File size: 6,315 Bytes
6c63a2d
 
b8ee0a2
6c63a2d
ddaff53
0276240
ddaff53
1db9e92
97629be
ddaff53
1898f4f
 
 
 
 
c0f44db
1898f4f
 
 
 
 
 
c5183c8
1898f4f
 
 
 
 
dc2d37a
8a142a6
 
fd247b7
 
8a142a6
ddaff53
 
1db9e92
 
 
 
 
 
 
8a142a6
97629be
8a142a6
 
97629be
8a142a6
1db9e92
 
798ebc4
8a142a6
ddaff53
798ebc4
 
 
 
 
 
8a142a6
798ebc4
 
 
 
 
 
 
 
 
 
 
8a142a6
798ebc4
 
 
 
8a142a6
798ebc4
1db9e92
 
798ebc4
97629be
 
 
 
1db9e92
97629be
 
 
 
8a142a6
ddaff53
b8ee0a2
97629be
ddaff53
97629be
 
ddaff53
97629be
1db9e92
97629be
6b26b26
ddaff53
6b26b26
fd247b7
 
 
 
 
 
e24b19e
c5183c8
fd247b7
ddaff53
1db9e92
fd247b7
 
 
 
 
 
 
 
 
 
 
1db9e92
 
6b26b26
1db9e92
6b26b26
b8ee0a2
 
6b26b26
b8ee0a2
 
97629be
b8ee0a2
b41b93b
b8ee0a2
 
 
 
0276240
f35135e
fd247b7
1898f4f
 
 
b8ee0a2
6b26b26
1db9e92
1898f4f
 
 
 
 
 
0276240
1898f4f
97629be
 
1898f4f
f9d275c
1898f4f
 
 
 
6b26b26
1db9e92
97629be
 
6b26b26
1db9e92
97629be
1db9e92
97629be
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
os.environ['MKL_THREADING_LAYER'] = 'GNU'
import spaces

import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList
from .prompts import format_rag_prompt
from .shared import generation_interrupt

models = {
     "Qwen2.5-1.5b-Instruct": "qwen/qwen2.5-1.5b-instruct",
     "Qwen2.5-3b-Instruct": "qwen/qwen2.5-3b-instruct",
     "Llama-3.2-1b-Instruct": "meta-llama/llama-3.2-1b-instruct",
     "Llama-3.2-3b-Instruct": "meta-llama/llama-3.2-3b-instruct",
    #"Gemma-3-1b-it": "google/gemma-3-1b-it",
    #"Gemma-3-4b-it": "google/gemma-3-4b-it",
     "Gemma-2-2b-it": "google/gemma-2-2b-it",
     "Phi-4-mini-instruct": "microsoft/phi-4-mini-instruct",
    "Cogito-v1-preview-llama-3b": "deepcogito/cogito-v1-preview-llama-3b",
     "IBM Granite-3.3-2b-instruct": "ibm-granite/granite-3.3-2b-instruct",
    # #"Bitnet-b1.58-2B4T": "microsoft/bitnet-b1.58-2B-4T",
    # #"MiniCPM3-RAG-LoRA": "openbmb/MiniCPM3-RAG-LoRA",
    "Qwen3-0.6b": "qwen/qwen3-0.6b",
     "Qwen3-1.7b": "qwen/qwen3-1.7b",
     "Qwen3-4b": "qwen/qwen3-4b",
     "SmolLM2-1.7b-Instruct": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
     "EXAONE-3.5-2.4B-instruct": "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
     "OLMo-2-1B-Instruct": "allenai/OLMo-2-0425-1B-Instruct",

}

tokenizer_cache = {}

# List of model names for easy access
model_names = list(models.keys())

# Custom stopping criteria that checks the interrupt flag
class InterruptCriteria(StoppingCriteria):
    def __init__(self, interrupt_event):
        self.interrupt_event = interrupt_event
        
    def __call__(self, input_ids, scores, **kwargs):
        return self.interrupt_event.is_set()

@spaces.GPU
def generate_summaries(example, model_a_name, model_b_name):
    """
    Generates summaries for the given example using the assigned models sequentially.
    """
    if generation_interrupt.is_set():
        return "", ""
    
    context_text = ""
    context_parts = []
    
    if "full_contexts" in example and example["full_contexts"]:
        for i, ctx in enumerate(example["full_contexts"]):
            content = ""
            
            # Extract content from either dict or string
            if isinstance(ctx, dict) and "content" in ctx:
                content = ctx["content"]
            elif isinstance(ctx, str):
                content = ctx
            
            # Add document number if not already present
            if not content.strip().startswith("Document"):
                content = f"Document {i+1}:\n{content}"
            
            context_parts.append(content)
        
        context_text = "\n\n".join(context_parts)
    else:
        # Provide a graceful fallback instead of raising an error
        print("Warning: No full context found in the example, using empty context")
        context_text = ""
    
    question = example.get("question", "")
    
    if generation_interrupt.is_set():
        return "", ""
    
    # Run model A
    summary_a = run_inference(models[model_a_name], context_text, question)
    
    if generation_interrupt.is_set():
        return summary_a, ""
    
    # Run model B
    summary_b = run_inference(models[model_b_name], context_text, question)
    
    return summary_a, summary_b

@spaces.GPU
def run_inference(model_name, context, question):
    """
    Run inference using the specified model.
    Returns the generated text or empty string if interrupted.
    """
    # Check interrupt at the beginning
    if generation_interrupt.is_set():
        return ""

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    result = ""
    tokenizer_kwargs = {
        "add_generation_prompt": True,
    } # make sure qwen3 doesn't use thinking
    generation_kwargs = {
        "max_new_tokens": 512,
    }
    if "qwen3" in model_name.lower(): 
        print(f"Recognized {model_name} as a Qwen3 model. Setting enable_thinking=False.")
        tokenizer_kwargs["enable_thinking"] = False

    try:
        if model_name in tokenizer_cache:
            tokenizer = tokenizer_cache[model_name]
        else:
            tokenizer = AutoTokenizer.from_pretrained(
                model_name, 
                padding_side="left", 
                token=True, 
                kwargs=tokenizer_kwargs
                )
            tokenizer_cache[model_name] = tokenizer
            
        accepts_sys = (
            "System role not supported" not in tokenizer.chat_template
            if tokenizer.chat_template else False # Handle missing chat_template
        )

        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token

        # Check interrupt before loading the model
        if generation_interrupt.is_set():
            return ""
        

        pipe = pipeline(
            "text-generation",
            model=model_name,
            tokenizer=tokenizer,
            device_map='cuda',
            trust_remote_code=True,
            torch_dtype=torch.bfloat16,
            model_kwargs={
                "attn_implementation": "eager",
            }
        )

        text_input = format_rag_prompt(question, context, accepts_sys)
        if "Gemma-3".lower() not in model_name.lower():
            formatted = pipe.tokenizer.apply_chat_template(
                text_input,
                tokenize=False,
                **tokenizer_kwargs,
            )
        
            input_length = len(formatted)
        # Check interrupt before generation

            outputs = pipe(formatted, max_new_tokens=512, generation_kwargs={"skip_special_tokens": True})
        #print(outputs[0]['generated_text'])
            result = outputs[0]['generated_text'][input_length:]
        else: # don't use apply chat template? I don't know why gemma keeps breaking
            result = pipe(text_input, max_new_tokens=512, generation_kwargs={"skip_special_tokens": True})[0]['generated_text']
            result = result[0]['generated_text'][-1]['content']

    except Exception as e:
        print(f"Error in inference for {model_name}: {e}")
        result = f"Error generating response: {str(e)[:200]}..."

    finally:
        # Clean up resources
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

    return result