry/utils/base.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
import os
|
4 |
+
import copy
|
5 |
+
import json
|
6 |
+
from omegaconf import OmegaConf
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from diffusers.models.modeling_utils import ModelMixin
|
11 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
12 |
+
from diffusers.utils import (
|
13 |
+
extract_commit_hash,
|
14 |
+
)
|
15 |
+
|
16 |
+
from step1x3d_geometry.utils.config import parse_structured
|
17 |
+
from step1x3d_geometry.utils.misc import get_device, load_module_weights
|
18 |
+
from step1x3d_geometry.utils.typing import *
|
19 |
+
|
20 |
+
|
21 |
+
class Configurable:
|
22 |
+
@dataclass
|
23 |
+
class Config:
|
24 |
+
pass
|
25 |
+
|
26 |
+
def __init__(self, cfg: Optional[dict] = None) -> None:
|
27 |
+
super().__init__()
|
28 |
+
self.cfg = parse_structured(self.Config, cfg)
|
29 |
+
|
30 |
+
|
31 |
+
class Updateable:
|
32 |
+
def do_update_step(
|
33 |
+
self, epoch: int, global_step: int, on_load_weights: bool = False
|
34 |
+
):
|
35 |
+
for attr in self.__dir__():
|
36 |
+
if attr.startswith("_"):
|
37 |
+
continue
|
38 |
+
try:
|
39 |
+
module = getattr(self, attr)
|
40 |
+
except:
|
41 |
+
continue # ignore attributes like property, which can't be retrived using getattr?
|
42 |
+
if isinstance(module, Updateable):
|
43 |
+
module.do_update_step(
|
44 |
+
epoch, global_step, on_load_weights=on_load_weights
|
45 |
+
)
|
46 |
+
self.update_step(epoch, global_step, on_load_weights=on_load_weights)
|
47 |
+
|
48 |
+
def do_update_step_end(self, epoch: int, global_step: int):
|
49 |
+
for attr in self.__dir__():
|
50 |
+
if attr.startswith("_"):
|
51 |
+
continue
|
52 |
+
try:
|
53 |
+
module = getattr(self, attr)
|
54 |
+
except:
|
55 |
+
continue # ignore attributes like property, which can't be retrived using getattr?
|
56 |
+
if isinstance(module, Updateable):
|
57 |
+
module.do_update_step_end(epoch, global_step)
|
58 |
+
self.update_step_end(epoch, global_step)
|
59 |
+
|
60 |
+
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
|
61 |
+
# override this method to implement custom update logic
|
62 |
+
# if on_load_weights is True, you should be careful doing things related to model evaluations,
|
63 |
+
# as the models and tensors are not guarenteed to be on the same device
|
64 |
+
pass
|
65 |
+
|
66 |
+
def update_step_end(self, epoch: int, global_step: int):
|
67 |
+
pass
|
68 |
+
|
69 |
+
|
70 |
+
def update_if_possible(module: Any, epoch: int, global_step: int) -> None:
|
71 |
+
if isinstance(module, Updateable):
|
72 |
+
module.do_update_step(epoch, global_step)
|
73 |
+
|
74 |
+
|
75 |
+
def update_end_if_possible(module: Any, epoch: int, global_step: int) -> None:
|
76 |
+
if isinstance(module, Updateable):
|
77 |
+
module.do_update_step_end(epoch, global_step)
|
78 |
+
|
79 |
+
|
80 |
+
class BaseObject(Updateable):
|
81 |
+
@dataclass
|
82 |
+
class Config:
|
83 |
+
pass
|
84 |
+
|
85 |
+
cfg: Config # add this to every subclass of BaseObject to enable static type checking
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs
|
89 |
+
) -> None:
|
90 |
+
super().__init__()
|
91 |
+
self.cfg = parse_structured(self.Config, cfg)
|
92 |
+
self.device = get_device()
|
93 |
+
self.configure(*args, **kwargs)
|
94 |
+
|
95 |
+
def configure(self, *args, **kwargs) -> None:
|
96 |
+
pass
|
97 |
+
|
98 |
+
|
99 |
+
class BaseModule(ModelMixin, Updateable, nn.Module):
|
100 |
+
@dataclass
|
101 |
+
class Config:
|
102 |
+
weights: Optional[str] = None
|
103 |
+
|
104 |
+
cfg: Config # add this to every subclass of BaseModule to enable static type checking
|
105 |
+
config_name = "config.json"
|
106 |
+
|
107 |
+
def __init__(
|
108 |
+
self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs
|
109 |
+
) -> None:
|
110 |
+
super().__init__()
|
111 |
+
self.cfg = parse_structured(self.Config, cfg)
|
112 |
+
# self.device = get_device()
|
113 |
+
self.configure(*args, **kwargs)
|
114 |
+
if self.cfg.weights is not None:
|
115 |
+
# format: path/to/weights:module_name
|
116 |
+
weights_path, module_name = self.cfg.weights.split(":")
|
117 |
+
state_dict, epoch, global_step = load_module_weights(
|
118 |
+
weights_path, module_name=module_name, map_location="cpu"
|
119 |
+
)
|
120 |
+
self.load_state_dict(state_dict)
|
121 |
+
self.do_update_step(
|
122 |
+
epoch, global_step, on_load_weights=True
|
123 |
+
) # restore states
|
124 |
+
# dummy tensor to indicate model state
|
125 |
+
self._dummy: Float[Tensor, "..."]
|
126 |
+
self.register_buffer("_dummy", torch.zeros(0).float(), persistent=False)
|
127 |
+
|
128 |
+
def configure(self, *args, **kwargs) -> None:
|
129 |
+
pass
|
130 |
+
|
131 |
+
@classmethod
|
132 |
+
def load_config(
|
133 |
+
cls,
|
134 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
135 |
+
return_unused_kwargs=False,
|
136 |
+
return_commit_hash=False,
|
137 |
+
**kwargs,
|
138 |
+
):
|
139 |
+
subfolder = kwargs.pop("subfolder", None)
|
140 |
+
|
141 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
142 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
143 |
+
config_file = pretrained_model_name_or_path
|
144 |
+
elif os.path.isdir(pretrained_model_name_or_path):
|
145 |
+
if subfolder is not None and os.path.isfile(
|
146 |
+
os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
|
147 |
+
):
|
148 |
+
config_file = os.path.join(
|
149 |
+
pretrained_model_name_or_path, subfolder, cls.config_name
|
150 |
+
)
|
151 |
+
elif os.path.isfile(
|
152 |
+
os.path.join(pretrained_model_name_or_path, cls.config_name)
|
153 |
+
):
|
154 |
+
# Load from a PyTorch checkpoint
|
155 |
+
config_file = os.path.join(
|
156 |
+
pretrained_model_name_or_path, cls.config_name
|
157 |
+
)
|
158 |
+
else:
|
159 |
+
raise EnvironmentError(
|
160 |
+
f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
raise ValueError
|
164 |
+
|
165 |
+
config_dict = json.load(open(config_file, "r"))
|
166 |
+
commit_hash = extract_commit_hash(config_file)
|
167 |
+
|
168 |
+
outputs = (config_dict,)
|
169 |
+
|
170 |
+
if return_unused_kwargs:
|
171 |
+
outputs += (kwargs,)
|
172 |
+
|
173 |
+
if return_commit_hash:
|
174 |
+
outputs += (commit_hash,)
|
175 |
+
|
176 |
+
return outputs
|
177 |
+
|
178 |
+
@classmethod
|
179 |
+
def from_config(cls, config: Dict[str, Any] = None, **kwargs):
|
180 |
+
model = cls(config)
|
181 |
+
return model
|
182 |
+
|
183 |
+
def register_to_config(self, **kwargs):
|
184 |
+
pass
|
185 |
+
|
186 |
+
def save_config(self, save_directory: Union[str, os.PathLike], **kwargs):
|
187 |
+
"""
|
188 |
+
Save a configuration object to the directory specified in `save_directory` so that it can be reloaded using the
|
189 |
+
[`~ConfigMixin.from_config`] class method.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
save_directory (`str` or `os.PathLike`):
|
193 |
+
Directory where the configuration JSON file is saved (will be created if it does not exist).
|
194 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
195 |
+
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
196 |
+
"""
|
197 |
+
if os.path.isfile(save_directory):
|
198 |
+
raise AssertionError(
|
199 |
+
f"Provided path ({save_directory}) should be a directory, not a file"
|
200 |
+
)
|
201 |
+
|
202 |
+
os.makedirs(save_directory, exist_ok=True)
|
203 |
+
|
204 |
+
# If we save using the predefined names, we can load using `from_config`
|
205 |
+
output_config_file = os.path.join(save_directory, self.config_name)
|
206 |
+
|
207 |
+
config_dict = OmegaConf.to_container(self.cfg, resolve=True)
|
208 |
+
for k in copy.deepcopy(config_dict).keys():
|
209 |
+
if k.startswith("pretrained"):
|
210 |
+
config_dict.pop(k)
|
211 |
+
config_dict.pop("weights")
|
212 |
+
with open(output_config_file, "w", encoding="utf-8") as f:
|
213 |
+
json.dump(config_dict, f, ensure_ascii=False, indent=4)
|
214 |
+
|
215 |
+
print(f"Configuration saved in {output_config_file}")
|