oliver-aizip commited on
Commit
97629be
·
1 Parent(s): e6127a4

revert to sequential processing

Browse files
Files changed (1) hide show
  1. utils/models.py +26 -150
utils/models.py CHANGED
@@ -6,10 +6,7 @@ import torch
6
  from transformers import pipeline, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
7
  from .prompts import format_rag_prompt
8
  from .shared import generation_interrupt
9
- import threading
10
- import queue
11
- import time # Added for sleep
12
- from vllm import LLM, SamplingParams
13
  models = {
14
  "Qwen2.5-1.5b-Instruct": "qwen/qwen2.5-1.5b-instruct",
15
  "Llama-3.2-1b-Instruct": "meta-llama/llama-3.2-1b-instruct",
@@ -27,9 +24,10 @@ class InterruptCriteria(StoppingCriteria):
27
  def __call__(self, input_ids, scores, **kwargs):
28
  return self.interrupt_event.is_set()
29
 
 
30
  def generate_summaries(example, model_a_name, model_b_name):
31
  """
32
- Generates summaries for the given example using the assigned models.
33
  """
34
  if generation_interrupt.is_set():
35
  return "", ""
@@ -49,76 +47,28 @@ def generate_summaries(example, model_a_name, model_b_name):
49
  if generation_interrupt.is_set():
50
  return "", ""
51
 
52
- # Use a queue to get results from threads
53
- result_queue_a = queue.Queue()
54
- thread_a = threading.Thread(target=run_inference, args=(models[model_a_name], context_text, question, result_queue_a))
55
- thread_a.start()
56
-
57
- summary_a = ""
58
- while thread_a.is_alive():
59
- if generation_interrupt.is_set():
60
- print(f"Interrupting model A ({model_a_name})...")
61
- # The InterruptCriteria within the thread will handle stopping generate
62
- # We return early from the main control flow.
63
- thread_a.join(timeout=1.0) # Give thread a moment to potentially stop
64
- return "", ""
65
- try:
66
- summary_a = result_queue_a.get(timeout=0.1) # Check queue periodically
67
- break # Got result
68
- except queue.Empty:
69
- continue # Still running, check interrupt again
70
-
71
- # If thread finished but we didn't get a result (e.g., interrupted just before putting in queue)
72
- if not summary_a and not result_queue_a.empty():
73
- summary_a = result_queue_a.get_nowait()
74
- elif not summary_a and generation_interrupt.is_set(): # Check interrupt again if thread finished quickly
75
- return "", ""
76
-
77
-
78
- if generation_interrupt.is_set(): # Check between models
79
  return summary_a, ""
80
-
81
- # --- Model B ---
82
- result_queue_b = queue.Queue()
83
- thread_b = threading.Thread(target=run_inference, args=(models[model_b_name], context_text, question, result_queue_b))
84
- thread_b.start()
85
-
86
- summary_b = ""
87
- while thread_b.is_alive():
88
- if generation_interrupt.is_set():
89
- print(f"Interrupting model B ({model_b_name})...")
90
- thread_b.join(timeout=1.0)
91
- return summary_a, "" # Return summary_a obtained so far
92
- try:
93
- summary_b = result_queue_b.get(timeout=0.1)
94
- break
95
- except queue.Empty:
96
- continue
97
-
98
- if not summary_b and not result_queue_b.empty():
99
- summary_b = result_queue_b.get_nowait()
100
- elif not summary_b and generation_interrupt.is_set():
101
- return summary_a, ""
102
-
103
-
104
  return summary_a, summary_b
105
 
106
-
107
- # Modified run_inference to run in a thread and use a queue for results
108
  @spaces.GPU
109
- def run_inference(model_name, context, question, result_queue):
110
  """
111
- Run inference using the specified model. Designed to be run in a thread.
112
- Puts the result or an error string into the result_queue.
113
  """
114
- # Check interrupt at the very beginning of the thread
115
  if generation_interrupt.is_set():
116
- result_queue.put("")
117
- return
118
 
119
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
120
- model = None
121
- tokenizer = None
122
  result = ""
123
 
124
  try:
@@ -127,15 +77,13 @@ def run_inference(model_name, context, question, result_queue):
127
  "System role not supported" not in tokenizer.chat_template
128
  if tokenizer.chat_template else False # Handle missing chat_template
129
  )
130
- outputs = ""
131
 
132
  if tokenizer.pad_token is None:
133
  tokenizer.pad_token = tokenizer.eos_token
134
 
135
  # Check interrupt before loading the model
136
  if generation_interrupt.is_set():
137
- result_queue.put("")
138
- return
139
 
140
  pipe = pipeline(
141
  "text-generation",
@@ -148,94 +96,22 @@ def run_inference(model_name, context, question, result_queue):
148
  top_p=0.9,
149
  )
150
 
151
- # model = AutoModelForCausalLM.from_pretrained(
152
- # model_name, torch_dtype=torch.bfloat16, attn_implementation="eager", token=True
153
- # ).to(device)
154
- # model.eval() # Set model to evaluation mode
155
-
156
  text_input = format_rag_prompt(question, context, accepts_sys)
157
 
158
- # Check interrupt before tokenization/template application
159
  if generation_interrupt.is_set():
160
- result_queue.put("")
161
- return
162
-
163
- # actual_input = tokenizer.apply_chat_template(
164
- # text_input,
165
- # return_tensors="pt",
166
- # tokenize=True,
167
- # # Consider reducing max_length if context/question is very long
168
- # # max_length=tokenizer.model_max_length, # Use model's max length
169
- # # truncation=True, # Ensure truncation if needed
170
- # max_length=2048, # Keep original max_length for now
171
- # add_generation_prompt=True,
172
- # ).to(device)
173
  outputs = pipe(text_input, max_new_tokens=512)
174
  result = outputs[0]['generated_text'][-1]['content']
175
- # # Ensure input does not exceed model max length after adding generation prompt
176
- # # This check might be redundant if tokenizer handles it, but good for safety
177
- # # if actual_input.shape[1] > tokenizer.model_max_length:
178
- # # # Handle too long input - maybe truncate manually or raise error
179
- # # print(f"Warning: Input length {actual_input.shape[1]} exceeds model max length {tokenizer.model_max_length}")
180
- # # # Simple truncation (might lose important info):
181
- # # # actual_input = actual_input[:, -tokenizer.model_max_length:]
182
-
183
- # input_length = actual_input.shape[1]
184
- # attention_mask = torch.ones_like(actual_input).to(device)
185
-
186
- # # Check interrupt before generation
187
- # if generation_interrupt.is_set():
188
- # result_queue.put("")
189
- # return
190
-
191
- # stopping_criteria = StoppingCriteriaList([InterruptCriteria(generation_interrupt)])
192
-
193
- # with torch.inference_mode():
194
- # outputs = model.generate(
195
- # actual_input,
196
- # attention_mask=attention_mask,
197
- # max_new_tokens=512,
198
- # pad_token_id=tokenizer.pad_token_id,
199
- # stopping_criteria=stopping_criteria,
200
- # do_sample=True, # Consider adding sampling parameters if needed
201
- # temperature=0.6,
202
- # top_p=0.9,
203
- # )
204
-
205
- # # Check interrupt immediately after generation finishes or stops
206
- # if generation_interrupt.is_set():
207
- # result = "" # Discard potentially partial result if interrupted
208
- # else:
209
- # # Decode the generated tokens, excluding the input tokens
210
- # result = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
211
- # llm = LLM(model_name, dtype=torch.bfloat16, hf_token=True, enforce_eager=True, device="cpu")
212
- # params = SamplingParams(
213
- # max_tokens=512,
214
- # )
215
-
216
- # # Check interrupt before generation
217
- # if generation_interrupt.is_set():
218
- # result_queue.put("")
219
- # return
220
- # # Generate the response
221
- # outputs = llm.chat(
222
- # text_input,
223
- # sampling_params=params,
224
- # # stopping_criteria=StoppingCriteriaList([InterruptCriteria(generation_interrupt)]),
225
- # )
226
- # # Check interrupt immediately after generation finishes or stops
227
- result_queue.put(result)
228
 
229
  except Exception as e:
230
- print(f"Error in inference thread for {model_name}: {e}")
231
- # Put error message in queue for the main thread to handle/display
232
- result_queue.put(f"Error generating response: {str(e)[:200]}...")
233
 
234
  finally:
235
- # Clean up resources within the thread
236
- del model
237
- del tokenizer
238
- del text_input
239
- del outputs
240
  if torch.cuda.is_available():
241
- torch.cuda.empty_cache()
 
 
 
6
  from transformers import pipeline, AutoTokenizer, StoppingCriteria, StoppingCriteriaList
7
  from .prompts import format_rag_prompt
8
  from .shared import generation_interrupt
9
+
 
 
 
10
  models = {
11
  "Qwen2.5-1.5b-Instruct": "qwen/qwen2.5-1.5b-instruct",
12
  "Llama-3.2-1b-Instruct": "meta-llama/llama-3.2-1b-instruct",
 
24
  def __call__(self, input_ids, scores, **kwargs):
25
  return self.interrupt_event.is_set()
26
 
27
+ @spaces.GPU
28
  def generate_summaries(example, model_a_name, model_b_name):
29
  """
30
+ Generates summaries for the given example using the assigned models sequentially.
31
  """
32
  if generation_interrupt.is_set():
33
  return "", ""
 
47
  if generation_interrupt.is_set():
48
  return "", ""
49
 
50
+ # Run model A
51
+ summary_a = run_inference(models[model_a_name], context_text, question)
52
+
53
+ if generation_interrupt.is_set():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  return summary_a, ""
55
+
56
+ # Run model B
57
+ summary_b = run_inference(models[model_b_name], context_text, question)
58
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  return summary_a, summary_b
60
 
 
 
61
  @spaces.GPU
62
+ def run_inference(model_name, context, question):
63
  """
64
+ Run inference using the specified model.
65
+ Returns the generated text or empty string if interrupted.
66
  """
67
+ # Check interrupt at the beginning
68
  if generation_interrupt.is_set():
69
+ return ""
 
70
 
71
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
 
72
  result = ""
73
 
74
  try:
 
77
  "System role not supported" not in tokenizer.chat_template
78
  if tokenizer.chat_template else False # Handle missing chat_template
79
  )
 
80
 
81
  if tokenizer.pad_token is None:
82
  tokenizer.pad_token = tokenizer.eos_token
83
 
84
  # Check interrupt before loading the model
85
  if generation_interrupt.is_set():
86
+ return ""
 
87
 
88
  pipe = pipeline(
89
  "text-generation",
 
96
  top_p=0.9,
97
  )
98
 
 
 
 
 
 
99
  text_input = format_rag_prompt(question, context, accepts_sys)
100
 
101
+ # Check interrupt before generation
102
  if generation_interrupt.is_set():
103
+ return ""
104
+
 
 
 
 
 
 
 
 
 
 
 
105
  outputs = pipe(text_input, max_new_tokens=512)
106
  result = outputs[0]['generated_text'][-1]['content']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
  except Exception as e:
109
+ print(f"Error in inference for {model_name}: {e}")
110
+ result = f"Error generating response: {str(e)[:200]}..."
 
111
 
112
  finally:
113
+ # Clean up resources
 
 
 
 
114
  if torch.cuda.is_available():
115
+ torch.cuda.empty_cache()
116
+
117
+ return result