File size: 7,661 Bytes
dbac20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange
from torch.nn.attention import SDPBackend, sdpa_kernel

from mmaudio.ext.rotary_embeddings import apply_rope
from mmaudio.model.low_level import MLP, ChannelLastConv1d, ConvMLP


def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor):
    return x * (1 + scale) + shift


def attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
    # training will crash without these contiguous calls and the CUDNN limitation
    # I believe this is related to https://github.com/pytorch/pytorch/issues/133974
    # unresolved at the time of writing
    q = q.contiguous()
    k = k.contiguous()
    v = v.contiguous()
    out = F.scaled_dot_product_attention(q, k, v)
    out = rearrange(out, 'b h n d -> b n (h d)').contiguous()
    return out


class SelfAttention(nn.Module):

    def __init__(self, dim: int, nheads: int):
        super().__init__()
        self.dim = dim
        self.nheads = nheads

        self.qkv = nn.Linear(dim, dim * 3, bias=True)
        self.q_norm = nn.RMSNorm(dim // nheads)
        self.k_norm = nn.RMSNorm(dim // nheads)

        self.split_into_heads = Rearrange('b n (h d j) -> b h n d j',
                                          h=nheads,
                                          d=dim // nheads,
                                          j=3)

    def pre_attention(
            self, x: torch.Tensor,
            rot: Optional[torch.Tensor]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        # x: batch_size * n_tokens * n_channels
        qkv = self.qkv(x)
        q, k, v = self.split_into_heads(qkv).chunk(3, dim=-1)
        q = q.squeeze(-1)
        k = k.squeeze(-1)
        v = v.squeeze(-1)
        q = self.q_norm(q)
        k = self.k_norm(k)

        if rot is not None:
            q = apply_rope(q, rot)
            k = apply_rope(k, rot)

        return q, k, v

    def forward(
            self,
            x: torch.Tensor,  # batch_size * n_tokens * n_channels
    ) -> torch.Tensor:
        q, v, k = self.pre_attention(x)
        out = attention(q, k, v)
        return out


class MMDitSingleBlock(nn.Module):

    def __init__(self,
                 dim: int,
                 nhead: int,
                 mlp_ratio: float = 4.0,
                 pre_only: bool = False,
                 kernel_size: int = 7,
                 padding: int = 3):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim, elementwise_affine=False)
        self.attn = SelfAttention(dim, nhead)

        self.pre_only = pre_only
        if pre_only:
            self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True))
        else:
            if kernel_size == 1:
                self.linear1 = nn.Linear(dim, dim)
            else:
                self.linear1 = ChannelLastConv1d(dim, dim, kernel_size=kernel_size, padding=padding)
            self.norm2 = nn.LayerNorm(dim, elementwise_affine=False)

            if kernel_size == 1:
                self.ffn = MLP(dim, int(dim * mlp_ratio))
            else:
                self.ffn = ConvMLP(dim,
                                   int(dim * mlp_ratio),
                                   kernel_size=kernel_size,
                                   padding=padding)

            self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 6 * dim, bias=True))

    def pre_attention(self, x: torch.Tensor, c: torch.Tensor, rot: Optional[torch.Tensor]):
        # x: BS * N * D
        # cond: BS * D
        modulation = self.adaLN_modulation(c)
        if self.pre_only:
            (shift_msa, scale_msa) = modulation.chunk(2, dim=-1)
            gate_msa = shift_mlp = scale_mlp = gate_mlp = None
        else:
            (shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp,
             gate_mlp) = modulation.chunk(6, dim=-1)

        x = modulate(self.norm1(x), shift_msa, scale_msa)
        q, k, v = self.attn.pre_attention(x, rot)
        return (q, k, v), (gate_msa, shift_mlp, scale_mlp, gate_mlp)

    def post_attention(self, x: torch.Tensor, attn_out: torch.Tensor, c: tuple[torch.Tensor]):
        if self.pre_only:
            return x

        (gate_msa, shift_mlp, scale_mlp, gate_mlp) = c
        x = x + self.linear1(attn_out) * gate_msa
        r = modulate(self.norm2(x), shift_mlp, scale_mlp)
        x = x + self.ffn(r) * gate_mlp

        return x

    def forward(self, x: torch.Tensor, cond: torch.Tensor,
                rot: Optional[torch.Tensor]) -> torch.Tensor:
        # x: BS * N * D
        # cond: BS * D
        x_qkv, x_conditions = self.pre_attention(x, cond, rot)
        attn_out = attention(*x_qkv)
        x = self.post_attention(x, attn_out, x_conditions)

        return x


class JointBlock(nn.Module):

    def __init__(self, dim: int, nhead: int, mlp_ratio: float = 4.0, pre_only: bool = False):
        super().__init__()
        self.pre_only = pre_only
        self.latent_block = MMDitSingleBlock(dim,
                                             nhead,
                                             mlp_ratio,
                                             pre_only=False,
                                             kernel_size=3,
                                             padding=1)
        self.clip_block = MMDitSingleBlock(dim,
                                           nhead,
                                           mlp_ratio,
                                           pre_only=pre_only,
                                           kernel_size=3,
                                           padding=1)
        self.text_block = MMDitSingleBlock(dim, nhead, mlp_ratio, pre_only=pre_only, kernel_size=1)

    def forward(self, latent: torch.Tensor, clip_f: torch.Tensor, text_f: torch.Tensor,
                global_c: torch.Tensor, extended_c: torch.Tensor, latent_rot: torch.Tensor,
                clip_rot: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
        # latent: BS * N1 * D
        # clip_f: BS * N2 * D
        # c: BS * (1/N) * D
        x_qkv, x_mod = self.latent_block.pre_attention(latent, extended_c, latent_rot)
        c_qkv, c_mod = self.clip_block.pre_attention(clip_f, global_c, clip_rot)
        t_qkv, t_mod = self.text_block.pre_attention(text_f, global_c, rot=None)

        latent_len = latent.shape[1]
        clip_len = clip_f.shape[1]
        text_len = text_f.shape[1]

        joint_qkv = [torch.cat([x_qkv[i], c_qkv[i], t_qkv[i]], dim=2) for i in range(3)]

        attn_out = attention(*joint_qkv)
        x_attn_out = attn_out[:, :latent_len]
        c_attn_out = attn_out[:, latent_len:latent_len + clip_len]
        t_attn_out = attn_out[:, latent_len + clip_len:]

        latent = self.latent_block.post_attention(latent, x_attn_out, x_mod)
        if not self.pre_only:
            clip_f = self.clip_block.post_attention(clip_f, c_attn_out, c_mod)
            text_f = self.text_block.post_attention(text_f, t_attn_out, t_mod)

        return latent, clip_f, text_f


class FinalBlock(nn.Module):

    def __init__(self, dim, out_dim):
        super().__init__()
        self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True))
        self.norm = nn.LayerNorm(dim, elementwise_affine=False)
        self.conv = ChannelLastConv1d(dim, out_dim, kernel_size=7, padding=3)

    def forward(self, latent, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
        latent = modulate(self.norm(latent), shift, scale)
        latent = self.conv(latent)
        return latent