File size: 5,744 Bytes
2ac1c2d
77948f7
7f54bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
916dab8
7f54bbc
11856a3
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77948f7
2ac1c2d
 
 
77948f7
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77948f7
2ac1c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import spaces
import subprocess
def install_cuda_toolkit():
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])

    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
install_cuda_toolkit()
os.system('bash install.sh')
import time
import uuid
import torch
import trimesh
import argparse
import numpy as np
import gradio as gr
from step1x3d_geometry.models.pipelines.pipeline import Step1X3DGeometryPipeline
from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import (
    Step1X3DTexturePipeline,
)
from step1x3d_texture.utils.shape_post_process import (
    FaceReducer,
    DegenerateFaceRemover,
)

@spaces.GPU(duration=240)
def generate_func(
    input_image_path, guidance_scale, inference_steps, max_facenum, symmetry, edge_type
):
    geometry_model = geometry_model.to("cuda")
    if "Label" in args.geometry_model:
        out = geometry_model(
            input_image_path,
            label={"symmetry": symmetry, "edge_type": edge_type},
            guidance_scale=float(guidance_scale),
            octree_resolution=384,
            max_facenum=int(max_facenum),
            num_inference_steps=int(inference_steps),
        )
    else:
        out = geometry_model(
            input_image_path,
            guidance_scale=float(guidance_scale),
            num_inference_steps=int(inference_steps),
            max_facenum=int(max_facenum),
        )

    save_name = str(uuid.uuid4())
    print(save_name)
    geometry_save_path = f"{args.cache_dir}/{save_name}.glb"
    geometry_mesh = out.mesh[0]
    geometry_mesh.export(geometry_save_path)

    geometry_mesh = DegenerateFaceRemover()(geometry_mesh)
    geometry_mesh = FaceReducer()(geometry_mesh)
    textured_mesh = texture_model(input_image_path, geometry_mesh)
    textured_save_path = f"{args.cache_dir}/{save_name}-textured.glb"
    textured_mesh.export(textured_save_path)

    torch.cuda.empty_cache()
    print("Generate finish")
    return geometry_save_path, textured_save_path


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--geometry_model", type=str, default="Step1X-3D-Geometry-Label-1300m"
    )
    parser.add_argument(
        "--texture_model", type=str, default="Step1X-3D-Texture"
    )
    parser.add_argument("--cache_dir", type=str, default="cache")
    parser.add_argument("--port", type=int, default=7861)
    parser.add_argument("--host", type=str, default="0.0.0.0")
    args = parser.parse_args()

    os.makedirs(args.cache_dir, exist_ok=True)

    geometry_model = Step1X3DGeometryPipeline.from_pretrained(
        "stepfun-ai/Step1X-3D", subfolder=args.geometry_model
    )

    texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model)

    with gr.Blocks(title="Step1X-3D demo") as demo:
        gr.Markdown("# Step1X-3D")
        with gr.Row():
            with gr.Column(scale=2):
                input_image = gr.Image(
                    label="Image", type="filepath", image_mode="RGBA"
                )
                guidance_scale = gr.Number(label="Guidance Scale", value="7.5")
                inference_steps = gr.Slider(
                    label="Inferece Steps", minimum=1, maximum=100, value=50
                )
                max_facenum = gr.Number(label="Max Face Num", value="400000")
                symmetry = gr.Radio(
                    choices=["x", "asymmetry"],
                    label="Symmetry Type",
                    value="x",
                    type="value",
                )
                edge_type = gr.Radio(
                    choices=["sharp", "normal", "smooth"],
                    label="Edge Type",
                    value="sharp",
                    type="value",
                )
                btn = gr.Button("Start")
            with gr.Column(scale=4):
                textured_preview = gr.Model3D(label="Textured", height=380)
                geometry_preview = gr.Model3D(label="Geometry", height=380)
            with gr.Column(scale=1):
                gr.Examples(
                    examples=[
                        ["examples/images/000.png"],
                        ["examples/images/001.png"],
                        ["examples/images/004.png"],
                        ["examples/images/008.png"],
                        ["examples/images/028.png"],
                        ["examples/images/032.png"],
                        ["examples/images/061.png"],
                        ["examples/images/107.png"],
                    ],
                    inputs=[input_image],
                    cache_examples=False,
                )

        btn.click(
            generate_func,
            inputs=[
                input_image,
                guidance_scale,
                inference_steps,
                max_facenum,
                symmetry,
                edge_type,
            ],
            outputs=[geometry_preview, textured_preview],
        )

    demo.launch(server_name=args.host, server_port=args.port)
    demo.queue(concurrency_count=3)