Spaces:
Running
on
Zero
Running
on
Zero
Rex Cheng
commited on
Commit
·
dbac20f
1
Parent(s):
f2786fb
initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +21 -0
- README.md +152 -14
- app.py +149 -0
- demo.py +135 -0
- docs/images/icon.png +0 -0
- docs/index.html +147 -0
- docs/style.css +78 -0
- docs/style_videos.css +52 -0
- docs/video_gen.html +254 -0
- docs/video_main.html +98 -0
- docs/video_vgg.html +452 -0
- mmaudio/__init__.py +0 -0
- mmaudio/eval_utils.py +245 -0
- mmaudio/ext/__init__.py +1 -0
- mmaudio/ext/autoencoder/__init__.py +1 -0
- mmaudio/ext/autoencoder/autoencoder.py +48 -0
- mmaudio/ext/autoencoder/edm2_utils.py +168 -0
- mmaudio/ext/autoencoder/vae.py +369 -0
- mmaudio/ext/autoencoder/vae_modules.py +117 -0
- mmaudio/ext/bigvgan/LICENSE +21 -0
- mmaudio/ext/bigvgan/__init__.py +1 -0
- mmaudio/ext/bigvgan/activations.py +120 -0
- mmaudio/ext/bigvgan/alias_free_torch/__init__.py +6 -0
- mmaudio/ext/bigvgan/alias_free_torch/act.py +28 -0
- mmaudio/ext/bigvgan/alias_free_torch/filter.py +95 -0
- mmaudio/ext/bigvgan/alias_free_torch/resample.py +49 -0
- mmaudio/ext/bigvgan/bigvgan.py +32 -0
- mmaudio/ext/bigvgan/bigvgan_vocoder.yml +63 -0
- mmaudio/ext/bigvgan/env.py +18 -0
- mmaudio/ext/bigvgan/incl_licenses/LICENSE_1 +21 -0
- mmaudio/ext/bigvgan/incl_licenses/LICENSE_2 +21 -0
- mmaudio/ext/bigvgan/incl_licenses/LICENSE_3 +201 -0
- mmaudio/ext/bigvgan/incl_licenses/LICENSE_4 +29 -0
- mmaudio/ext/bigvgan/incl_licenses/LICENSE_5 +16 -0
- mmaudio/ext/bigvgan/models.py +255 -0
- mmaudio/ext/bigvgan/utils.py +31 -0
- mmaudio/ext/bigvgan_v2/LICENSE +21 -0
- mmaudio/ext/bigvgan_v2/__init__.py +0 -0
- mmaudio/ext/bigvgan_v2/activations.py +126 -0
- mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/__init__.py +0 -0
- mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/activation1d.py +77 -0
- mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/compat.h +29 -0
- mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/load.py +86 -0
- mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/type_shim.h +92 -0
- mmaudio/ext/bigvgan_v2/alias_free_activation/torch/__init__.py +6 -0
- mmaudio/ext/bigvgan_v2/alias_free_activation/torch/act.py +32 -0
- mmaudio/ext/bigvgan_v2/alias_free_activation/torch/filter.py +101 -0
- mmaudio/ext/bigvgan_v2/alias_free_activation/torch/resample.py +54 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Ho Kei Cheng
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,14 +1,152 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# [Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis](https://hkchengrex.github.io/MMAudio)
|
2 |
+
|
3 |
+
[Ho Kei Cheng](https://hkchengrex.github.io/), [Masato Ishii](https://scholar.google.co.jp/citations?user=RRIO1CcAAAAJ), [Akio Hayakawa](https://scholar.google.com/citations?user=sXAjHFIAAAAJ), [Takashi Shibuya](https://scholar.google.com/citations?user=XCRO260AAAAJ), [Alexander Schwing](https://www.alexander-schwing.de/), [Yuki Mitsufuji](https://www.yukimitsufuji.com/)
|
4 |
+
|
5 |
+
University of Illinois Urbana-Champaign, Sony AI, and Sony Group Corporation
|
6 |
+
|
7 |
+
|
8 |
+
[[Paper (being prepared)]](https://hkchengrex.github.io/MMAudio) [[Project Page]](https://hkchengrex.github.io/MMAudio)
|
9 |
+
|
10 |
+
|
11 |
+
**Note: This repository is still under construction. Single-example inference should work as expected. The training code will be added. Code is subject to non-backward-compatible changes.**
|
12 |
+
|
13 |
+
## Highlight
|
14 |
+
|
15 |
+
MMAudio generates synchronized audio given video and/or text inputs.
|
16 |
+
Our key innovation is multimodal joint training which allows training on a wide range of audio-visual and audio-text datasets.
|
17 |
+
Moreover, a synchronization module aligns the generated audio with the video frames.
|
18 |
+
|
19 |
+
|
20 |
+
## Results
|
21 |
+
|
22 |
+
(All audio from our algorithm MMAudio)
|
23 |
+
|
24 |
+
Videos from Sora:
|
25 |
+
|
26 |
+
https://github.com/user-attachments/assets/82afd192-0cee-48a1-86ca-bd39b8c8f330
|
27 |
+
|
28 |
+
|
29 |
+
Videos from MovieGen/Hunyuan Video/VGGSound:
|
30 |
+
|
31 |
+
https://github.com/user-attachments/assets/29230d4e-21c1-4cf8-a221-c28f2af6d0ca
|
32 |
+
|
33 |
+
For more results, visit https://hkchengrex.com/MMAudio/video_main.html.
|
34 |
+
|
35 |
+
## Installation
|
36 |
+
|
37 |
+
We have only tested this on Ubuntu.
|
38 |
+
|
39 |
+
### Prerequisites
|
40 |
+
|
41 |
+
We recommend using a [miniforge](https://github.com/conda-forge/miniforge) environment.
|
42 |
+
|
43 |
+
- Python 3.8+
|
44 |
+
- PyTorch **2.5.1+** and corresponding torchvision/torchaudio (pick your CUDA version https://pytorch.org/)
|
45 |
+
- ffmpeg<7 ([this is required by torchaudio](https://pytorch.org/audio/master/installation.html#optional-dependencies), you can install it in a miniforge environment with `conda install -c conda-forge 'ffmpeg<7'`)
|
46 |
+
|
47 |
+
**Clone our repository:**
|
48 |
+
|
49 |
+
```bash
|
50 |
+
git clone https://github.com/hkchengrex/MMAudio.git
|
51 |
+
```
|
52 |
+
|
53 |
+
**Install with pip:**
|
54 |
+
|
55 |
+
```bash
|
56 |
+
cd MMAudio
|
57 |
+
pip install -e .
|
58 |
+
```
|
59 |
+
|
60 |
+
(If you encounter the File "setup.py" not found error, upgrade your pip with pip install --upgrade pip)
|
61 |
+
|
62 |
+
**Pretrained models:**
|
63 |
+
|
64 |
+
The models will be downloaded automatically when you run the demo script. MD5 checksums are provided in `mmaudio/utils/download_utils.py`
|
65 |
+
|
66 |
+
| Model | Download link | File size |
|
67 |
+
| -------- | ------- | ------- |
|
68 |
+
| Flow prediction network, small 16kHz | <a href="https://databank.illinois.edu/datafiles/k6jve/download" download="mmaudio_small_16k.pth">mmaudio_small_16k.pth</a> | 601M |
|
69 |
+
| Flow prediction network, small 44.1kHz | <a href="https://databank.illinois.edu/datafiles/864ya/download" download="mmaudio_small_44k.pth">mmaudio_small_44k.pth</a> | 601M |
|
70 |
+
| Flow prediction network, medium 44.1kHz | <a href="https://databank.illinois.edu/datafiles/pa94t/download" download="mmaudio_medium_44k.pth">mmaudio_medium_44k.pth</a> | 2.4G |
|
71 |
+
| Flow prediction network, large 44.1kHz **(recommended)** | <a href="https://databank.illinois.edu/datafiles/4jx76/download" download="mmaudio_large_44k.pth">mmaudio_large_44k.pth</a> | 3.9G |
|
72 |
+
| 16kHz VAE | <a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/v1-16.pth">v1-16.pth</a> | 655M |
|
73 |
+
| 16kHz BigVGAN vocoder |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/best_netG.pt">best_netG.pt</a> | 429M |
|
74 |
+
| 44.1kHz VAE |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/v1-44.pth">v1-44.pth</a> | 1.2G |
|
75 |
+
| Synchformer visual encoder |<a href="https://github.com/hkchengrex/MMAudio/releases/download/v0.1/synchformer_state_dict.pth">synchformer_state_dict.pth</a> | 907M |
|
76 |
+
|
77 |
+
The 44.1kHz vocoder will be downloaded automatically.
|
78 |
+
|
79 |
+
The expected directory structure (full):
|
80 |
+
|
81 |
+
```bash
|
82 |
+
MMAudio
|
83 |
+
├── ext_weights
|
84 |
+
│ ├── best_netG.pt
|
85 |
+
│ ├── synchformer_state_dict.pth
|
86 |
+
│ ├── v1-16.pth
|
87 |
+
│ └── v1-44.pth
|
88 |
+
├── weights
|
89 |
+
│ ├── mmaudio_small_16k.pth
|
90 |
+
│ ├── mmaudio_small_44k.pth
|
91 |
+
│ ├── mmaudio_medium_44k.pth
|
92 |
+
│ └── mmaudio_large_44k.pth
|
93 |
+
└── ...
|
94 |
+
```
|
95 |
+
|
96 |
+
The expected directory structure (minimal, for the recommended model only):
|
97 |
+
|
98 |
+
```bash
|
99 |
+
MMAudio
|
100 |
+
├── ext_weights
|
101 |
+
│ ├── synchformer_state_dict.pth
|
102 |
+
│ └── v1-44.pth
|
103 |
+
├── weights
|
104 |
+
│ └── mmaudio_large_44k.pth
|
105 |
+
└── ...
|
106 |
+
```
|
107 |
+
|
108 |
+
## Demo
|
109 |
+
|
110 |
+
By default, these scripts use the `large_44k` model.
|
111 |
+
In our experiments, inference only takes around 6GB of GPU memory (in 16-bit mode) which should fit in most modern GPUs.
|
112 |
+
|
113 |
+
### Command-line interface
|
114 |
+
|
115 |
+
With `demo.py`
|
116 |
+
```bash
|
117 |
+
python demo.py --duration=8 --video=<path to video> --prompt "your prompt"
|
118 |
+
```
|
119 |
+
The output (audio in `.flac` format, and video in `.mp4` format) will be saved in `./output`.
|
120 |
+
See the file for more options.
|
121 |
+
Simply omit the `--video` option for text-to-audio synthesis.
|
122 |
+
The default output (and training) duration is 8 seconds. Longer/shorter durations could also work, but a large deviation from the training duration may result in a lower quality.
|
123 |
+
|
124 |
+
|
125 |
+
### Gradio interface
|
126 |
+
|
127 |
+
Supports video-to-audio and text-to-audio synthesis.
|
128 |
+
|
129 |
+
```
|
130 |
+
python gradio_demo.py
|
131 |
+
```
|
132 |
+
|
133 |
+
### Known limitations
|
134 |
+
|
135 |
+
1. The model sometimes generates undesired unintelligible human speech-like sounds
|
136 |
+
2. The model sometimes generates undesired background music
|
137 |
+
3. The model struggles with unfamiliar concepts, e.g., it can generate "gunfires" but not "RPG firing".
|
138 |
+
|
139 |
+
We believe all of these three limitations can be addressed with more high-quality training data.
|
140 |
+
|
141 |
+
## Training
|
142 |
+
Work in progress.
|
143 |
+
|
144 |
+
## Evaluation
|
145 |
+
Work in progress.
|
146 |
+
|
147 |
+
## Acknowledgement
|
148 |
+
Many thanks to:
|
149 |
+
- [Make-An-Audio 2](https://github.com/bytedance/Make-An-Audio-2) for the 16kHz BigVGAN pretrained model
|
150 |
+
- [BigVGAN](https://github.com/NVIDIA/BigVGAN)
|
151 |
+
- [Synchformer](https://github.com/v-iashin/Synchformer)
|
152 |
+
|
app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from datetime import datetime
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
+
import torchaudio
|
8 |
+
|
9 |
+
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
|
10 |
+
setup_eval_logging)
|
11 |
+
from mmaudio.model.flow_matching import FlowMatching
|
12 |
+
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
13 |
+
from mmaudio.model.sequence_config import SequenceConfig
|
14 |
+
from mmaudio.model.utils.features_utils import FeaturesUtils
|
15 |
+
|
16 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
17 |
+
torch.backends.cudnn.allow_tf32 = True
|
18 |
+
|
19 |
+
log = logging.getLogger()
|
20 |
+
|
21 |
+
device = 'cuda'
|
22 |
+
dtype = torch.bfloat16
|
23 |
+
|
24 |
+
model: ModelConfig = all_model_cfg['large_44k_v2']
|
25 |
+
model.download_if_needed()
|
26 |
+
output_dir = Path('./output/gradio')
|
27 |
+
|
28 |
+
setup_eval_logging()
|
29 |
+
|
30 |
+
|
31 |
+
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
32 |
+
seq_cfg = model.seq_cfg
|
33 |
+
|
34 |
+
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
|
35 |
+
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
|
36 |
+
log.info(f'Loaded weights from {model.model_path}')
|
37 |
+
|
38 |
+
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
|
39 |
+
synchformer_ckpt=model.synchformer_ckpt,
|
40 |
+
enable_conditions=True,
|
41 |
+
mode=model.mode,
|
42 |
+
bigvgan_vocoder_ckpt=model.bigvgan_16k_path)
|
43 |
+
feature_utils = feature_utils.to(device, dtype).eval()
|
44 |
+
|
45 |
+
return net, feature_utils, seq_cfg
|
46 |
+
|
47 |
+
|
48 |
+
net, feature_utils, seq_cfg = get_model()
|
49 |
+
|
50 |
+
|
51 |
+
@torch.inference_mode()
|
52 |
+
def video_to_audio(video: gr.Video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
53 |
+
cfg_strength: float, duration: float):
|
54 |
+
|
55 |
+
rng = torch.Generator(device=device)
|
56 |
+
rng.manual_seed(seed)
|
57 |
+
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
58 |
+
|
59 |
+
clip_frames, sync_frames, duration = load_video(video, duration)
|
60 |
+
clip_frames = clip_frames.unsqueeze(0)
|
61 |
+
sync_frames = sync_frames.unsqueeze(0)
|
62 |
+
seq_cfg.duration = duration
|
63 |
+
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
64 |
+
|
65 |
+
audios = generate(clip_frames,
|
66 |
+
sync_frames, [prompt],
|
67 |
+
negative_text=[negative_prompt],
|
68 |
+
feature_utils=feature_utils,
|
69 |
+
net=net,
|
70 |
+
fm=fm,
|
71 |
+
rng=rng,
|
72 |
+
cfg_strength=cfg_strength)
|
73 |
+
audio = audios.float().cpu()[0]
|
74 |
+
|
75 |
+
current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
|
76 |
+
output_dir.mkdir(exist_ok=True, parents=True)
|
77 |
+
video_save_path = output_dir / f'{current_time_string}.mp4'
|
78 |
+
make_video(video,
|
79 |
+
video_save_path,
|
80 |
+
audio,
|
81 |
+
sampling_rate=seq_cfg.sampling_rate,
|
82 |
+
duration_sec=seq_cfg.duration)
|
83 |
+
return video_save_path
|
84 |
+
|
85 |
+
|
86 |
+
@torch.inference_mode()
|
87 |
+
def text_to_audio(prompt: str, negative_prompt: str, seed: int, num_steps: int, cfg_strength: float,
|
88 |
+
duration: float):
|
89 |
+
|
90 |
+
rng = torch.Generator(device=device)
|
91 |
+
rng.manual_seed(seed)
|
92 |
+
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
93 |
+
|
94 |
+
clip_frames = sync_frames = None
|
95 |
+
seq_cfg.duration = duration
|
96 |
+
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
97 |
+
|
98 |
+
audios = generate(clip_frames,
|
99 |
+
sync_frames, [prompt],
|
100 |
+
negative_text=[negative_prompt],
|
101 |
+
feature_utils=feature_utils,
|
102 |
+
net=net,
|
103 |
+
fm=fm,
|
104 |
+
rng=rng,
|
105 |
+
cfg_strength=cfg_strength)
|
106 |
+
audio = audios.float().cpu()[0]
|
107 |
+
|
108 |
+
current_time_string = datetime.now().strftime('%Y%m%d_%H%M%S')
|
109 |
+
output_dir.mkdir(exist_ok=True, parents=True)
|
110 |
+
audio_save_path = output_dir / f'{current_time_string}.flac'
|
111 |
+
torchaudio.save(audio_save_path, audio, seq_cfg.sampling_rate)
|
112 |
+
return audio_save_path
|
113 |
+
|
114 |
+
|
115 |
+
video_to_audio_tab = gr.Interface(
|
116 |
+
fn=video_to_audio,
|
117 |
+
inputs=[
|
118 |
+
gr.Video(),
|
119 |
+
gr.Text(label='Prompt'),
|
120 |
+
gr.Text(label='Negative prompt', value='music'),
|
121 |
+
gr.Number(label='Seed', value=0, precision=0, minimum=0),
|
122 |
+
gr.Number(label='Num steps', value=25, precision=0, minimum=1),
|
123 |
+
gr.Number(label='Guidance Strength', value=4.5, minimum=1),
|
124 |
+
gr.Number(label='Duration (sec)', value=8, minimum=1),
|
125 |
+
],
|
126 |
+
outputs='playable_video',
|
127 |
+
cache_examples=False,
|
128 |
+
title='MMAudio — Video-to-Audio Synthesis',
|
129 |
+
)
|
130 |
+
|
131 |
+
text_to_audio_tab = gr.Interface(
|
132 |
+
fn=text_to_audio,
|
133 |
+
inputs=[
|
134 |
+
gr.Text(label='Prompt'),
|
135 |
+
gr.Text(label='Negative prompt'),
|
136 |
+
gr.Number(label='Seed', value=0, precision=0, minimum=0),
|
137 |
+
gr.Number(label='Num steps', value=25, precision=0, minimum=1),
|
138 |
+
gr.Number(label='Guidance Strength', value=4.5, minimum=1),
|
139 |
+
gr.Number(label='Duration (sec)', value=8, minimum=1),
|
140 |
+
],
|
141 |
+
outputs='audio',
|
142 |
+
cache_examples=False,
|
143 |
+
title='MMAudio — Text-to-Audio Synthesis',
|
144 |
+
)
|
145 |
+
|
146 |
+
if __name__ == "__main__":
|
147 |
+
gr.TabbedInterface([video_to_audio_tab, text_to_audio_tab],
|
148 |
+
['Video-to-Audio', 'Text-to-Audio']).launch(server_port=17888,
|
149 |
+
allowed_paths=[output_dir])
|
demo.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torchaudio
|
7 |
+
|
8 |
+
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate,
|
9 |
+
load_video, make_video, setup_eval_logging)
|
10 |
+
from mmaudio.model.flow_matching import FlowMatching
|
11 |
+
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
12 |
+
from mmaudio.model.utils.features_utils import FeaturesUtils
|
13 |
+
|
14 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
15 |
+
torch.backends.cudnn.allow_tf32 = True
|
16 |
+
|
17 |
+
log = logging.getLogger()
|
18 |
+
|
19 |
+
|
20 |
+
@torch.inference_mode()
|
21 |
+
def main():
|
22 |
+
setup_eval_logging()
|
23 |
+
|
24 |
+
parser = ArgumentParser()
|
25 |
+
parser.add_argument('--variant',
|
26 |
+
type=str,
|
27 |
+
default='large_44k_v2',
|
28 |
+
help='small_16k, small_44k, medium_44k, large_44k, large_44k_v2')
|
29 |
+
parser.add_argument('--video', type=Path, help='Path to the video file')
|
30 |
+
parser.add_argument('--prompt', type=str, help='Input prompt', default='')
|
31 |
+
parser.add_argument('--negative_prompt', type=str, help='Negative prompt', default='')
|
32 |
+
parser.add_argument('--duration', type=float, default=8.0)
|
33 |
+
parser.add_argument('--cfg_strength', type=float, default=4.5)
|
34 |
+
parser.add_argument('--num_steps', type=int, default=25)
|
35 |
+
|
36 |
+
parser.add_argument('--mask_away_clip', action='store_true')
|
37 |
+
|
38 |
+
parser.add_argument('--output', type=Path, help='Output directory', default='./output')
|
39 |
+
parser.add_argument('--seed', type=int, help='Random seed', default=42)
|
40 |
+
parser.add_argument('--skip_video_composite', action='store_true')
|
41 |
+
parser.add_argument('--full_precision', action='store_true')
|
42 |
+
|
43 |
+
args = parser.parse_args()
|
44 |
+
|
45 |
+
if args.variant not in all_model_cfg:
|
46 |
+
raise ValueError(f'Unknown model variant: {args.variant}')
|
47 |
+
model: ModelConfig = all_model_cfg[args.variant]
|
48 |
+
model.download_if_needed()
|
49 |
+
seq_cfg = model.seq_cfg
|
50 |
+
|
51 |
+
if args.video:
|
52 |
+
video_path: Path = Path(args.video).expanduser()
|
53 |
+
else:
|
54 |
+
video_path = None
|
55 |
+
prompt: str = args.prompt
|
56 |
+
negative_prompt: str = args.negative_prompt
|
57 |
+
output_dir: str = args.output.expanduser()
|
58 |
+
seed: int = args.seed
|
59 |
+
num_steps: int = args.num_steps
|
60 |
+
duration: float = args.duration
|
61 |
+
cfg_strength: float = args.cfg_strength
|
62 |
+
skip_video_composite: bool = args.skip_video_composite
|
63 |
+
mask_away_clip: bool = args.mask_away_clip
|
64 |
+
|
65 |
+
device = 'cuda'
|
66 |
+
dtype = torch.float32 if args.full_precision else torch.bfloat16
|
67 |
+
|
68 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
69 |
+
|
70 |
+
# load a pretrained model
|
71 |
+
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
|
72 |
+
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
|
73 |
+
log.info(f'Loaded weights from {model.model_path}')
|
74 |
+
|
75 |
+
# misc setup
|
76 |
+
rng = torch.Generator(device=device)
|
77 |
+
rng.manual_seed(seed)
|
78 |
+
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
79 |
+
|
80 |
+
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
|
81 |
+
synchformer_ckpt=model.synchformer_ckpt,
|
82 |
+
enable_conditions=True,
|
83 |
+
mode=model.mode,
|
84 |
+
bigvgan_vocoder_ckpt=model.bigvgan_16k_path)
|
85 |
+
feature_utils = feature_utils.to(device, dtype).eval()
|
86 |
+
|
87 |
+
if video_path is not None:
|
88 |
+
log.info(f'Using video {video_path}')
|
89 |
+
clip_frames, sync_frames, duration = load_video(video_path, duration)
|
90 |
+
if mask_away_clip:
|
91 |
+
clip_frames = None
|
92 |
+
else:
|
93 |
+
clip_frames = clip_frames.unsqueeze(0)
|
94 |
+
sync_frames = sync_frames.unsqueeze(0)
|
95 |
+
else:
|
96 |
+
log.info('No video provided -- text-to-audio mode')
|
97 |
+
clip_frames = sync_frames = None
|
98 |
+
|
99 |
+
seq_cfg.duration = duration
|
100 |
+
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
101 |
+
|
102 |
+
log.info(f'Prompt: {prompt}')
|
103 |
+
log.info(f'Negative prompt: {negative_prompt}')
|
104 |
+
|
105 |
+
audios = generate(clip_frames,
|
106 |
+
sync_frames, [prompt],
|
107 |
+
negative_text=[negative_prompt],
|
108 |
+
feature_utils=feature_utils,
|
109 |
+
net=net,
|
110 |
+
fm=fm,
|
111 |
+
rng=rng,
|
112 |
+
cfg_strength=cfg_strength)
|
113 |
+
audio = audios.float().cpu()[0]
|
114 |
+
if video_path is not None:
|
115 |
+
save_path = output_dir / f'{video_path.stem}.flac'
|
116 |
+
else:
|
117 |
+
safe_filename = prompt.replace(' ', '_').replace('/', '_').replace('.', '')
|
118 |
+
save_path = output_dir / f'{safe_filename}.flac'
|
119 |
+
torchaudio.save(save_path, audio, seq_cfg.sampling_rate)
|
120 |
+
|
121 |
+
log.info(f'Audio saved to {save_path}')
|
122 |
+
if video_path is not None and not skip_video_composite:
|
123 |
+
video_save_path = output_dir / f'{video_path.stem}.mp4'
|
124 |
+
make_video(video_path,
|
125 |
+
video_save_path,
|
126 |
+
audio,
|
127 |
+
sampling_rate=seq_cfg.sampling_rate,
|
128 |
+
duration_sec=seq_cfg.duration)
|
129 |
+
log.info(f'Video saved to {output_dir / video_save_path}')
|
130 |
+
|
131 |
+
log.info('Memory usage: %.2f GB', torch.cuda.max_memory_allocated() / (2**30))
|
132 |
+
|
133 |
+
|
134 |
+
if __name__ == '__main__':
|
135 |
+
main()
|
docs/images/icon.png
ADDED
docs/index.html
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<!-- Google tag (gtag.js) -->
|
5 |
+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-0JKBJ3WRJZ"></script>
|
6 |
+
<script>
|
7 |
+
window.dataLayer = window.dataLayer || [];
|
8 |
+
function gtag(){dataLayer.push(arguments);}
|
9 |
+
gtag('js', new Date());
|
10 |
+
gtag('config', 'G-0JKBJ3WRJZ');
|
11 |
+
</script>
|
12 |
+
|
13 |
+
<link rel="preconnect" href="https://fonts.googleapis.com">
|
14 |
+
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
|
15 |
+
<link href="https://fonts.googleapis.com/css2?family=Source+Sans+3&display=swap" rel="stylesheet">
|
16 |
+
<meta charset="UTF-8">
|
17 |
+
<title>MMAudio</title>
|
18 |
+
|
19 |
+
<link rel="icon" type="image/png" href="images/icon.png">
|
20 |
+
|
21 |
+
<meta name="viewport" content="width=device-width, initial-scale=1">
|
22 |
+
<!-- CSS only -->
|
23 |
+
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.1/dist/css/bootstrap.min.css" rel="stylesheet"
|
24 |
+
integrity="sha384-+0n0xVW2eSR5OomGNYDnhzAbDsOXxcvSN1TPprVMTNDbiYZCxYbOOl7+AMvyTG2x" crossorigin="anonymous">
|
25 |
+
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
|
26 |
+
|
27 |
+
<link rel="stylesheet" href="style.css">
|
28 |
+
</head>
|
29 |
+
<body>
|
30 |
+
|
31 |
+
<body>
|
32 |
+
<br><br><br><br>
|
33 |
+
<div class="container">
|
34 |
+
<div class="row text-center" style="font-size:38px">
|
35 |
+
<div class="col strong">
|
36 |
+
Taming Multimodal Joint Training for High-Quality <br>Video-to-Audio Synthesis
|
37 |
+
</div>
|
38 |
+
</div>
|
39 |
+
|
40 |
+
<br>
|
41 |
+
<div class="row text-center" style="font-size:28px">
|
42 |
+
<div class="col">
|
43 |
+
arXiv 2024
|
44 |
+
</div>
|
45 |
+
</div>
|
46 |
+
<br>
|
47 |
+
|
48 |
+
<div class="h-100 row text-center heavy justify-content-md-center" style="font-size:22px;">
|
49 |
+
<div class="col-sm-auto px-lg-2">
|
50 |
+
<a href="https://hkchengrex.github.io/">Ho Kei Cheng<sup>1</sup></a>
|
51 |
+
</div>
|
52 |
+
<div class="col-sm-auto px-lg-2">
|
53 |
+
<nobr><a href="https://scholar.google.co.jp/citations?user=RRIO1CcAAAAJ">Masato Ishii<sup>2</sup></a></nobr>
|
54 |
+
</div>
|
55 |
+
<div class="col-sm-auto px-lg-2">
|
56 |
+
<nobr><a href="https://scholar.google.com/citations?user=sXAjHFIAAAAJ">Akio Hayakawa<sup>2</sup></a></nobr>
|
57 |
+
</div>
|
58 |
+
<div class="col-sm-auto px-lg-2">
|
59 |
+
<nobr><a href="https://scholar.google.com/citations?user=XCRO260AAAAJ">Takashi Shibuya<sup>2</sup></a></nobr>
|
60 |
+
</div>
|
61 |
+
<div class="col-sm-auto px-lg-2">
|
62 |
+
<nobr><a href="https://www.alexander-schwing.de/">Alexander Schwing<sup>1</sup></a></nobr>
|
63 |
+
</div>
|
64 |
+
<div class="col-sm-auto px-lg-2" >
|
65 |
+
<nobr><a href="https://www.yukimitsufuji.com/">Yuki Mitsufuji<sup>2,3</sup></a></nobr>
|
66 |
+
</div>
|
67 |
+
</div>
|
68 |
+
|
69 |
+
<div class="h-100 row text-center heavy justify-content-md-center" style="font-size:22px;">
|
70 |
+
<div class="col-sm-auto px-lg-2">
|
71 |
+
<sup>1</sup>University of Illinois Urbana-Champaign
|
72 |
+
</div>
|
73 |
+
<div class="col-sm-auto px-lg-2">
|
74 |
+
<sup>2</sup>Sony AI
|
75 |
+
</div>
|
76 |
+
<div class="col-sm-auto px-lg-2">
|
77 |
+
<sup>3</sup>Sony Group Corporation
|
78 |
+
</div>
|
79 |
+
</div>
|
80 |
+
|
81 |
+
<br>
|
82 |
+
|
83 |
+
<br>
|
84 |
+
|
85 |
+
<div class="h-100 row text-center justify-content-md-center" style="font-size:20px;">
|
86 |
+
<!-- <div class="col-sm-2">
|
87 |
+
<a href="https://arxiv.org/abs/2310.12982">[arXiv]</a>
|
88 |
+
</div> -->
|
89 |
+
<div class="col-sm-3">
|
90 |
+
<a href="">[Paper (being prepared)]</a>
|
91 |
+
</div>
|
92 |
+
<div class="col-sm-3">
|
93 |
+
<a href="https://github.com/hkchengrex/MMAudio">[Code]</a>
|
94 |
+
</div>
|
95 |
+
<!-- <div class="col-sm-2">
|
96 |
+
<a
|
97 |
+
href="https://colab.research.google.com/drive/1yo43XTbjxuWA7XgCUO9qxAi7wBI6HzvP?usp=sharing">[Colab]</a>
|
98 |
+
</div> -->
|
99 |
+
</div>
|
100 |
+
|
101 |
+
<br>
|
102 |
+
|
103 |
+
<hr>
|
104 |
+
|
105 |
+
<div class="row" style="font-size:32px">
|
106 |
+
<div class="col strong">
|
107 |
+
TL;DR
|
108 |
+
</div>
|
109 |
+
</div>
|
110 |
+
<br>
|
111 |
+
<div class="row">
|
112 |
+
<div class="col">
|
113 |
+
<p class="light" style="text-align: left;">
|
114 |
+
MMAudio generates synchronized audio given video and/or text inputs.
|
115 |
+
</p>
|
116 |
+
</div>
|
117 |
+
</div>
|
118 |
+
|
119 |
+
<br>
|
120 |
+
<hr>
|
121 |
+
<br>
|
122 |
+
|
123 |
+
<div class="row" style="font-size:32px">
|
124 |
+
<div class="col strong">
|
125 |
+
Demo
|
126 |
+
</div>
|
127 |
+
</div>
|
128 |
+
<br>
|
129 |
+
<div class="row" style="font-size:48px">
|
130 |
+
<div class="col strong text-center">
|
131 |
+
<a href="video_main.html" style="text-decoration: underline;"><More results></a>
|
132 |
+
</div>
|
133 |
+
</div>
|
134 |
+
<br>
|
135 |
+
<div class="video-container" style="text-align: center;">
|
136 |
+
<iframe src="https://youtube.com/embed/YElewUT2M4M"></iframe>
|
137 |
+
</div>
|
138 |
+
|
139 |
+
<br>
|
140 |
+
|
141 |
+
<br><br>
|
142 |
+
<br><br>
|
143 |
+
|
144 |
+
</div>
|
145 |
+
|
146 |
+
</body>
|
147 |
+
</html>
|
docs/style.css
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
font-family: 'Source Sans 3', sans-serif;
|
3 |
+
font-size: 18px;
|
4 |
+
margin-left: auto;
|
5 |
+
margin-right: auto;
|
6 |
+
font-weight: 400;
|
7 |
+
height: 100%;
|
8 |
+
max-width: 1000px;
|
9 |
+
}
|
10 |
+
|
11 |
+
table {
|
12 |
+
width: 100%;
|
13 |
+
border-collapse: collapse;
|
14 |
+
}
|
15 |
+
th, td {
|
16 |
+
border: 1px solid #ddd;
|
17 |
+
padding: 8px;
|
18 |
+
text-align: center;
|
19 |
+
}
|
20 |
+
th {
|
21 |
+
background-color: #f2f2f2;
|
22 |
+
}
|
23 |
+
video {
|
24 |
+
width: 100%;
|
25 |
+
height: auto;
|
26 |
+
}
|
27 |
+
p {
|
28 |
+
font-size: 28px;
|
29 |
+
}
|
30 |
+
h2 {
|
31 |
+
font-size: 36px;
|
32 |
+
}
|
33 |
+
|
34 |
+
.strong {
|
35 |
+
font-weight: 700;
|
36 |
+
}
|
37 |
+
|
38 |
+
.light {
|
39 |
+
font-weight: 100;
|
40 |
+
}
|
41 |
+
|
42 |
+
.heavy {
|
43 |
+
font-weight: 900;
|
44 |
+
}
|
45 |
+
|
46 |
+
.column {
|
47 |
+
float: left;
|
48 |
+
}
|
49 |
+
|
50 |
+
a:link,
|
51 |
+
a:visited {
|
52 |
+
color: #05538f;
|
53 |
+
text-decoration: none;
|
54 |
+
}
|
55 |
+
|
56 |
+
a:hover {
|
57 |
+
color: #63cbdd;
|
58 |
+
}
|
59 |
+
|
60 |
+
hr {
|
61 |
+
border: 0;
|
62 |
+
height: 1px;
|
63 |
+
background-image: linear-gradient(to right, rgba(0, 0, 0, 0), rgba(0, 0, 0, 0.75), rgba(0, 0, 0, 0));
|
64 |
+
}
|
65 |
+
|
66 |
+
.video-container {
|
67 |
+
position: relative;
|
68 |
+
padding-bottom: 56.25%; /* 16:9 */
|
69 |
+
height: 0;
|
70 |
+
}
|
71 |
+
|
72 |
+
.video-container iframe {
|
73 |
+
position: absolute;
|
74 |
+
top: 0;
|
75 |
+
left: 0;
|
76 |
+
width: 100%;
|
77 |
+
height: 100%;
|
78 |
+
}
|
docs/style_videos.css
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
font-family: 'Source Sans 3', sans-serif;
|
3 |
+
font-size: 1.5vh;
|
4 |
+
font-weight: 400;
|
5 |
+
}
|
6 |
+
|
7 |
+
table {
|
8 |
+
width: 100%;
|
9 |
+
border-collapse: collapse;
|
10 |
+
}
|
11 |
+
th, td {
|
12 |
+
border: 1px solid #ddd;
|
13 |
+
padding: 8px;
|
14 |
+
text-align: center;
|
15 |
+
}
|
16 |
+
th {
|
17 |
+
background-color: #f2f2f2;
|
18 |
+
}
|
19 |
+
video {
|
20 |
+
width: 100%;
|
21 |
+
height: auto;
|
22 |
+
}
|
23 |
+
p {
|
24 |
+
font-size: 1.5vh;
|
25 |
+
font-weight: bold;
|
26 |
+
}
|
27 |
+
h2 {
|
28 |
+
font-size: 2vh;
|
29 |
+
font-weight: bold;
|
30 |
+
}
|
31 |
+
|
32 |
+
.video-container {
|
33 |
+
position: relative;
|
34 |
+
padding-bottom: 56.25%; /* 16:9 */
|
35 |
+
height: 0;
|
36 |
+
}
|
37 |
+
|
38 |
+
.video-container iframe {
|
39 |
+
position: absolute;
|
40 |
+
top: 0;
|
41 |
+
left: 0;
|
42 |
+
width: 100%;
|
43 |
+
height: 100%;
|
44 |
+
}
|
45 |
+
|
46 |
+
.video-header {
|
47 |
+
background-color: #f2f2f2;
|
48 |
+
text-align: center;
|
49 |
+
font-size: 1.5vh;
|
50 |
+
font-weight: bold;
|
51 |
+
padding: 8px;
|
52 |
+
}
|
docs/video_gen.html
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<!-- Google tag (gtag.js) -->
|
5 |
+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-0JKBJ3WRJZ"></script>
|
6 |
+
<script>
|
7 |
+
window.dataLayer = window.dataLayer || [];
|
8 |
+
function gtag(){dataLayer.push(arguments);}
|
9 |
+
gtag('js', new Date());
|
10 |
+
gtag('config', 'G-0JKBJ3WRJZ');
|
11 |
+
</script>
|
12 |
+
|
13 |
+
<link href='https://fonts.googleapis.com/css?family=Source+Sans+Pro' rel='stylesheet' type='text/css'>
|
14 |
+
<meta charset="UTF-8">
|
15 |
+
<title>MMAudio</title>
|
16 |
+
|
17 |
+
<link rel="icon" type="image/png" href="images/icon.png">
|
18 |
+
|
19 |
+
<meta name="viewport" content="width=device-width, initial-scale=1">
|
20 |
+
<!-- CSS only -->
|
21 |
+
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.1/dist/css/bootstrap.min.css" rel="stylesheet"
|
22 |
+
integrity="sha384-+0n0xVW2eSR5OomGNYDnhzAbDsOXxcvSN1TPprVMTNDbiYZCxYbOOl7+AMvyTG2x" crossorigin="anonymous">
|
23 |
+
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.7.1/jquery.min.js"></script>
|
24 |
+
|
25 |
+
<link rel="stylesheet" href="style_videos.css">
|
26 |
+
</head>
|
27 |
+
<body>
|
28 |
+
|
29 |
+
<div id="moviegen_all">
|
30 |
+
<h2 id="moviegen" style="text-align: center;">Comparisons with Movie Gen Audio on Videos Generated by MovieGen</h2>
|
31 |
+
<p id="moviegen1" style="overflow: hidden;">
|
32 |
+
Example 1: Ice cracking with sharp snapping sound, and metal tool scraping against the ice surface.
|
33 |
+
<span style="float: right;"><a href="#index">Back to index</a></span>
|
34 |
+
</p>
|
35 |
+
|
36 |
+
<div class="row g-1">
|
37 |
+
<div class="col-sm-6">
|
38 |
+
<div class="video-header">Movie Gen Audio</div>
|
39 |
+
<div class="video-container">
|
40 |
+
<iframe src="https://youtube.com/embed/d7Lb0ihtGcE"></iframe>
|
41 |
+
</div>
|
42 |
+
</div>
|
43 |
+
<div class="col-sm-6">
|
44 |
+
<div class="video-header">Ours</div>
|
45 |
+
<div class="video-container">
|
46 |
+
<iframe src="https://youtube.com/embed/F4JoJ2r2m8U"></iframe>
|
47 |
+
</div>
|
48 |
+
</div>
|
49 |
+
</div>
|
50 |
+
<br>
|
51 |
+
|
52 |
+
<!-- <p id="moviegen2">Example 2: Rhythmic splashing and lapping of water. <span style="float:right;"><a href="#index">Back to index</a></span> </p>
|
53 |
+
|
54 |
+
<table>
|
55 |
+
<thead>
|
56 |
+
<tr>
|
57 |
+
<th>Movie Gen Audio</th>
|
58 |
+
<th>Ours</th>
|
59 |
+
</tr>
|
60 |
+
</thead>
|
61 |
+
<tbody>
|
62 |
+
<tr>
|
63 |
+
<td width="50%">
|
64 |
+
<div class="video-container">
|
65 |
+
<iframe src="https://youtube.com/embed/5gQNPK99CIk"></iframe>
|
66 |
+
</div>
|
67 |
+
</td>
|
68 |
+
<td width="50%">
|
69 |
+
<div class="video-container">
|
70 |
+
<iframe src="https://youtube.com/embed/AbwnTzG-BpA"></iframe>
|
71 |
+
</div>
|
72 |
+
</td>
|
73 |
+
</tr>
|
74 |
+
</tbody>
|
75 |
+
</table> -->
|
76 |
+
|
77 |
+
<p id="moviegen2" style="overflow: hidden;">
|
78 |
+
Example 2: Rhythmic splashing and lapping of water.
|
79 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
80 |
+
</p>
|
81 |
+
<div class="row g-1">
|
82 |
+
<div class="col-sm-6">
|
83 |
+
<div class="video-header">Movie Gen Audio</div>
|
84 |
+
<div class="video-container">
|
85 |
+
<iframe src="https://youtube.com/embed/5gQNPK99CIk"></iframe>
|
86 |
+
</div>
|
87 |
+
</div>
|
88 |
+
<div class="col-sm-6">
|
89 |
+
<div class="video-header">Ours</div>
|
90 |
+
<div class="video-container">
|
91 |
+
<iframe src="https://youtube.com/embed/AbwnTzG-BpA"></iframe>
|
92 |
+
</div>
|
93 |
+
</div>
|
94 |
+
</div>
|
95 |
+
<br>
|
96 |
+
|
97 |
+
<p id="moviegen3" style="overflow: hidden;">
|
98 |
+
Example 3: Shovel scrapes against dry earth.
|
99 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
100 |
+
</p>
|
101 |
+
<div class="row g-1">
|
102 |
+
<div class="col-sm-6">
|
103 |
+
<div class="video-header">Movie Gen Audio</div>
|
104 |
+
<div class="video-container">
|
105 |
+
<iframe src="https://youtube.com/embed/PUKGyEve7XQ"></iframe>
|
106 |
+
</div>
|
107 |
+
</div>
|
108 |
+
<div class="col-sm-6">
|
109 |
+
<div class="video-header">Ours</div>
|
110 |
+
<div class="video-container">
|
111 |
+
<iframe src="https://youtube.com/embed/CNn7i8VNkdc"></iframe>
|
112 |
+
</div>
|
113 |
+
</div>
|
114 |
+
</div>
|
115 |
+
<br>
|
116 |
+
|
117 |
+
|
118 |
+
<p id="moviegen4" style="overflow: hidden;">
|
119 |
+
(Failure case) Example 4: Creamy sound of mashed potatoes being scooped.
|
120 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
121 |
+
</p>
|
122 |
+
<div class="row g-1">
|
123 |
+
<div class="col-sm-6">
|
124 |
+
<div class="video-header">Movie Gen Audio</div>
|
125 |
+
<div class="video-container">
|
126 |
+
<iframe src="https://youtube.com/embed/PJv1zxR9JjQ"></iframe>
|
127 |
+
</div>
|
128 |
+
</div>
|
129 |
+
<div class="col-sm-6">
|
130 |
+
<div class="video-header">Ours</div>
|
131 |
+
<div class="video-container">
|
132 |
+
<iframe src="https://youtube.com/embed/c3-LJ1lNsPQ"></iframe>
|
133 |
+
</div>
|
134 |
+
</div>
|
135 |
+
</div>
|
136 |
+
<br>
|
137 |
+
|
138 |
+
</div>
|
139 |
+
|
140 |
+
<div id="hunyuan_sora_all">
|
141 |
+
|
142 |
+
<h2 id="hunyuan" style="text-align: center;">Results on Videos Generated by Hunyuan</h2>
|
143 |
+
<p style="overflow: hidden;">
|
144 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
145 |
+
</p>
|
146 |
+
<div class="row g-1">
|
147 |
+
<div class="col-sm-6">
|
148 |
+
<div class="video-header">Typing</div>
|
149 |
+
<div class="video-container">
|
150 |
+
<iframe src="https://youtube.com/embed/8ln_9hhH_nk"></iframe>
|
151 |
+
</div>
|
152 |
+
</div>
|
153 |
+
<div class="col-sm-6">
|
154 |
+
<div class="video-header">Water is rushing down a stream and pouring</div>
|
155 |
+
<div class="video-container">
|
156 |
+
<iframe src="https://youtube.com/embed/5df1FZFQj30"></iframe>
|
157 |
+
</div>
|
158 |
+
</div>
|
159 |
+
</div>
|
160 |
+
<div class="row g-1">
|
161 |
+
<div class="col-sm-6">
|
162 |
+
<div class="video-header">Waves on beach</div>
|
163 |
+
<div class="video-container">
|
164 |
+
<iframe src="https://youtube.com/embed/7wQ9D5WgpFc"></iframe>
|
165 |
+
</div>
|
166 |
+
</div>
|
167 |
+
<div class="col-sm-6">
|
168 |
+
<div class="video-header">Water droplet</div>
|
169 |
+
<div class="video-container">
|
170 |
+
<iframe src="https://youtube.com/embed/q7M2nsalGjM"></iframe>
|
171 |
+
</div>
|
172 |
+
</div>
|
173 |
+
</div>
|
174 |
+
<br>
|
175 |
+
|
176 |
+
<h2 id="sora" style="text-align: center;">Results on Videos Generated by Sora</h2>
|
177 |
+
<p style="overflow: hidden;">
|
178 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
179 |
+
</p>
|
180 |
+
<div class="row g-1">
|
181 |
+
<div class="col-sm-6">
|
182 |
+
<div class="video-header">Ships riding waves</div>
|
183 |
+
<div class="video-container">
|
184 |
+
<iframe src="https://youtube.com/embed/JbgQzHHytk8"></iframe>
|
185 |
+
</div>
|
186 |
+
</div>
|
187 |
+
<div class="col-sm-6">
|
188 |
+
<div class="video-header">Train (no text prompt given)</div>
|
189 |
+
<div class="video-container">
|
190 |
+
<iframe src="https://youtube.com/embed/xOW7zrjpWC8"></iframe>
|
191 |
+
</div>
|
192 |
+
</div>
|
193 |
+
</div>
|
194 |
+
<div class="row g-1">
|
195 |
+
<div class="col-sm-6">
|
196 |
+
<div class="video-header">Seashore (no text prompt given)</div>
|
197 |
+
<div class="video-container">
|
198 |
+
<iframe src="https://youtube.com/embed/fIuw5Y8ZZ9E"></iframe>
|
199 |
+
</div>
|
200 |
+
</div>
|
201 |
+
<div class="col-sm-6">
|
202 |
+
<div class="video-header">Surfing (failure: unprompted music)</div>
|
203 |
+
<div class="video-container">
|
204 |
+
<iframe src="https://youtube.com/embed/UcSTk-v0M_s"></iframe>
|
205 |
+
</div>
|
206 |
+
</div>
|
207 |
+
</div>
|
208 |
+
<br>
|
209 |
+
|
210 |
+
<div id="mochi_ltx_all">
|
211 |
+
<h2 id="mochi" style="text-align: center;">Results on Videos Generated by Mochi 1</h2>
|
212 |
+
<p style="overflow: hidden;">
|
213 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
214 |
+
</p>
|
215 |
+
<div class="row g-1">
|
216 |
+
<div class="col-sm-6">
|
217 |
+
<div class="video-header">Magical fire and lightning (no text prompt given)</div>
|
218 |
+
<div class="video-container">
|
219 |
+
<iframe src="https://youtube.com/embed/tTlRZaSMNwY"></iframe>
|
220 |
+
</div>
|
221 |
+
</div>
|
222 |
+
<div class="col-sm-6">
|
223 |
+
<div class="video-header">Storm (no text prompt given)</div>
|
224 |
+
<div class="video-container">
|
225 |
+
<iframe src="https://youtube.com/embed/4hrZTMJUy3w"></iframe>
|
226 |
+
</div>
|
227 |
+
</div>
|
228 |
+
</div>
|
229 |
+
<br>
|
230 |
+
|
231 |
+
<h2 id="ltx" style="text-align: center;">Results on Videos Generated by LTX-Video</h2>
|
232 |
+
<p style="overflow: hidden;">
|
233 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
234 |
+
</p>
|
235 |
+
<div class="row g-1">
|
236 |
+
<div class="col-sm-6">
|
237 |
+
<div class="video-header">Firewood burning and cracking</div>
|
238 |
+
<div class="video-container">
|
239 |
+
<iframe src="https://youtube.com/embed/P7_DDpgev0g"></iframe>
|
240 |
+
</div>
|
241 |
+
</div>
|
242 |
+
<div class="col-sm-6">
|
243 |
+
<div class="video-header">Waterfall, water splashing</div>
|
244 |
+
<div class="video-container">
|
245 |
+
<iframe src="https://youtube.com/embed/4MvjceYnIO0"></iframe>
|
246 |
+
</div>
|
247 |
+
</div>
|
248 |
+
</div>
|
249 |
+
<br>
|
250 |
+
|
251 |
+
</div>
|
252 |
+
|
253 |
+
</body>
|
254 |
+
</html>
|
docs/video_main.html
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<!-- Google tag (gtag.js) -->
|
5 |
+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-0JKBJ3WRJZ"></script>
|
6 |
+
<script>
|
7 |
+
window.dataLayer = window.dataLayer || [];
|
8 |
+
function gtag(){dataLayer.push(arguments);}
|
9 |
+
gtag('js', new Date());
|
10 |
+
gtag('config', 'G-0JKBJ3WRJZ');
|
11 |
+
</script>
|
12 |
+
|
13 |
+
<link href='https://fonts.googleapis.com/css?family=Source+Sans+Pro' rel='stylesheet' type='text/css'>
|
14 |
+
<meta charset="UTF-8">
|
15 |
+
<title>MMAudio</title>
|
16 |
+
|
17 |
+
<link rel="icon" type="image/png" href="images/icon.png">
|
18 |
+
|
19 |
+
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1, user-scalable=no">
|
20 |
+
<!-- CSS only -->
|
21 |
+
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.1/dist/css/bootstrap.min.css" rel="stylesheet"
|
22 |
+
integrity="sha384-+0n0xVW2eSR5OomGNYDnhzAbDsOXxcvSN1TPprVMTNDbiYZCxYbOOl7+AMvyTG2x" crossorigin="anonymous">
|
23 |
+
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.7.1/jquery.min.js"></script>
|
24 |
+
|
25 |
+
<link rel="stylesheet" href="style_videos.css">
|
26 |
+
|
27 |
+
<script type="text/javascript">
|
28 |
+
$(document).ready(function(){
|
29 |
+
$("#content").load("video_gen.html #moviegen_all");
|
30 |
+
$("#load_moveigen").click(function(){
|
31 |
+
$("#content").load("video_gen.html #moviegen_all");
|
32 |
+
});
|
33 |
+
$("#load_hunyuan_sora").click(function(){
|
34 |
+
$("#content").load("video_gen.html #hunyuan_sora_all");
|
35 |
+
});
|
36 |
+
$("#load_mochi_ltx").click(function(){
|
37 |
+
$("#content").load("video_gen.html #mochi_ltx_all");
|
38 |
+
});
|
39 |
+
$("#load_vgg1").click(function(){
|
40 |
+
$("#content").load("video_vgg.html #vgg1");
|
41 |
+
});
|
42 |
+
$("#load_vgg2").click(function(){
|
43 |
+
$("#content").load("video_vgg.html #vgg2");
|
44 |
+
});
|
45 |
+
$("#load_vgg3").click(function(){
|
46 |
+
$("#content").load("video_vgg.html #vgg3");
|
47 |
+
});
|
48 |
+
$("#load_vgg4").click(function(){
|
49 |
+
$("#content").load("video_vgg.html #vgg4");
|
50 |
+
});
|
51 |
+
$("#load_vgg5").click(function(){
|
52 |
+
$("#content").load("video_vgg.html #vgg5");
|
53 |
+
});
|
54 |
+
$("#load_vgg6").click(function(){
|
55 |
+
$("#content").load("video_vgg.html #vgg6");
|
56 |
+
});
|
57 |
+
$("#load_vgg_extra").click(function(){
|
58 |
+
$("#content").load("video_vgg.html #vgg_extra");
|
59 |
+
});
|
60 |
+
});
|
61 |
+
</script>
|
62 |
+
</head>
|
63 |
+
<body>
|
64 |
+
<h1 id="index" style="text-align: center;">Index</h1>
|
65 |
+
<p><b>(Click on the links to load the corresponding videos)</b> <span style="float:right;"><a href="index.html">Back to project page</a></span></p>
|
66 |
+
|
67 |
+
<ol>
|
68 |
+
<li>
|
69 |
+
<a href="#" id="load_moveigen">Comparisons with Movie Gen Audio on Videos Generated by MovieGen</a>
|
70 |
+
</li>
|
71 |
+
<li>
|
72 |
+
<a href="#" id="load_hunyuan_sora">Results on Videos Generated by Hunyuan and Sora</a>
|
73 |
+
</li>
|
74 |
+
<li>
|
75 |
+
<a href="#" id="load_mochi_ltx">Results on Videos Generated by Mochi 1 and LTX-Video</a>
|
76 |
+
</li>
|
77 |
+
<li>
|
78 |
+
On VGGSound
|
79 |
+
<ol>
|
80 |
+
<li><a id='load_vgg1' href="#">Example 1: Wolf howling</a></li>
|
81 |
+
<li><a id='load_vgg2' href="#">Example 2: Striking a golf ball</a></li>
|
82 |
+
<li><a id='load_vgg3' href="#">Example 3: Hitting a drum</a></li>
|
83 |
+
<li><a id='load_vgg4' href="#">Example 4: Dog barking</a></li>
|
84 |
+
<li><a id='load_vgg5' href="#">Example 5: Playing a string instrument</a></li>
|
85 |
+
<li><a id='load_vgg6' href="#">Example 6: A group of people playing tambourines</a></li>
|
86 |
+
<li><a id='load_vgg_extra' href="#">Extra results & failure cases</a></li>
|
87 |
+
</ol>
|
88 |
+
</li>
|
89 |
+
</ol>
|
90 |
+
|
91 |
+
<div id="content" class="container-fluid">
|
92 |
+
|
93 |
+
</div>
|
94 |
+
<br>
|
95 |
+
<br>
|
96 |
+
|
97 |
+
</body>
|
98 |
+
</html>
|
docs/video_vgg.html
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<!-- Google tag (gtag.js) -->
|
5 |
+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-0JKBJ3WRJZ"></script>
|
6 |
+
<script>
|
7 |
+
window.dataLayer = window.dataLayer || [];
|
8 |
+
function gtag(){dataLayer.push(arguments);}
|
9 |
+
gtag('js', new Date());
|
10 |
+
gtag('config', 'G-0JKBJ3WRJZ');
|
11 |
+
</script>
|
12 |
+
|
13 |
+
<link href='https://fonts.googleapis.com/css?family=Source+Sans+Pro' rel='stylesheet' type='text/css'>
|
14 |
+
<meta charset="UTF-8">
|
15 |
+
<title>MMAudio</title>
|
16 |
+
|
17 |
+
<meta name="viewport" content="width=device-width, initial-scale=1">
|
18 |
+
<!-- CSS only -->
|
19 |
+
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.1/dist/css/bootstrap.min.css" rel="stylesheet"
|
20 |
+
integrity="sha384-+0n0xVW2eSR5OomGNYDnhzAbDsOXxcvSN1TPprVMTNDbiYZCxYbOOl7+AMvyTG2x" crossorigin="anonymous">
|
21 |
+
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
|
22 |
+
|
23 |
+
<link rel="stylesheet" href="style_videos.css">
|
24 |
+
</head>
|
25 |
+
<body>
|
26 |
+
|
27 |
+
<div id="vgg1">
|
28 |
+
<h2 style="text-align: center;">Comparisons with state-of-the-art methods in VGGSound</h2>
|
29 |
+
<p style="overflow: hidden;">
|
30 |
+
Example 1: Wolf howling.
|
31 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
32 |
+
</p>
|
33 |
+
<div class="row g-1">
|
34 |
+
<div class="col-sm-3">
|
35 |
+
<div class="video-header">Ground-truth</div>
|
36 |
+
<div class="video-container">
|
37 |
+
<iframe src="https://youtube.com/embed/9J_V74gqMUA"></iframe>
|
38 |
+
</div>
|
39 |
+
</div>
|
40 |
+
<div class="col-sm-3">
|
41 |
+
<div class="video-header">Ours</div>
|
42 |
+
<div class="video-container">
|
43 |
+
<iframe src="https://youtube.com/embed/P6O8IpjErPc"></iframe>
|
44 |
+
</div>
|
45 |
+
</div>
|
46 |
+
<div class="col-sm-3">
|
47 |
+
<div class="video-header">V2A-Mapper</div>
|
48 |
+
<div class="video-container">
|
49 |
+
<iframe src="https://youtube.com/embed/w-5eyqepvTk"></iframe>
|
50 |
+
</div>
|
51 |
+
</div>
|
52 |
+
<div class="col-sm-3">
|
53 |
+
<div class="video-header">FoleyCrafter</div>
|
54 |
+
<div class="video-container">
|
55 |
+
<iframe src="https://youtube.com/embed/VOLfoZlRkzo"></iframe>
|
56 |
+
</div>
|
57 |
+
</div>
|
58 |
+
</div>
|
59 |
+
<div class="row g-1">
|
60 |
+
<div class="col-sm-3">
|
61 |
+
<div class="video-header">Frieren</div>
|
62 |
+
<div class="video-container">
|
63 |
+
<iframe src="https://youtube.com/embed/49owKyA5Pa8"></iframe>
|
64 |
+
</div>
|
65 |
+
</div>
|
66 |
+
<div class="col-sm-3">
|
67 |
+
<div class="video-header">VATT</div>
|
68 |
+
<div class="video-container">
|
69 |
+
<iframe src="https://youtube.com/embed/QVtrFgbeGDM"></iframe>
|
70 |
+
</div>
|
71 |
+
</div>
|
72 |
+
<div class="col-sm-3">
|
73 |
+
<div class="video-header">V-AURA</div>
|
74 |
+
<div class="video-container">
|
75 |
+
<iframe src="https://youtube.com/embed/8r0uEfSNjvI"></iframe>
|
76 |
+
</div>
|
77 |
+
</div>
|
78 |
+
<div class="col-sm-3">
|
79 |
+
<div class="video-header">Seeing and Hearing</div>
|
80 |
+
<div class="video-container">
|
81 |
+
<iframe src="https://youtube.com/embed/bn-sLg2qulk"></iframe>
|
82 |
+
</div>
|
83 |
+
</div>
|
84 |
+
</div>
|
85 |
+
</div>
|
86 |
+
|
87 |
+
<div id="vgg2">
|
88 |
+
<h2 style="text-align: center;">Comparisons with state-of-the-art methods in VGGSound</h2>
|
89 |
+
<p style="overflow: hidden;">
|
90 |
+
Example 2: Striking a golf ball.
|
91 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
92 |
+
</p>
|
93 |
+
|
94 |
+
<div class="row g-1">
|
95 |
+
<div class="col-sm-3">
|
96 |
+
<div class="video-header">Ground-truth</div>
|
97 |
+
<div class="video-container">
|
98 |
+
<iframe src="https://youtube.com/embed/1hwSu42kkho"></iframe>
|
99 |
+
</div>
|
100 |
+
</div>
|
101 |
+
<div class="col-sm-3">
|
102 |
+
<div class="video-header">Ours</div>
|
103 |
+
<div class="video-container">
|
104 |
+
<iframe src="https://youtube.com/embed/kZibDoDCNxI"></iframe>
|
105 |
+
</div>
|
106 |
+
</div>
|
107 |
+
<div class="col-sm-3">
|
108 |
+
<div class="video-header">V2A-Mapper</div>
|
109 |
+
<div class="video-container">
|
110 |
+
<iframe src="https://youtube.com/embed/jgKfLBLhh7Y"></iframe>
|
111 |
+
</div>
|
112 |
+
</div>
|
113 |
+
<div class="col-sm-3">
|
114 |
+
<div class="video-header">FoleyCrafter</div>
|
115 |
+
<div class="video-container">
|
116 |
+
<iframe src="https://youtube.com/embed/Lfsx8mOPcJo"></iframe>
|
117 |
+
</div>
|
118 |
+
</div>
|
119 |
+
</div>
|
120 |
+
<div class="row g-1">
|
121 |
+
<div class="col-sm-3">
|
122 |
+
<div class="video-header">Frieren</div>
|
123 |
+
<div class="video-container">
|
124 |
+
<iframe src="https://youtube.com/embed/tz-LpbB0MBc"></iframe>
|
125 |
+
</div>
|
126 |
+
</div>
|
127 |
+
<div class="col-sm-3">
|
128 |
+
<div class="video-header">VATT</div>
|
129 |
+
<div class="video-container">
|
130 |
+
<iframe src="https://youtube.com/embed/RTDUHMi08n4"></iframe>
|
131 |
+
</div>
|
132 |
+
</div>
|
133 |
+
<div class="col-sm-3">
|
134 |
+
<div class="video-header">V-AURA</div>
|
135 |
+
<div class="video-container">
|
136 |
+
<iframe src="https://youtube.com/embed/N-3TDOsPnZQ"></iframe>
|
137 |
+
</div>
|
138 |
+
</div>
|
139 |
+
<div class="col-sm-3">
|
140 |
+
<div class="video-header">Seeing and Hearing</div>
|
141 |
+
<div class="video-container">
|
142 |
+
<iframe src="https://youtube.com/embed/QnsHnLn4gB0"></iframe>
|
143 |
+
</div>
|
144 |
+
</div>
|
145 |
+
</div>
|
146 |
+
</div>
|
147 |
+
|
148 |
+
<div id="vgg3">
|
149 |
+
<h2 style="text-align: center;">Comparisons with state-of-the-art methods in VGGSound</h2>
|
150 |
+
<p style="overflow: hidden;">
|
151 |
+
Example 3: Hitting a drum.
|
152 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
153 |
+
</p>
|
154 |
+
|
155 |
+
<div class="row g-1">
|
156 |
+
<div class="col-sm-3">
|
157 |
+
<div class="video-header">Ground-truth</div>
|
158 |
+
<div class="video-container">
|
159 |
+
<iframe src="https://youtube.com/embed/0oeIwq77w0Q"></iframe>
|
160 |
+
</div>
|
161 |
+
</div>
|
162 |
+
<div class="col-sm-3">
|
163 |
+
<div class="video-header">Ours</div>
|
164 |
+
<div class="video-container">
|
165 |
+
<iframe src="https://youtube.com/embed/-UtPV9ohuIM"></iframe>
|
166 |
+
</div>
|
167 |
+
</div>
|
168 |
+
<div class="col-sm-3">
|
169 |
+
<div class="video-header">V2A-Mapper</div>
|
170 |
+
<div class="video-container">
|
171 |
+
<iframe src="https://youtube.com/embed/9yivkgN-zwc"></iframe>
|
172 |
+
</div>
|
173 |
+
</div>
|
174 |
+
<div class="col-sm-3">
|
175 |
+
<div class="video-header">FoleyCrafter</div>
|
176 |
+
<div class="video-container">
|
177 |
+
<iframe src="https://youtube.com/embed/kkCsXPOlBvY"></iframe>
|
178 |
+
</div>
|
179 |
+
</div>
|
180 |
+
</div>
|
181 |
+
<div class="row g-1">
|
182 |
+
<div class="col-sm-3">
|
183 |
+
<div class="video-header">Frieren</div>
|
184 |
+
<div class="video-container">
|
185 |
+
<iframe src="https://youtube.com/embed/MbNKsVsuvig"></iframe>
|
186 |
+
</div>
|
187 |
+
</div>
|
188 |
+
<div class="col-sm-3">
|
189 |
+
<div class="video-header">VATT</div>
|
190 |
+
<div class="video-container">
|
191 |
+
<iframe src="https://youtube.com/embed/2yYviBjrpBw"></iframe>
|
192 |
+
</div>
|
193 |
+
</div>
|
194 |
+
<div class="col-sm-3">
|
195 |
+
<div class="video-header">V-AURA</div>
|
196 |
+
<div class="video-container">
|
197 |
+
<iframe src="https://youtube.com/embed/9yivkgN-zwc"></iframe>
|
198 |
+
</div>
|
199 |
+
</div>
|
200 |
+
<div class="col-sm-3">
|
201 |
+
<div class="video-header">Seeing and Hearing</div>
|
202 |
+
<div class="video-container">
|
203 |
+
<iframe src="https://youtube.com/embed/6dnyQt4Fuhs"></iframe>
|
204 |
+
</div>
|
205 |
+
</div>
|
206 |
+
</div>
|
207 |
+
</div>
|
208 |
+
</div>
|
209 |
+
|
210 |
+
<div id="vgg4">
|
211 |
+
<h2 style="text-align: center;">Comparisons with state-of-the-art methods in VGGSound</h2>
|
212 |
+
<p style="overflow: hidden;">
|
213 |
+
Example 4: Dog barking.
|
214 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
215 |
+
</p>
|
216 |
+
|
217 |
+
<div class="row g-1">
|
218 |
+
<div class="col-sm-3">
|
219 |
+
<div class="video-header">Ground-truth</div>
|
220 |
+
<div class="video-container">
|
221 |
+
<iframe src="https://youtube.com/embed/ckaqvTyMYAw"></iframe>
|
222 |
+
</div>
|
223 |
+
</div>
|
224 |
+
<div class="col-sm-3">
|
225 |
+
<div class="video-header">Ours</div>
|
226 |
+
<div class="video-container">
|
227 |
+
<iframe src="https://youtube.com/embed/_aRndFZzZ-I"></iframe>
|
228 |
+
</div>
|
229 |
+
</div>
|
230 |
+
<div class="col-sm-3">
|
231 |
+
<div class="video-header">V2A-Mapper</div>
|
232 |
+
<div class="video-container">
|
233 |
+
<iframe src="https://youtube.com/embed/mNCISP3LBl0"></iframe>
|
234 |
+
</div>
|
235 |
+
</div>
|
236 |
+
<div class="col-sm-3">
|
237 |
+
<div class="video-header">FoleyCrafter</div>
|
238 |
+
<div class="video-container">
|
239 |
+
<iframe src="https://youtube.com/embed/phZBQ3L7foE"></iframe>
|
240 |
+
</div>
|
241 |
+
</div>
|
242 |
+
</div>
|
243 |
+
<div class="row g-1">
|
244 |
+
<div class="col-sm-3">
|
245 |
+
<div class="video-header">Frieren</div>
|
246 |
+
<div class="video-container">
|
247 |
+
<iframe src="https://youtube.com/embed/Sb5Mg1-ORao"></iframe>
|
248 |
+
</div>
|
249 |
+
</div>
|
250 |
+
<div class="col-sm-3">
|
251 |
+
<div class="video-header">VATT</div>
|
252 |
+
<div class="video-container">
|
253 |
+
<iframe src="https://youtube.com/embed/eHmAGOmtDDg"></iframe>
|
254 |
+
</div>
|
255 |
+
</div>
|
256 |
+
<div class="col-sm-3">
|
257 |
+
<div class="video-header">V-AURA</div>
|
258 |
+
<div class="video-container">
|
259 |
+
<iframe src="https://youtube.com/embed/NEGa3krBrm0"></iframe>
|
260 |
+
</div>
|
261 |
+
</div>
|
262 |
+
<div class="col-sm-3">
|
263 |
+
<div class="video-header">Seeing and Hearing</div>
|
264 |
+
<div class="video-container">
|
265 |
+
<iframe src="https://youtube.com/embed/aO0EAXlwE7A"></iframe>
|
266 |
+
</div>
|
267 |
+
</div>
|
268 |
+
</div>
|
269 |
+
</div>
|
270 |
+
|
271 |
+
<div id="vgg5">
|
272 |
+
<h2 style="text-align: center;">Comparisons with state-of-the-art methods in VGGSound</h2>
|
273 |
+
<p style="overflow: hidden;">
|
274 |
+
Example 5: Playing a string instrument.
|
275 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
276 |
+
</p>
|
277 |
+
|
278 |
+
<div class="row g-1">
|
279 |
+
<div class="col-sm-3">
|
280 |
+
<div class="video-header">Ground-truth</div>
|
281 |
+
<div class="video-container">
|
282 |
+
<iframe src="https://youtube.com/embed/KP1QhWauIOc"></iframe>
|
283 |
+
</div>
|
284 |
+
</div>
|
285 |
+
<div class="col-sm-3">
|
286 |
+
<div class="video-header">Ours</div>
|
287 |
+
<div class="video-container">
|
288 |
+
<iframe src="https://youtube.com/embed/ovaJhWSquYE"></iframe>
|
289 |
+
</div>
|
290 |
+
</div>
|
291 |
+
<div class="col-sm-3">
|
292 |
+
<div class="video-header">V2A-Mapper</div>
|
293 |
+
<div class="video-container">
|
294 |
+
<iframe src="https://youtube.com/embed/N723FS9lcy8"></iframe>
|
295 |
+
</div>
|
296 |
+
</div>
|
297 |
+
<div class="col-sm-3">
|
298 |
+
<div class="video-header">FoleyCrafter</div>
|
299 |
+
<div class="video-container">
|
300 |
+
<iframe src="https://youtube.com/embed/t0N4ZAAXo58"></iframe>
|
301 |
+
</div>
|
302 |
+
</div>
|
303 |
+
</div>
|
304 |
+
<div class="row g-1">
|
305 |
+
<div class="col-sm-3">
|
306 |
+
<div class="video-header">Frieren</div>
|
307 |
+
<div class="video-container">
|
308 |
+
<iframe src="https://youtube.com/embed/8YSRs03QNNA"></iframe>
|
309 |
+
</div>
|
310 |
+
</div>
|
311 |
+
<div class="col-sm-3">
|
312 |
+
<div class="video-header">VATT</div>
|
313 |
+
<div class="video-container">
|
314 |
+
<iframe src="https://youtube.com/embed/vOpMz55J1kY"></iframe>
|
315 |
+
</div>
|
316 |
+
</div>
|
317 |
+
<div class="col-sm-3">
|
318 |
+
<div class="video-header">V-AURA</div>
|
319 |
+
<div class="video-container">
|
320 |
+
<iframe src="https://youtube.com/embed/9JHC75vr9h0"></iframe>
|
321 |
+
</div>
|
322 |
+
</div>
|
323 |
+
<div class="col-sm-3">
|
324 |
+
<div class="video-header">Seeing and Hearing</div>
|
325 |
+
<div class="video-container">
|
326 |
+
<iframe src="https://youtube.com/embed/9w0JckNzXmY"></iframe>
|
327 |
+
</div>
|
328 |
+
</div>
|
329 |
+
</div>
|
330 |
+
</div>
|
331 |
+
|
332 |
+
<div id="vgg6">
|
333 |
+
<h2 style="text-align: center;">Comparisons with state-of-the-art methods in VGGSound</h2>
|
334 |
+
<p style="overflow: hidden;">
|
335 |
+
Example 6: A group of people playing tambourines.
|
336 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
337 |
+
</p>
|
338 |
+
|
339 |
+
<div class="row g-1">
|
340 |
+
<div class="col-sm-3">
|
341 |
+
<div class="video-header">Ground-truth</div>
|
342 |
+
<div class="video-container">
|
343 |
+
<iframe src="https://youtube.com/embed/mx6JLxzUkRc"></iframe>
|
344 |
+
</div>
|
345 |
+
</div>
|
346 |
+
<div class="col-sm-3">
|
347 |
+
<div class="video-header">Ours</div>
|
348 |
+
<div class="video-container">
|
349 |
+
<iframe src="https://youtube.com/embed/oLirHhP9Su8"></iframe>
|
350 |
+
</div>
|
351 |
+
</div>
|
352 |
+
<div class="col-sm-3">
|
353 |
+
<div class="video-header">V2A-Mapper</div>
|
354 |
+
<div class="video-container">
|
355 |
+
<iframe src="https://youtube.com/embed/HkLkHMqptv0"></iframe>
|
356 |
+
</div>
|
357 |
+
</div>
|
358 |
+
<div class="col-sm-3">
|
359 |
+
<div class="video-header">FoleyCrafter</div>
|
360 |
+
<div class="video-container">
|
361 |
+
<iframe src="https://youtube.com/embed/rpHiiODjmNU"></iframe>
|
362 |
+
</div>
|
363 |
+
</div>
|
364 |
+
</div>
|
365 |
+
<div class="row g-1">
|
366 |
+
<div class="col-sm-3">
|
367 |
+
<div class="video-header">Frieren</div>
|
368 |
+
<div class="video-container">
|
369 |
+
<iframe src="https://youtube.com/embed/1mVD3fJ0LpM"></iframe>
|
370 |
+
</div>
|
371 |
+
</div>
|
372 |
+
<div class="col-sm-3">
|
373 |
+
<div class="video-header">VATT</div>
|
374 |
+
<div class="video-container">
|
375 |
+
<iframe src="https://youtube.com/embed/yjVFnJiEJlw"></iframe>
|
376 |
+
</div>
|
377 |
+
</div>
|
378 |
+
<div class="col-sm-3">
|
379 |
+
<div class="video-header">V-AURA</div>
|
380 |
+
<div class="video-container">
|
381 |
+
<iframe src="https://youtube.com/embed/neVeMSWtRkU"></iframe>
|
382 |
+
</div>
|
383 |
+
</div>
|
384 |
+
<div class="col-sm-3">
|
385 |
+
<div class="video-header">Seeing and Hearing</div>
|
386 |
+
<div class="video-container">
|
387 |
+
<iframe src="https://youtube.com/embed/EUE7YwyVWz8"></iframe>
|
388 |
+
</div>
|
389 |
+
</div>
|
390 |
+
</div>
|
391 |
+
</div>
|
392 |
+
|
393 |
+
<div id="vgg_extra">
|
394 |
+
<h2 style="text-align: center;">Comparisons with state-of-the-art methods in VGGSound</h2>
|
395 |
+
<p style="overflow: hidden;">
|
396 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
397 |
+
</p>
|
398 |
+
|
399 |
+
<div class="row g-1">
|
400 |
+
<div class="col-sm-3">
|
401 |
+
<div class="video-header">Moving train</div>
|
402 |
+
<div class="video-container">
|
403 |
+
<iframe src="https://youtube.com/embed/Ta6H45rBzJc"></iframe>
|
404 |
+
</div>
|
405 |
+
</div>
|
406 |
+
<div class="col-sm-3">
|
407 |
+
<div class="video-header">Water splashing</div>
|
408 |
+
<div class="video-container">
|
409 |
+
<iframe src="https://youtube.com/embed/hl6AtgHXpb4"></iframe>
|
410 |
+
</div>
|
411 |
+
</div>
|
412 |
+
<div class="col-sm-3">
|
413 |
+
<div class="video-header">Skateboarding</div>
|
414 |
+
<div class="video-container">
|
415 |
+
<iframe src="https://youtube.com/embed/n4sCNi_9buI"></iframe>
|
416 |
+
</div>
|
417 |
+
</div>
|
418 |
+
<div class="col-sm-3">
|
419 |
+
<div class="video-header">Synchronized clapping</div>
|
420 |
+
<div class="video-container">
|
421 |
+
<iframe src="https://youtube.com/embed/oxexfpLn7FE"></iframe>
|
422 |
+
</div>
|
423 |
+
</div>
|
424 |
+
</div>
|
425 |
+
|
426 |
+
<br><br>
|
427 |
+
|
428 |
+
<div id="extra-failure">
|
429 |
+
<h2 style="text-align: center;">Failure cases</h2>
|
430 |
+
<p style="overflow: hidden;">
|
431 |
+
<span style="float:right;"><a href="#index">Back to index</a></span>
|
432 |
+
</p>
|
433 |
+
|
434 |
+
<div class="row g-1">
|
435 |
+
<div class="col-sm-6">
|
436 |
+
<div class="video-header">Human speech</div>
|
437 |
+
<div class="video-container">
|
438 |
+
<iframe src="https://youtube.com/embed/nx0CyrDu70Y"></iframe>
|
439 |
+
</div>
|
440 |
+
</div>
|
441 |
+
<div class="col-sm-6">
|
442 |
+
<div class="video-header">Unfamiliar vision input</div>
|
443 |
+
<div class="video-container">
|
444 |
+
<iframe src="https://youtube.com/embed/hfnAqmK3X7w"></iframe>
|
445 |
+
</div>
|
446 |
+
</div>
|
447 |
+
</div>
|
448 |
+
</div>
|
449 |
+
</div>
|
450 |
+
|
451 |
+
</body>
|
452 |
+
</html>
|
mmaudio/__init__.py
ADDED
File without changes
|
mmaudio/eval_utils.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import logging
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from colorlog import ColoredFormatter
|
8 |
+
from torchvision.transforms import v2
|
9 |
+
from torio.io import StreamingMediaDecoder, StreamingMediaEncoder
|
10 |
+
|
11 |
+
from mmaudio.model.flow_matching import FlowMatching
|
12 |
+
from mmaudio.model.networks import MMAudio
|
13 |
+
from mmaudio.model.sequence_config import (CONFIG_16K, CONFIG_44K, SequenceConfig)
|
14 |
+
from mmaudio.model.utils.features_utils import FeaturesUtils
|
15 |
+
from mmaudio.utils.download_utils import download_model_if_needed
|
16 |
+
|
17 |
+
log = logging.getLogger()
|
18 |
+
|
19 |
+
|
20 |
+
@dataclasses.dataclass
|
21 |
+
class ModelConfig:
|
22 |
+
model_name: str
|
23 |
+
model_path: Path
|
24 |
+
vae_path: Path
|
25 |
+
bigvgan_16k_path: Optional[Path]
|
26 |
+
mode: str
|
27 |
+
synchformer_ckpt: Path = Path('./ext_weights/synchformer_state_dict.pth')
|
28 |
+
|
29 |
+
@property
|
30 |
+
def seq_cfg(self) -> SequenceConfig:
|
31 |
+
if self.mode == '16k':
|
32 |
+
return CONFIG_16K
|
33 |
+
elif self.mode == '44k':
|
34 |
+
return CONFIG_44K
|
35 |
+
|
36 |
+
def download_if_needed(self):
|
37 |
+
download_model_if_needed(self.model_path)
|
38 |
+
download_model_if_needed(self.vae_path)
|
39 |
+
if self.bigvgan_16k_path is not None:
|
40 |
+
download_model_if_needed(self.bigvgan_16k_path)
|
41 |
+
download_model_if_needed(self.synchformer_ckpt)
|
42 |
+
|
43 |
+
|
44 |
+
small_16k = ModelConfig(model_name='small_16k',
|
45 |
+
model_path=Path('./weights/mmaudio_small_16k.pth'),
|
46 |
+
vae_path=Path('./ext_weights/v1-16.pth'),
|
47 |
+
bigvgan_16k_path=Path('./ext_weights/best_netG.pt'),
|
48 |
+
mode='16k')
|
49 |
+
small_44k = ModelConfig(model_name='small_44k',
|
50 |
+
model_path=Path('./weights/mmaudio_small_44k.pth'),
|
51 |
+
vae_path=Path('./ext_weights/v1-44.pth'),
|
52 |
+
bigvgan_16k_path=None,
|
53 |
+
mode='44k')
|
54 |
+
medium_44k = ModelConfig(model_name='medium_44k',
|
55 |
+
model_path=Path('./weights/mmaudio_medium_44k.pth'),
|
56 |
+
vae_path=Path('./ext_weights/v1-44.pth'),
|
57 |
+
bigvgan_16k_path=None,
|
58 |
+
mode='44k')
|
59 |
+
large_44k = ModelConfig(model_name='large_44k',
|
60 |
+
model_path=Path('./weights/mmaudio_large_44k.pth'),
|
61 |
+
vae_path=Path('./ext_weights/v1-44.pth'),
|
62 |
+
bigvgan_16k_path=None,
|
63 |
+
mode='44k')
|
64 |
+
large_44k_v2 = ModelConfig(model_name='large_44k_v2',
|
65 |
+
model_path=Path('./weights/mmaudio_large_44k_v2.pth'),
|
66 |
+
vae_path=Path('./ext_weights/v1-44.pth'),
|
67 |
+
bigvgan_16k_path=None,
|
68 |
+
mode='44k')
|
69 |
+
all_model_cfg: dict[str, ModelConfig] = {
|
70 |
+
'small_16k': small_16k,
|
71 |
+
'small_44k': small_44k,
|
72 |
+
'medium_44k': medium_44k,
|
73 |
+
'large_44k': large_44k,
|
74 |
+
'large_44k_v2': large_44k_v2,
|
75 |
+
}
|
76 |
+
|
77 |
+
|
78 |
+
def generate(clip_video: Optional[torch.Tensor],
|
79 |
+
sync_video: Optional[torch.Tensor],
|
80 |
+
text: Optional[list[str]],
|
81 |
+
*,
|
82 |
+
negative_text: Optional[list[str]] = None,
|
83 |
+
feature_utils: FeaturesUtils,
|
84 |
+
net: MMAudio,
|
85 |
+
fm: FlowMatching,
|
86 |
+
rng: torch.Generator,
|
87 |
+
cfg_strength: float):
|
88 |
+
device = feature_utils.device
|
89 |
+
dtype = feature_utils.dtype
|
90 |
+
|
91 |
+
bs = len(text)
|
92 |
+
if clip_video is not None:
|
93 |
+
clip_video = clip_video.to(device, dtype, non_blocking=True)
|
94 |
+
clip_features = feature_utils.encode_video_with_clip(clip_video, batch_size=bs)
|
95 |
+
else:
|
96 |
+
clip_features = net.get_empty_clip_sequence(bs)
|
97 |
+
|
98 |
+
if sync_video is not None:
|
99 |
+
sync_video = sync_video.to(device, dtype, non_blocking=True)
|
100 |
+
sync_features = feature_utils.encode_video_with_sync(sync_video, batch_size=bs)
|
101 |
+
else:
|
102 |
+
sync_features = net.get_empty_sync_sequence(bs)
|
103 |
+
|
104 |
+
if text is not None:
|
105 |
+
text_features = feature_utils.encode_text(text)
|
106 |
+
else:
|
107 |
+
text_features = net.get_empty_string_sequence(bs)
|
108 |
+
|
109 |
+
if negative_text is not None:
|
110 |
+
assert len(negative_text) == bs
|
111 |
+
negative_text_features = feature_utils.encode_text(negative_text)
|
112 |
+
else:
|
113 |
+
negative_text_features = net.get_empty_string_sequence(bs)
|
114 |
+
|
115 |
+
x0 = torch.randn(bs,
|
116 |
+
net.latent_seq_len,
|
117 |
+
net.latent_dim,
|
118 |
+
device=device,
|
119 |
+
dtype=dtype,
|
120 |
+
generator=rng)
|
121 |
+
preprocessed_conditions = net.preprocess_conditions(clip_features, sync_features, text_features)
|
122 |
+
empty_conditions = net.get_empty_conditions(
|
123 |
+
bs, negative_text_features=negative_text_features if negative_text is not None else None)
|
124 |
+
|
125 |
+
cfg_ode_wrapper = lambda t, x: net.ode_wrapper(t, x, preprocessed_conditions, empty_conditions,
|
126 |
+
cfg_strength)
|
127 |
+
x1 = fm.to_data(cfg_ode_wrapper, x0)
|
128 |
+
x1 = net.unnormalize(x1)
|
129 |
+
spec = feature_utils.decode(x1)
|
130 |
+
audio = feature_utils.vocode(spec)
|
131 |
+
return audio
|
132 |
+
|
133 |
+
|
134 |
+
LOGFORMAT = " %(log_color)s%(levelname)-8s%(reset)s | %(log_color)s%(message)s%(reset)s"
|
135 |
+
|
136 |
+
|
137 |
+
def setup_eval_logging(log_level: int = logging.INFO):
|
138 |
+
logging.root.setLevel(log_level)
|
139 |
+
formatter = ColoredFormatter(LOGFORMAT)
|
140 |
+
stream = logging.StreamHandler()
|
141 |
+
stream.setLevel(log_level)
|
142 |
+
stream.setFormatter(formatter)
|
143 |
+
log = logging.getLogger()
|
144 |
+
log.setLevel(log_level)
|
145 |
+
log.addHandler(stream)
|
146 |
+
|
147 |
+
|
148 |
+
def load_video(video_path: Path, duration_sec: float) -> tuple[torch.Tensor, torch.Tensor, float]:
|
149 |
+
_CLIP_SIZE = 384
|
150 |
+
_CLIP_FPS = 8.0
|
151 |
+
|
152 |
+
_SYNC_SIZE = 224
|
153 |
+
_SYNC_FPS = 25.0
|
154 |
+
|
155 |
+
clip_transform = v2.Compose([
|
156 |
+
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
|
157 |
+
v2.ToImage(),
|
158 |
+
v2.ToDtype(torch.float32, scale=True),
|
159 |
+
])
|
160 |
+
|
161 |
+
sync_transform = v2.Compose([
|
162 |
+
v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
|
163 |
+
v2.CenterCrop(_SYNC_SIZE),
|
164 |
+
v2.ToImage(),
|
165 |
+
v2.ToDtype(torch.float32, scale=True),
|
166 |
+
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
167 |
+
])
|
168 |
+
|
169 |
+
reader = StreamingMediaDecoder(video_path)
|
170 |
+
reader.add_basic_video_stream(
|
171 |
+
frames_per_chunk=int(_CLIP_FPS * duration_sec),
|
172 |
+
frame_rate=_CLIP_FPS,
|
173 |
+
format='rgb24',
|
174 |
+
)
|
175 |
+
reader.add_basic_video_stream(
|
176 |
+
frames_per_chunk=int(_SYNC_FPS * duration_sec),
|
177 |
+
frame_rate=_SYNC_FPS,
|
178 |
+
format='rgb24',
|
179 |
+
)
|
180 |
+
|
181 |
+
reader.fill_buffer()
|
182 |
+
data_chunk = reader.pop_chunks()
|
183 |
+
clip_chunk = data_chunk[0]
|
184 |
+
sync_chunk = data_chunk[1]
|
185 |
+
assert clip_chunk is not None
|
186 |
+
assert sync_chunk is not None
|
187 |
+
|
188 |
+
clip_frames = clip_transform(clip_chunk)
|
189 |
+
sync_frames = sync_transform(sync_chunk)
|
190 |
+
|
191 |
+
clip_length_sec = clip_frames.shape[0] / _CLIP_FPS
|
192 |
+
sync_length_sec = sync_frames.shape[0] / _SYNC_FPS
|
193 |
+
|
194 |
+
if clip_length_sec < duration_sec:
|
195 |
+
log.warning(f'Clip video is too short: {clip_length_sec:.2f} < {duration_sec:.2f}')
|
196 |
+
log.warning(f'Truncating to {clip_length_sec:.2f} sec')
|
197 |
+
duration_sec = clip_length_sec
|
198 |
+
|
199 |
+
if sync_length_sec < duration_sec:
|
200 |
+
log.warning(f'Sync video is too short: {sync_length_sec:.2f} < {duration_sec:.2f}')
|
201 |
+
log.warning(f'Truncating to {sync_length_sec:.2f} sec')
|
202 |
+
duration_sec = sync_length_sec
|
203 |
+
|
204 |
+
clip_frames = clip_frames[:int(_CLIP_FPS * duration_sec)]
|
205 |
+
sync_frames = sync_frames[:int(_SYNC_FPS * duration_sec)]
|
206 |
+
|
207 |
+
return clip_frames, sync_frames, duration_sec
|
208 |
+
|
209 |
+
|
210 |
+
def make_video(video_path: Path, output_path: Path, audio: torch.Tensor, sampling_rate: int,
|
211 |
+
duration_sec: float):
|
212 |
+
|
213 |
+
approx_max_length = int(duration_sec * 60)
|
214 |
+
reader = StreamingMediaDecoder(video_path)
|
215 |
+
reader.add_basic_video_stream(
|
216 |
+
frames_per_chunk=approx_max_length,
|
217 |
+
format='rgb24',
|
218 |
+
)
|
219 |
+
reader.fill_buffer()
|
220 |
+
video_chunk = reader.pop_chunks()[0]
|
221 |
+
assert video_chunk is not None
|
222 |
+
|
223 |
+
fps = int(reader.get_out_stream_info(0).frame_rate)
|
224 |
+
if fps > 60:
|
225 |
+
log.warning(f'This code supports only up to 60 fps, but the video has {fps} fps')
|
226 |
+
log.warning(f'Just change the *60 above me')
|
227 |
+
|
228 |
+
h, w = video_chunk.shape[-2:]
|
229 |
+
video_chunk = video_chunk[:int(fps * duration_sec)]
|
230 |
+
|
231 |
+
writer = StreamingMediaEncoder(output_path)
|
232 |
+
writer.add_audio_stream(
|
233 |
+
sample_rate=sampling_rate,
|
234 |
+
num_channels=audio.shape[0],
|
235 |
+
encoder='aac', # 'flac' does not work for some reason?
|
236 |
+
)
|
237 |
+
writer.add_video_stream(frame_rate=fps,
|
238 |
+
width=w,
|
239 |
+
height=h,
|
240 |
+
format='rgb24',
|
241 |
+
encoder='libx264',
|
242 |
+
encoder_format='yuv420p')
|
243 |
+
with writer.open():
|
244 |
+
writer.write_audio_chunk(0, audio.float().transpose(0, 1))
|
245 |
+
writer.write_video_chunk(1, video_chunk)
|
mmaudio/ext/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
mmaudio/ext/autoencoder/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .autoencoder import AutoEncoderModule
|
mmaudio/ext/autoencoder/autoencoder.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
from mmaudio.ext.autoencoder.vae import VAE, get_my_vae
|
7 |
+
from mmaudio.ext.bigvgan import BigVGAN
|
8 |
+
from mmaudio.ext.bigvgan_v2.bigvgan import BigVGAN as BigVGANv2
|
9 |
+
from mmaudio.model.utils.distributions import DiagonalGaussianDistribution
|
10 |
+
|
11 |
+
|
12 |
+
class AutoEncoderModule(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self,
|
15 |
+
*,
|
16 |
+
vae_ckpt_path,
|
17 |
+
vocoder_ckpt_path: Optional[str] = None,
|
18 |
+
mode: Literal['16k', '44k']):
|
19 |
+
super().__init__()
|
20 |
+
self.vae: VAE = get_my_vae(mode).eval()
|
21 |
+
vae_state_dict = torch.load(vae_ckpt_path, weights_only=True, map_location='cpu')
|
22 |
+
self.vae.load_state_dict(vae_state_dict)
|
23 |
+
self.vae.remove_weight_norm()
|
24 |
+
|
25 |
+
if mode == '16k':
|
26 |
+
assert vocoder_ckpt_path is not None
|
27 |
+
self.vocoder = BigVGAN(vocoder_ckpt_path).eval()
|
28 |
+
elif mode == '44k':
|
29 |
+
self.vocoder = BigVGANv2.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x',
|
30 |
+
use_cuda_kernel=False)
|
31 |
+
self.vocoder.remove_weight_norm()
|
32 |
+
else:
|
33 |
+
raise ValueError(f'Unknown mode: {mode}')
|
34 |
+
|
35 |
+
for param in self.parameters():
|
36 |
+
param.requires_grad = False
|
37 |
+
|
38 |
+
@torch.inference_mode()
|
39 |
+
def encode(self, x: torch.Tensor) -> DiagonalGaussianDistribution:
|
40 |
+
return self.vae.encode(x)
|
41 |
+
|
42 |
+
@torch.inference_mode()
|
43 |
+
def decode(self, z: torch.Tensor) -> torch.Tensor:
|
44 |
+
return self.vae.decode(z)
|
45 |
+
|
46 |
+
@torch.inference_mode()
|
47 |
+
def vocode(self, spec: torch.Tensor) -> torch.Tensor:
|
48 |
+
return self.vocoder(spec)
|
mmaudio/ext/autoencoder/edm2_utils.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is licensed under a Creative Commons
|
4 |
+
# Attribution-NonCommercial-ShareAlike 4.0 International License.
|
5 |
+
# You should have received a copy of the license along with this
|
6 |
+
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
|
7 |
+
"""Improved diffusion model architecture proposed in the paper
|
8 |
+
"Analyzing and Improving the Training Dynamics of Diffusion Models"."""
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
|
13 |
+
#----------------------------------------------------------------------------
|
14 |
+
# Variant of constant() that inherits dtype and device from the given
|
15 |
+
# reference tensor by default.
|
16 |
+
|
17 |
+
_constant_cache = dict()
|
18 |
+
|
19 |
+
|
20 |
+
def constant(value, shape=None, dtype=None, device=None, memory_format=None):
|
21 |
+
value = np.asarray(value)
|
22 |
+
if shape is not None:
|
23 |
+
shape = tuple(shape)
|
24 |
+
if dtype is None:
|
25 |
+
dtype = torch.get_default_dtype()
|
26 |
+
if device is None:
|
27 |
+
device = torch.device('cpu')
|
28 |
+
if memory_format is None:
|
29 |
+
memory_format = torch.contiguous_format
|
30 |
+
|
31 |
+
key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
|
32 |
+
tensor = _constant_cache.get(key, None)
|
33 |
+
if tensor is None:
|
34 |
+
tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
|
35 |
+
if shape is not None:
|
36 |
+
tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
|
37 |
+
tensor = tensor.contiguous(memory_format=memory_format)
|
38 |
+
_constant_cache[key] = tensor
|
39 |
+
return tensor
|
40 |
+
|
41 |
+
|
42 |
+
def const_like(ref, value, shape=None, dtype=None, device=None, memory_format=None):
|
43 |
+
if dtype is None:
|
44 |
+
dtype = ref.dtype
|
45 |
+
if device is None:
|
46 |
+
device = ref.device
|
47 |
+
return constant(value, shape=shape, dtype=dtype, device=device, memory_format=memory_format)
|
48 |
+
|
49 |
+
|
50 |
+
#----------------------------------------------------------------------------
|
51 |
+
# Normalize given tensor to unit magnitude with respect to the given
|
52 |
+
# dimensions. Default = all dimensions except the first.
|
53 |
+
|
54 |
+
|
55 |
+
def normalize(x, dim=None, eps=1e-4):
|
56 |
+
if dim is None:
|
57 |
+
dim = list(range(1, x.ndim))
|
58 |
+
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
|
59 |
+
norm = torch.add(eps, norm, alpha=np.sqrt(norm.numel() / x.numel()))
|
60 |
+
return x / norm.to(x.dtype)
|
61 |
+
|
62 |
+
|
63 |
+
class Normalize(torch.nn.Module):
|
64 |
+
|
65 |
+
def __init__(self, dim=None, eps=1e-4):
|
66 |
+
super().__init__()
|
67 |
+
self.dim = dim
|
68 |
+
self.eps = eps
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
return normalize(x, dim=self.dim, eps=self.eps)
|
72 |
+
|
73 |
+
|
74 |
+
#----------------------------------------------------------------------------
|
75 |
+
# Upsample or downsample the given tensor with the given filter,
|
76 |
+
# or keep it as is.
|
77 |
+
|
78 |
+
|
79 |
+
def resample(x, f=[1, 1], mode='keep'):
|
80 |
+
if mode == 'keep':
|
81 |
+
return x
|
82 |
+
f = np.float32(f)
|
83 |
+
assert f.ndim == 1 and len(f) % 2 == 0
|
84 |
+
pad = (len(f) - 1) // 2
|
85 |
+
f = f / f.sum()
|
86 |
+
f = np.outer(f, f)[np.newaxis, np.newaxis, :, :]
|
87 |
+
f = const_like(x, f)
|
88 |
+
c = x.shape[1]
|
89 |
+
if mode == 'down':
|
90 |
+
return torch.nn.functional.conv2d(x,
|
91 |
+
f.tile([c, 1, 1, 1]),
|
92 |
+
groups=c,
|
93 |
+
stride=2,
|
94 |
+
padding=(pad, ))
|
95 |
+
assert mode == 'up'
|
96 |
+
return torch.nn.functional.conv_transpose2d(x, (f * 4).tile([c, 1, 1, 1]),
|
97 |
+
groups=c,
|
98 |
+
stride=2,
|
99 |
+
padding=(pad, ))
|
100 |
+
|
101 |
+
|
102 |
+
#----------------------------------------------------------------------------
|
103 |
+
# Magnitude-preserving SiLU (Equation 81).
|
104 |
+
|
105 |
+
|
106 |
+
def mp_silu(x):
|
107 |
+
return torch.nn.functional.silu(x) / 0.596
|
108 |
+
|
109 |
+
|
110 |
+
class MPSiLU(torch.nn.Module):
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
return mp_silu(x)
|
114 |
+
|
115 |
+
|
116 |
+
#----------------------------------------------------------------------------
|
117 |
+
# Magnitude-preserving sum (Equation 88).
|
118 |
+
|
119 |
+
|
120 |
+
def mp_sum(a, b, t=0.5):
|
121 |
+
return a.lerp(b, t) / np.sqrt((1 - t)**2 + t**2)
|
122 |
+
|
123 |
+
|
124 |
+
#----------------------------------------------------------------------------
|
125 |
+
# Magnitude-preserving concatenation (Equation 103).
|
126 |
+
|
127 |
+
|
128 |
+
def mp_cat(a, b, dim=1, t=0.5):
|
129 |
+
Na = a.shape[dim]
|
130 |
+
Nb = b.shape[dim]
|
131 |
+
C = np.sqrt((Na + Nb) / ((1 - t)**2 + t**2))
|
132 |
+
wa = C / np.sqrt(Na) * (1 - t)
|
133 |
+
wb = C / np.sqrt(Nb) * t
|
134 |
+
return torch.cat([wa * a, wb * b], dim=dim)
|
135 |
+
|
136 |
+
|
137 |
+
#----------------------------------------------------------------------------
|
138 |
+
# Magnitude-preserving convolution or fully-connected layer (Equation 47)
|
139 |
+
# with force weight normalization (Equation 66).
|
140 |
+
|
141 |
+
|
142 |
+
class MPConv1D(torch.nn.Module):
|
143 |
+
|
144 |
+
def __init__(self, in_channels, out_channels, kernel_size):
|
145 |
+
super().__init__()
|
146 |
+
self.out_channels = out_channels
|
147 |
+
self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels, kernel_size))
|
148 |
+
|
149 |
+
self.weight_norm_removed = False
|
150 |
+
|
151 |
+
def forward(self, x, gain=1):
|
152 |
+
assert self.weight_norm_removed, 'call remove_weight_norm() before inference'
|
153 |
+
|
154 |
+
w = self.weight * gain
|
155 |
+
if w.ndim == 2:
|
156 |
+
return x @ w.t()
|
157 |
+
assert w.ndim == 3
|
158 |
+
return torch.nn.functional.conv1d(x, w, padding=(w.shape[-1] // 2, ))
|
159 |
+
|
160 |
+
def remove_weight_norm(self):
|
161 |
+
w = self.weight.to(torch.float32)
|
162 |
+
w = normalize(w) # traditional weight normalization
|
163 |
+
w = w / np.sqrt(w[0].numel())
|
164 |
+
w = w.to(self.weight.dtype)
|
165 |
+
self.weight.data.copy_(w)
|
166 |
+
|
167 |
+
self.weight_norm_removed = True
|
168 |
+
return self
|
mmaudio/ext/autoencoder/vae.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from mmaudio.ext.autoencoder.edm2_utils import MPConv1D
|
8 |
+
from mmaudio.ext.autoencoder.vae_modules import (AttnBlock1D, Downsample1D, ResnetBlock1D,
|
9 |
+
Upsample1D, nonlinearity)
|
10 |
+
from mmaudio.model.utils.distributions import DiagonalGaussianDistribution
|
11 |
+
|
12 |
+
log = logging.getLogger()
|
13 |
+
|
14 |
+
DATA_MEAN_80D = [
|
15 |
+
-1.6058, -1.3676, -1.2520, -1.2453, -1.2078, -1.2224, -1.2419, -1.2439, -1.2922, -1.2927,
|
16 |
+
-1.3170, -1.3543, -1.3401, -1.3836, -1.3907, -1.3912, -1.4313, -1.4152, -1.4527, -1.4728,
|
17 |
+
-1.4568, -1.5101, -1.5051, -1.5172, -1.5623, -1.5373, -1.5746, -1.5687, -1.6032, -1.6131,
|
18 |
+
-1.6081, -1.6331, -1.6489, -1.6489, -1.6700, -1.6738, -1.6953, -1.6969, -1.7048, -1.7280,
|
19 |
+
-1.7361, -1.7495, -1.7658, -1.7814, -1.7889, -1.8064, -1.8221, -1.8377, -1.8417, -1.8643,
|
20 |
+
-1.8857, -1.8929, -1.9173, -1.9379, -1.9531, -1.9673, -1.9824, -2.0042, -2.0215, -2.0436,
|
21 |
+
-2.0766, -2.1064, -2.1418, -2.1855, -2.2319, -2.2767, -2.3161, -2.3572, -2.3954, -2.4282,
|
22 |
+
-2.4659, -2.5072, -2.5552, -2.6074, -2.6584, -2.7107, -2.7634, -2.8266, -2.8981, -2.9673
|
23 |
+
]
|
24 |
+
|
25 |
+
DATA_STD_80D = [
|
26 |
+
1.0291, 1.0411, 1.0043, 0.9820, 0.9677, 0.9543, 0.9450, 0.9392, 0.9343, 0.9297, 0.9276, 0.9263,
|
27 |
+
0.9242, 0.9254, 0.9232, 0.9281, 0.9263, 0.9315, 0.9274, 0.9247, 0.9277, 0.9199, 0.9188, 0.9194,
|
28 |
+
0.9160, 0.9161, 0.9146, 0.9161, 0.9100, 0.9095, 0.9145, 0.9076, 0.9066, 0.9095, 0.9032, 0.9043,
|
29 |
+
0.9038, 0.9011, 0.9019, 0.9010, 0.8984, 0.8983, 0.8986, 0.8961, 0.8962, 0.8978, 0.8962, 0.8973,
|
30 |
+
0.8993, 0.8976, 0.8995, 0.9016, 0.8982, 0.8972, 0.8974, 0.8949, 0.8940, 0.8947, 0.8936, 0.8939,
|
31 |
+
0.8951, 0.8956, 0.9017, 0.9167, 0.9436, 0.9690, 1.0003, 1.0225, 1.0381, 1.0491, 1.0545, 1.0604,
|
32 |
+
1.0761, 1.0929, 1.1089, 1.1196, 1.1176, 1.1156, 1.1117, 1.1070
|
33 |
+
]
|
34 |
+
|
35 |
+
DATA_MEAN_128D = [
|
36 |
+
-3.3462, -2.6723, -2.4893, -2.3143, -2.2664, -2.3317, -2.1802, -2.4006, -2.2357, -2.4597,
|
37 |
+
-2.3717, -2.4690, -2.5142, -2.4919, -2.6610, -2.5047, -2.7483, -2.5926, -2.7462, -2.7033,
|
38 |
+
-2.7386, -2.8112, -2.7502, -2.9594, -2.7473, -3.0035, -2.8891, -2.9922, -2.9856, -3.0157,
|
39 |
+
-3.1191, -2.9893, -3.1718, -3.0745, -3.1879, -3.2310, -3.1424, -3.2296, -3.2791, -3.2782,
|
40 |
+
-3.2756, -3.3134, -3.3509, -3.3750, -3.3951, -3.3698, -3.4505, -3.4509, -3.5089, -3.4647,
|
41 |
+
-3.5536, -3.5788, -3.5867, -3.6036, -3.6400, -3.6747, -3.7072, -3.7279, -3.7283, -3.7795,
|
42 |
+
-3.8259, -3.8447, -3.8663, -3.9182, -3.9605, -3.9861, -4.0105, -4.0373, -4.0762, -4.1121,
|
43 |
+
-4.1488, -4.1874, -4.2461, -4.3170, -4.3639, -4.4452, -4.5282, -4.6297, -4.7019, -4.7960,
|
44 |
+
-4.8700, -4.9507, -5.0303, -5.0866, -5.1634, -5.2342, -5.3242, -5.4053, -5.4927, -5.5712,
|
45 |
+
-5.6464, -5.7052, -5.7619, -5.8410, -5.9188, -6.0103, -6.0955, -6.1673, -6.2362, -6.3120,
|
46 |
+
-6.3926, -6.4797, -6.5565, -6.6511, -6.8130, -6.9961, -7.1275, -7.2457, -7.3576, -7.4663,
|
47 |
+
-7.6136, -7.7469, -7.8815, -8.0132, -8.1515, -8.3071, -8.4722, -8.7418, -9.3975, -9.6628,
|
48 |
+
-9.7671, -9.8863, -9.9992, -10.0860, -10.1709, -10.5418, -11.2795, -11.3861
|
49 |
+
]
|
50 |
+
|
51 |
+
DATA_STD_128D = [
|
52 |
+
2.3804, 2.4368, 2.3772, 2.3145, 2.2803, 2.2510, 2.2316, 2.2083, 2.1996, 2.1835, 2.1769, 2.1659,
|
53 |
+
2.1631, 2.1618, 2.1540, 2.1606, 2.1571, 2.1567, 2.1612, 2.1579, 2.1679, 2.1683, 2.1634, 2.1557,
|
54 |
+
2.1668, 2.1518, 2.1415, 2.1449, 2.1406, 2.1350, 2.1313, 2.1415, 2.1281, 2.1352, 2.1219, 2.1182,
|
55 |
+
2.1327, 2.1195, 2.1137, 2.1080, 2.1179, 2.1036, 2.1087, 2.1036, 2.1015, 2.1068, 2.0975, 2.0991,
|
56 |
+
2.0902, 2.1015, 2.0857, 2.0920, 2.0893, 2.0897, 2.0910, 2.0881, 2.0925, 2.0873, 2.0960, 2.0900,
|
57 |
+
2.0957, 2.0958, 2.0978, 2.0936, 2.0886, 2.0905, 2.0845, 2.0855, 2.0796, 2.0840, 2.0813, 2.0817,
|
58 |
+
2.0838, 2.0840, 2.0917, 2.1061, 2.1431, 2.1976, 2.2482, 2.3055, 2.3700, 2.4088, 2.4372, 2.4609,
|
59 |
+
2.4731, 2.4847, 2.5072, 2.5451, 2.5772, 2.6147, 2.6529, 2.6596, 2.6645, 2.6726, 2.6803, 2.6812,
|
60 |
+
2.6899, 2.6916, 2.6931, 2.6998, 2.7062, 2.7262, 2.7222, 2.7158, 2.7041, 2.7485, 2.7491, 2.7451,
|
61 |
+
2.7485, 2.7233, 2.7297, 2.7233, 2.7145, 2.6958, 2.6788, 2.6439, 2.6007, 2.4786, 2.2469, 2.1877,
|
62 |
+
2.1392, 2.0717, 2.0107, 1.9676, 1.9140, 1.7102, 0.9101, 0.7164
|
63 |
+
]
|
64 |
+
|
65 |
+
|
66 |
+
class VAE(nn.Module):
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
*,
|
71 |
+
data_dim: int,
|
72 |
+
embed_dim: int,
|
73 |
+
hidden_dim: int,
|
74 |
+
):
|
75 |
+
super().__init__()
|
76 |
+
|
77 |
+
if data_dim == 80:
|
78 |
+
self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_80D, dtype=torch.float32).cuda())
|
79 |
+
self.data_std = nn.Buffer(torch.tensor(DATA_STD_80D, dtype=torch.float32).cuda())
|
80 |
+
elif data_dim == 128:
|
81 |
+
self.data_mean = nn.Buffer(torch.tensor(DATA_MEAN_128D, dtype=torch.float32).cuda())
|
82 |
+
self.data_std = nn.Buffer(torch.tensor(DATA_STD_128D, dtype=torch.float32).cuda())
|
83 |
+
|
84 |
+
self.data_mean = self.data_mean.view(1, -1, 1)
|
85 |
+
self.data_std = self.data_std.view(1, -1, 1)
|
86 |
+
|
87 |
+
self.encoder = Encoder1D(
|
88 |
+
dim=hidden_dim,
|
89 |
+
ch_mult=(1, 2, 4),
|
90 |
+
num_res_blocks=2,
|
91 |
+
attn_layers=[3],
|
92 |
+
down_layers=[0],
|
93 |
+
in_dim=data_dim,
|
94 |
+
embed_dim=embed_dim,
|
95 |
+
)
|
96 |
+
self.decoder = Decoder1D(
|
97 |
+
dim=hidden_dim,
|
98 |
+
ch_mult=(1, 2, 4),
|
99 |
+
num_res_blocks=2,
|
100 |
+
attn_layers=[3],
|
101 |
+
down_layers=[0],
|
102 |
+
in_dim=data_dim,
|
103 |
+
out_dim=data_dim,
|
104 |
+
embed_dim=embed_dim,
|
105 |
+
)
|
106 |
+
|
107 |
+
self.embed_dim = embed_dim
|
108 |
+
# self.quant_conv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, 1)
|
109 |
+
# self.post_quant_conv = nn.Conv1d(embed_dim, embed_dim, 1)
|
110 |
+
|
111 |
+
self.initialize_weights()
|
112 |
+
|
113 |
+
def initialize_weights(self):
|
114 |
+
pass
|
115 |
+
|
116 |
+
def encode(self, x: torch.Tensor, normalize: bool = True) -> DiagonalGaussianDistribution:
|
117 |
+
if normalize:
|
118 |
+
x = self.normalize(x)
|
119 |
+
moments = self.encoder(x)
|
120 |
+
posterior = DiagonalGaussianDistribution(moments)
|
121 |
+
return posterior
|
122 |
+
|
123 |
+
def decode(self, z: torch.Tensor, unnormalize: bool = True) -> torch.Tensor:
|
124 |
+
dec = self.decoder(z)
|
125 |
+
if unnormalize:
|
126 |
+
dec = self.unnormalize(dec)
|
127 |
+
return dec
|
128 |
+
|
129 |
+
def normalize(self, x: torch.Tensor) -> torch.Tensor:
|
130 |
+
return (x - self.data_mean) / self.data_std
|
131 |
+
|
132 |
+
def unnormalize(self, x: torch.Tensor) -> torch.Tensor:
|
133 |
+
return x * self.data_std + self.data_mean
|
134 |
+
|
135 |
+
def forward(
|
136 |
+
self,
|
137 |
+
x: torch.Tensor,
|
138 |
+
sample_posterior: bool = True,
|
139 |
+
rng: Optional[torch.Generator] = None,
|
140 |
+
normalize: bool = True,
|
141 |
+
unnormalize: bool = True,
|
142 |
+
) -> tuple[torch.Tensor, DiagonalGaussianDistribution]:
|
143 |
+
|
144 |
+
posterior = self.encode(x, normalize=normalize)
|
145 |
+
if sample_posterior:
|
146 |
+
z = posterior.sample(rng)
|
147 |
+
else:
|
148 |
+
z = posterior.mode()
|
149 |
+
dec = self.decode(z, unnormalize=unnormalize)
|
150 |
+
return dec, posterior
|
151 |
+
|
152 |
+
def load_weights(self, src_dict) -> None:
|
153 |
+
self.load_state_dict(src_dict, strict=True)
|
154 |
+
|
155 |
+
@property
|
156 |
+
def device(self) -> torch.device:
|
157 |
+
return next(self.parameters()).device
|
158 |
+
|
159 |
+
def get_last_layer(self):
|
160 |
+
return self.decoder.conv_out.weight
|
161 |
+
|
162 |
+
def remove_weight_norm(self):
|
163 |
+
for name, m in self.named_modules():
|
164 |
+
if isinstance(m, MPConv1D):
|
165 |
+
m.remove_weight_norm()
|
166 |
+
log.debug(f"Removed weight norm from {name}")
|
167 |
+
return self
|
168 |
+
|
169 |
+
|
170 |
+
class Encoder1D(nn.Module):
|
171 |
+
|
172 |
+
def __init__(self,
|
173 |
+
*,
|
174 |
+
dim: int,
|
175 |
+
ch_mult: tuple[int] = (1, 2, 4, 8),
|
176 |
+
num_res_blocks: int,
|
177 |
+
attn_layers: list[int] = [],
|
178 |
+
down_layers: list[int] = [],
|
179 |
+
resamp_with_conv: bool = True,
|
180 |
+
in_dim: int,
|
181 |
+
embed_dim: int,
|
182 |
+
double_z: bool = True,
|
183 |
+
kernel_size: int = 3,
|
184 |
+
clip_act: float = 256.0):
|
185 |
+
super().__init__()
|
186 |
+
self.dim = dim
|
187 |
+
self.num_layers = len(ch_mult)
|
188 |
+
self.num_res_blocks = num_res_blocks
|
189 |
+
self.in_channels = in_dim
|
190 |
+
self.clip_act = clip_act
|
191 |
+
self.down_layers = down_layers
|
192 |
+
self.attn_layers = attn_layers
|
193 |
+
self.conv_in = MPConv1D(in_dim, self.dim, kernel_size=kernel_size)
|
194 |
+
|
195 |
+
in_ch_mult = (1, ) + tuple(ch_mult)
|
196 |
+
self.in_ch_mult = in_ch_mult
|
197 |
+
# downsampling
|
198 |
+
self.down = nn.ModuleList()
|
199 |
+
for i_level in range(self.num_layers):
|
200 |
+
block = nn.ModuleList()
|
201 |
+
attn = nn.ModuleList()
|
202 |
+
block_in = dim * in_ch_mult[i_level]
|
203 |
+
block_out = dim * ch_mult[i_level]
|
204 |
+
for i_block in range(self.num_res_blocks):
|
205 |
+
block.append(
|
206 |
+
ResnetBlock1D(in_dim=block_in,
|
207 |
+
out_dim=block_out,
|
208 |
+
kernel_size=kernel_size,
|
209 |
+
use_norm=True))
|
210 |
+
block_in = block_out
|
211 |
+
if i_level in attn_layers:
|
212 |
+
attn.append(AttnBlock1D(block_in))
|
213 |
+
down = nn.Module()
|
214 |
+
down.block = block
|
215 |
+
down.attn = attn
|
216 |
+
if i_level in down_layers:
|
217 |
+
down.downsample = Downsample1D(block_in, resamp_with_conv)
|
218 |
+
self.down.append(down)
|
219 |
+
|
220 |
+
# middle
|
221 |
+
self.mid = nn.Module()
|
222 |
+
self.mid.block_1 = ResnetBlock1D(in_dim=block_in,
|
223 |
+
out_dim=block_in,
|
224 |
+
kernel_size=kernel_size,
|
225 |
+
use_norm=True)
|
226 |
+
self.mid.attn_1 = AttnBlock1D(block_in)
|
227 |
+
self.mid.block_2 = ResnetBlock1D(in_dim=block_in,
|
228 |
+
out_dim=block_in,
|
229 |
+
kernel_size=kernel_size,
|
230 |
+
use_norm=True)
|
231 |
+
|
232 |
+
# end
|
233 |
+
self.conv_out = MPConv1D(block_in,
|
234 |
+
2 * embed_dim if double_z else embed_dim,
|
235 |
+
kernel_size=kernel_size)
|
236 |
+
|
237 |
+
self.learnable_gain = nn.Parameter(torch.zeros([]))
|
238 |
+
|
239 |
+
def forward(self, x):
|
240 |
+
|
241 |
+
# downsampling
|
242 |
+
hs = [self.conv_in(x)]
|
243 |
+
for i_level in range(self.num_layers):
|
244 |
+
for i_block in range(self.num_res_blocks):
|
245 |
+
h = self.down[i_level].block[i_block](hs[-1])
|
246 |
+
if len(self.down[i_level].attn) > 0:
|
247 |
+
h = self.down[i_level].attn[i_block](h)
|
248 |
+
h = h.clamp(-self.clip_act, self.clip_act)
|
249 |
+
hs.append(h)
|
250 |
+
if i_level in self.down_layers:
|
251 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
252 |
+
|
253 |
+
# middle
|
254 |
+
h = hs[-1]
|
255 |
+
h = self.mid.block_1(h)
|
256 |
+
h = self.mid.attn_1(h)
|
257 |
+
h = self.mid.block_2(h)
|
258 |
+
h = h.clamp(-self.clip_act, self.clip_act)
|
259 |
+
|
260 |
+
# end
|
261 |
+
h = nonlinearity(h)
|
262 |
+
h = self.conv_out(h, gain=(self.learnable_gain + 1))
|
263 |
+
return h
|
264 |
+
|
265 |
+
|
266 |
+
class Decoder1D(nn.Module):
|
267 |
+
|
268 |
+
def __init__(self,
|
269 |
+
*,
|
270 |
+
dim: int,
|
271 |
+
out_dim: int,
|
272 |
+
ch_mult: tuple[int] = (1, 2, 4, 8),
|
273 |
+
num_res_blocks: int,
|
274 |
+
attn_layers: list[int] = [],
|
275 |
+
down_layers: list[int] = [],
|
276 |
+
kernel_size: int = 3,
|
277 |
+
resamp_with_conv: bool = True,
|
278 |
+
in_dim: int,
|
279 |
+
embed_dim: int,
|
280 |
+
clip_act: float = 256.0):
|
281 |
+
super().__init__()
|
282 |
+
self.ch = dim
|
283 |
+
self.num_layers = len(ch_mult)
|
284 |
+
self.num_res_blocks = num_res_blocks
|
285 |
+
self.in_channels = in_dim
|
286 |
+
self.clip_act = clip_act
|
287 |
+
self.down_layers = [i + 1 for i in down_layers] # each downlayer add one
|
288 |
+
|
289 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
290 |
+
block_in = dim * ch_mult[self.num_layers - 1]
|
291 |
+
|
292 |
+
# z to block_in
|
293 |
+
self.conv_in = MPConv1D(embed_dim, block_in, kernel_size=kernel_size)
|
294 |
+
|
295 |
+
# middle
|
296 |
+
self.mid = nn.Module()
|
297 |
+
self.mid.block_1 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
|
298 |
+
self.mid.attn_1 = AttnBlock1D(block_in)
|
299 |
+
self.mid.block_2 = ResnetBlock1D(in_dim=block_in, out_dim=block_in, use_norm=True)
|
300 |
+
|
301 |
+
# upsampling
|
302 |
+
self.up = nn.ModuleList()
|
303 |
+
for i_level in reversed(range(self.num_layers)):
|
304 |
+
block = nn.ModuleList()
|
305 |
+
attn = nn.ModuleList()
|
306 |
+
block_out = dim * ch_mult[i_level]
|
307 |
+
for i_block in range(self.num_res_blocks + 1):
|
308 |
+
block.append(ResnetBlock1D(in_dim=block_in, out_dim=block_out, use_norm=True))
|
309 |
+
block_in = block_out
|
310 |
+
if i_level in attn_layers:
|
311 |
+
attn.append(AttnBlock1D(block_in))
|
312 |
+
up = nn.Module()
|
313 |
+
up.block = block
|
314 |
+
up.attn = attn
|
315 |
+
if i_level in self.down_layers:
|
316 |
+
up.upsample = Upsample1D(block_in, resamp_with_conv)
|
317 |
+
self.up.insert(0, up) # prepend to get consistent order
|
318 |
+
|
319 |
+
# end
|
320 |
+
self.conv_out = MPConv1D(block_in, out_dim, kernel_size=kernel_size)
|
321 |
+
self.learnable_gain = nn.Parameter(torch.zeros([]))
|
322 |
+
|
323 |
+
def forward(self, z):
|
324 |
+
# z to block_in
|
325 |
+
h = self.conv_in(z)
|
326 |
+
|
327 |
+
# middle
|
328 |
+
h = self.mid.block_1(h)
|
329 |
+
h = self.mid.attn_1(h)
|
330 |
+
h = self.mid.block_2(h)
|
331 |
+
h = h.clamp(-self.clip_act, self.clip_act)
|
332 |
+
|
333 |
+
# upsampling
|
334 |
+
for i_level in reversed(range(self.num_layers)):
|
335 |
+
for i_block in range(self.num_res_blocks + 1):
|
336 |
+
h = self.up[i_level].block[i_block](h)
|
337 |
+
if len(self.up[i_level].attn) > 0:
|
338 |
+
h = self.up[i_level].attn[i_block](h)
|
339 |
+
h = h.clamp(-self.clip_act, self.clip_act)
|
340 |
+
if i_level in self.down_layers:
|
341 |
+
h = self.up[i_level].upsample(h)
|
342 |
+
|
343 |
+
h = nonlinearity(h)
|
344 |
+
h = self.conv_out(h, gain=(self.learnable_gain + 1))
|
345 |
+
return h
|
346 |
+
|
347 |
+
|
348 |
+
def VAE_16k(**kwargs) -> VAE:
|
349 |
+
return VAE(data_dim=80, embed_dim=20, hidden_dim=384, **kwargs)
|
350 |
+
|
351 |
+
|
352 |
+
def VAE_44k(**kwargs) -> VAE:
|
353 |
+
return VAE(data_dim=128, embed_dim=40, hidden_dim=512, **kwargs)
|
354 |
+
|
355 |
+
|
356 |
+
def get_my_vae(name: str, **kwargs) -> VAE:
|
357 |
+
if name == '16k':
|
358 |
+
return VAE_16k(**kwargs)
|
359 |
+
if name == '44k':
|
360 |
+
return VAE_44k(**kwargs)
|
361 |
+
raise ValueError(f'Unknown model: {name}')
|
362 |
+
|
363 |
+
|
364 |
+
if __name__ == '__main__':
|
365 |
+
network = get_my_vae('standard')
|
366 |
+
|
367 |
+
# print the number of parameters in terms of millions
|
368 |
+
num_params = sum(p.numel() for p in network.parameters()) / 1e6
|
369 |
+
print(f'Number of parameters: {num_params:.2f}M')
|
mmaudio/ext/autoencoder/vae_modules.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from einops import rearrange
|
5 |
+
|
6 |
+
from mmaudio.ext.autoencoder.edm2_utils import (MPConv1D, mp_silu, mp_sum, normalize)
|
7 |
+
|
8 |
+
|
9 |
+
def nonlinearity(x):
|
10 |
+
# swish
|
11 |
+
return mp_silu(x)
|
12 |
+
|
13 |
+
|
14 |
+
class ResnetBlock1D(nn.Module):
|
15 |
+
|
16 |
+
def __init__(self, *, in_dim, out_dim=None, conv_shortcut=False, kernel_size=3, use_norm=True):
|
17 |
+
super().__init__()
|
18 |
+
self.in_dim = in_dim
|
19 |
+
out_dim = in_dim if out_dim is None else out_dim
|
20 |
+
self.out_dim = out_dim
|
21 |
+
self.use_conv_shortcut = conv_shortcut
|
22 |
+
self.use_norm = use_norm
|
23 |
+
|
24 |
+
self.conv1 = MPConv1D(in_dim, out_dim, kernel_size=kernel_size)
|
25 |
+
self.conv2 = MPConv1D(out_dim, out_dim, kernel_size=kernel_size)
|
26 |
+
if self.in_dim != self.out_dim:
|
27 |
+
if self.use_conv_shortcut:
|
28 |
+
self.conv_shortcut = MPConv1D(in_dim, out_dim, kernel_size=kernel_size)
|
29 |
+
else:
|
30 |
+
self.nin_shortcut = MPConv1D(in_dim, out_dim, kernel_size=1)
|
31 |
+
|
32 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
33 |
+
|
34 |
+
# pixel norm
|
35 |
+
if self.use_norm:
|
36 |
+
x = normalize(x, dim=1)
|
37 |
+
|
38 |
+
h = x
|
39 |
+
h = nonlinearity(h)
|
40 |
+
h = self.conv1(h)
|
41 |
+
|
42 |
+
h = nonlinearity(h)
|
43 |
+
h = self.conv2(h)
|
44 |
+
|
45 |
+
if self.in_dim != self.out_dim:
|
46 |
+
if self.use_conv_shortcut:
|
47 |
+
x = self.conv_shortcut(x)
|
48 |
+
else:
|
49 |
+
x = self.nin_shortcut(x)
|
50 |
+
|
51 |
+
return mp_sum(x, h, t=0.3)
|
52 |
+
|
53 |
+
|
54 |
+
class AttnBlock1D(nn.Module):
|
55 |
+
|
56 |
+
def __init__(self, in_channels, num_heads=1):
|
57 |
+
super().__init__()
|
58 |
+
self.in_channels = in_channels
|
59 |
+
|
60 |
+
self.num_heads = num_heads
|
61 |
+
self.qkv = MPConv1D(in_channels, in_channels * 3, kernel_size=1)
|
62 |
+
self.proj_out = MPConv1D(in_channels, in_channels, kernel_size=1)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
h = x
|
66 |
+
y = self.qkv(h)
|
67 |
+
y = y.reshape(y.shape[0], self.num_heads, -1, 3, y.shape[-1])
|
68 |
+
q, k, v = normalize(y, dim=2).unbind(3)
|
69 |
+
|
70 |
+
q = rearrange(q, 'b h c l -> b h l c')
|
71 |
+
k = rearrange(k, 'b h c l -> b h l c')
|
72 |
+
v = rearrange(v, 'b h c l -> b h l c')
|
73 |
+
|
74 |
+
h = F.scaled_dot_product_attention(q, k, v)
|
75 |
+
h = rearrange(h, 'b h l c -> b (h c) l')
|
76 |
+
|
77 |
+
h = self.proj_out(h)
|
78 |
+
|
79 |
+
return mp_sum(x, h, t=0.3)
|
80 |
+
|
81 |
+
|
82 |
+
class Upsample1D(nn.Module):
|
83 |
+
|
84 |
+
def __init__(self, in_channels, with_conv):
|
85 |
+
super().__init__()
|
86 |
+
self.with_conv = with_conv
|
87 |
+
if self.with_conv:
|
88 |
+
self.conv = MPConv1D(in_channels, in_channels, kernel_size=3)
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
x = F.interpolate(x, scale_factor=2.0, mode='nearest-exact') # support 3D tensor(B,C,T)
|
92 |
+
if self.with_conv:
|
93 |
+
x = self.conv(x)
|
94 |
+
return x
|
95 |
+
|
96 |
+
|
97 |
+
class Downsample1D(nn.Module):
|
98 |
+
|
99 |
+
def __init__(self, in_channels, with_conv):
|
100 |
+
super().__init__()
|
101 |
+
self.with_conv = with_conv
|
102 |
+
if self.with_conv:
|
103 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
104 |
+
self.conv1 = MPConv1D(in_channels, in_channels, kernel_size=1)
|
105 |
+
self.conv2 = MPConv1D(in_channels, in_channels, kernel_size=1)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
|
109 |
+
if self.with_conv:
|
110 |
+
x = self.conv1(x)
|
111 |
+
|
112 |
+
x = F.avg_pool1d(x, kernel_size=2, stride=2)
|
113 |
+
|
114 |
+
if self.with_conv:
|
115 |
+
x = self.conv2(x)
|
116 |
+
|
117 |
+
return x
|
mmaudio/ext/bigvgan/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 NVIDIA CORPORATION.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
mmaudio/ext/bigvgan/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .bigvgan import BigVGAN
|
mmaudio/ext/bigvgan/activations.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn, sin, pow
|
6 |
+
from torch.nn import Parameter
|
7 |
+
|
8 |
+
|
9 |
+
class Snake(nn.Module):
|
10 |
+
'''
|
11 |
+
Implementation of a sine-based periodic activation function
|
12 |
+
Shape:
|
13 |
+
- Input: (B, C, T)
|
14 |
+
- Output: (B, C, T), same shape as the input
|
15 |
+
Parameters:
|
16 |
+
- alpha - trainable parameter
|
17 |
+
References:
|
18 |
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
19 |
+
https://arxiv.org/abs/2006.08195
|
20 |
+
Examples:
|
21 |
+
>>> a1 = snake(256)
|
22 |
+
>>> x = torch.randn(256)
|
23 |
+
>>> x = a1(x)
|
24 |
+
'''
|
25 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
26 |
+
'''
|
27 |
+
Initialization.
|
28 |
+
INPUT:
|
29 |
+
- in_features: shape of the input
|
30 |
+
- alpha: trainable parameter
|
31 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
32 |
+
alpha will be trained along with the rest of your model.
|
33 |
+
'''
|
34 |
+
super(Snake, self).__init__()
|
35 |
+
self.in_features = in_features
|
36 |
+
|
37 |
+
# initialize alpha
|
38 |
+
self.alpha_logscale = alpha_logscale
|
39 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
40 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
41 |
+
else: # linear scale alphas initialized to ones
|
42 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
43 |
+
|
44 |
+
self.alpha.requires_grad = alpha_trainable
|
45 |
+
|
46 |
+
self.no_div_by_zero = 0.000000001
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
'''
|
50 |
+
Forward pass of the function.
|
51 |
+
Applies the function to the input elementwise.
|
52 |
+
Snake ∶= x + 1/a * sin^2 (xa)
|
53 |
+
'''
|
54 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
55 |
+
if self.alpha_logscale:
|
56 |
+
alpha = torch.exp(alpha)
|
57 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
58 |
+
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
class SnakeBeta(nn.Module):
|
63 |
+
'''
|
64 |
+
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
65 |
+
Shape:
|
66 |
+
- Input: (B, C, T)
|
67 |
+
- Output: (B, C, T), same shape as the input
|
68 |
+
Parameters:
|
69 |
+
- alpha - trainable parameter that controls frequency
|
70 |
+
- beta - trainable parameter that controls magnitude
|
71 |
+
References:
|
72 |
+
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
73 |
+
https://arxiv.org/abs/2006.08195
|
74 |
+
Examples:
|
75 |
+
>>> a1 = snakebeta(256)
|
76 |
+
>>> x = torch.randn(256)
|
77 |
+
>>> x = a1(x)
|
78 |
+
'''
|
79 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
80 |
+
'''
|
81 |
+
Initialization.
|
82 |
+
INPUT:
|
83 |
+
- in_features: shape of the input
|
84 |
+
- alpha - trainable parameter that controls frequency
|
85 |
+
- beta - trainable parameter that controls magnitude
|
86 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
87 |
+
beta is initialized to 1 by default, higher values = higher-magnitude.
|
88 |
+
alpha will be trained along with the rest of your model.
|
89 |
+
'''
|
90 |
+
super(SnakeBeta, self).__init__()
|
91 |
+
self.in_features = in_features
|
92 |
+
|
93 |
+
# initialize alpha
|
94 |
+
self.alpha_logscale = alpha_logscale
|
95 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
96 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
97 |
+
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
98 |
+
else: # linear scale alphas initialized to ones
|
99 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
100 |
+
self.beta = Parameter(torch.ones(in_features) * alpha)
|
101 |
+
|
102 |
+
self.alpha.requires_grad = alpha_trainable
|
103 |
+
self.beta.requires_grad = alpha_trainable
|
104 |
+
|
105 |
+
self.no_div_by_zero = 0.000000001
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
'''
|
109 |
+
Forward pass of the function.
|
110 |
+
Applies the function to the input elementwise.
|
111 |
+
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
112 |
+
'''
|
113 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
114 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
115 |
+
if self.alpha_logscale:
|
116 |
+
alpha = torch.exp(alpha)
|
117 |
+
beta = torch.exp(beta)
|
118 |
+
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
119 |
+
|
120 |
+
return x
|
mmaudio/ext/bigvgan/alias_free_torch/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
from .filter import *
|
5 |
+
from .resample import *
|
6 |
+
from .act import *
|
mmaudio/ext/bigvgan/alias_free_torch/act.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
from .resample import UpSample1d, DownSample1d
|
6 |
+
|
7 |
+
|
8 |
+
class Activation1d(nn.Module):
|
9 |
+
def __init__(self,
|
10 |
+
activation,
|
11 |
+
up_ratio: int = 2,
|
12 |
+
down_ratio: int = 2,
|
13 |
+
up_kernel_size: int = 12,
|
14 |
+
down_kernel_size: int = 12):
|
15 |
+
super().__init__()
|
16 |
+
self.up_ratio = up_ratio
|
17 |
+
self.down_ratio = down_ratio
|
18 |
+
self.act = activation
|
19 |
+
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
20 |
+
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
21 |
+
|
22 |
+
# x: [B,C,T]
|
23 |
+
def forward(self, x):
|
24 |
+
x = self.upsample(x)
|
25 |
+
x = self.act(x)
|
26 |
+
x = self.downsample(x)
|
27 |
+
|
28 |
+
return x
|
mmaudio/ext/bigvgan/alias_free_torch/filter.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import math
|
8 |
+
|
9 |
+
if 'sinc' in dir(torch):
|
10 |
+
sinc = torch.sinc
|
11 |
+
else:
|
12 |
+
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
13 |
+
# https://adefossez.github.io/julius/julius/core.html
|
14 |
+
# LICENSE is in incl_licenses directory.
|
15 |
+
def sinc(x: torch.Tensor):
|
16 |
+
"""
|
17 |
+
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
18 |
+
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
19 |
+
"""
|
20 |
+
return torch.where(x == 0,
|
21 |
+
torch.tensor(1., device=x.device, dtype=x.dtype),
|
22 |
+
torch.sin(math.pi * x) / math.pi / x)
|
23 |
+
|
24 |
+
|
25 |
+
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
26 |
+
# https://adefossez.github.io/julius/julius/lowpass.html
|
27 |
+
# LICENSE is in incl_licenses directory.
|
28 |
+
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
|
29 |
+
even = (kernel_size % 2 == 0)
|
30 |
+
half_size = kernel_size // 2
|
31 |
+
|
32 |
+
#For kaiser window
|
33 |
+
delta_f = 4 * half_width
|
34 |
+
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
35 |
+
if A > 50.:
|
36 |
+
beta = 0.1102 * (A - 8.7)
|
37 |
+
elif A >= 21.:
|
38 |
+
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
|
39 |
+
else:
|
40 |
+
beta = 0.
|
41 |
+
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
42 |
+
|
43 |
+
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
44 |
+
if even:
|
45 |
+
time = (torch.arange(-half_size, half_size) + 0.5)
|
46 |
+
else:
|
47 |
+
time = torch.arange(kernel_size) - half_size
|
48 |
+
if cutoff == 0:
|
49 |
+
filter_ = torch.zeros_like(time)
|
50 |
+
else:
|
51 |
+
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
52 |
+
# Normalize filter to have sum = 1, otherwise we will have a small leakage
|
53 |
+
# of the constant component in the input signal.
|
54 |
+
filter_ /= filter_.sum()
|
55 |
+
filter = filter_.view(1, 1, kernel_size)
|
56 |
+
|
57 |
+
return filter
|
58 |
+
|
59 |
+
|
60 |
+
class LowPassFilter1d(nn.Module):
|
61 |
+
def __init__(self,
|
62 |
+
cutoff=0.5,
|
63 |
+
half_width=0.6,
|
64 |
+
stride: int = 1,
|
65 |
+
padding: bool = True,
|
66 |
+
padding_mode: str = 'replicate',
|
67 |
+
kernel_size: int = 12):
|
68 |
+
# kernel_size should be even number for stylegan3 setup,
|
69 |
+
# in this implementation, odd number is also possible.
|
70 |
+
super().__init__()
|
71 |
+
if cutoff < -0.:
|
72 |
+
raise ValueError("Minimum cutoff must be larger than zero.")
|
73 |
+
if cutoff > 0.5:
|
74 |
+
raise ValueError("A cutoff above 0.5 does not make sense.")
|
75 |
+
self.kernel_size = kernel_size
|
76 |
+
self.even = (kernel_size % 2 == 0)
|
77 |
+
self.pad_left = kernel_size // 2 - int(self.even)
|
78 |
+
self.pad_right = kernel_size // 2
|
79 |
+
self.stride = stride
|
80 |
+
self.padding = padding
|
81 |
+
self.padding_mode = padding_mode
|
82 |
+
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
83 |
+
self.register_buffer("filter", filter)
|
84 |
+
|
85 |
+
#input [B, C, T]
|
86 |
+
def forward(self, x):
|
87 |
+
_, C, _ = x.shape
|
88 |
+
|
89 |
+
if self.padding:
|
90 |
+
x = F.pad(x, (self.pad_left, self.pad_right),
|
91 |
+
mode=self.padding_mode)
|
92 |
+
out = F.conv1d(x, self.filter.expand(C, -1, -1),
|
93 |
+
stride=self.stride, groups=C)
|
94 |
+
|
95 |
+
return out
|
mmaudio/ext/bigvgan/alias_free_torch/resample.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from .filter import LowPassFilter1d
|
7 |
+
from .filter import kaiser_sinc_filter1d
|
8 |
+
|
9 |
+
|
10 |
+
class UpSample1d(nn.Module):
|
11 |
+
def __init__(self, ratio=2, kernel_size=None):
|
12 |
+
super().__init__()
|
13 |
+
self.ratio = ratio
|
14 |
+
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
15 |
+
self.stride = ratio
|
16 |
+
self.pad = self.kernel_size // ratio - 1
|
17 |
+
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
18 |
+
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
19 |
+
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
|
20 |
+
half_width=0.6 / ratio,
|
21 |
+
kernel_size=self.kernel_size)
|
22 |
+
self.register_buffer("filter", filter)
|
23 |
+
|
24 |
+
# x: [B, C, T]
|
25 |
+
def forward(self, x):
|
26 |
+
_, C, _ = x.shape
|
27 |
+
|
28 |
+
x = F.pad(x, (self.pad, self.pad), mode='replicate')
|
29 |
+
x = self.ratio * F.conv_transpose1d(
|
30 |
+
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
31 |
+
x = x[..., self.pad_left:-self.pad_right]
|
32 |
+
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class DownSample1d(nn.Module):
|
37 |
+
def __init__(self, ratio=2, kernel_size=None):
|
38 |
+
super().__init__()
|
39 |
+
self.ratio = ratio
|
40 |
+
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
41 |
+
self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
|
42 |
+
half_width=0.6 / ratio,
|
43 |
+
stride=ratio,
|
44 |
+
kernel_size=self.kernel_size)
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
xx = self.lowpass(x)
|
48 |
+
|
49 |
+
return xx
|
mmaudio/ext/bigvgan/bigvgan.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from omegaconf import OmegaConf
|
6 |
+
|
7 |
+
from mmaudio.ext.bigvgan.models import BigVGANVocoder
|
8 |
+
|
9 |
+
_bigvgan_vocoder_path = Path(__file__).parent / 'bigvgan_vocoder.yml'
|
10 |
+
|
11 |
+
|
12 |
+
class BigVGAN(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, ckpt_path, config_path=_bigvgan_vocoder_path):
|
15 |
+
super().__init__()
|
16 |
+
vocoder_cfg = OmegaConf.load(config_path)
|
17 |
+
self.vocoder = BigVGANVocoder(vocoder_cfg).eval()
|
18 |
+
vocoder_ckpt = torch.load(ckpt_path, map_location='cpu', weights_only=True)['generator']
|
19 |
+
self.vocoder.load_state_dict(vocoder_ckpt)
|
20 |
+
|
21 |
+
self.weight_norm_removed = False
|
22 |
+
self.remove_weight_norm()
|
23 |
+
|
24 |
+
@torch.inference_mode()
|
25 |
+
def forward(self, x):
|
26 |
+
assert self.weight_norm_removed, 'call remove_weight_norm() before inference'
|
27 |
+
return self.vocoder(x)
|
28 |
+
|
29 |
+
def remove_weight_norm(self):
|
30 |
+
self.vocoder.remove_weight_norm()
|
31 |
+
self.weight_norm_removed = True
|
32 |
+
return self
|
mmaudio/ext/bigvgan/bigvgan_vocoder.yml
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
resblock: '1'
|
2 |
+
num_gpus: 0
|
3 |
+
batch_size: 64
|
4 |
+
num_mels: 80
|
5 |
+
learning_rate: 0.0001
|
6 |
+
adam_b1: 0.8
|
7 |
+
adam_b2: 0.99
|
8 |
+
lr_decay: 0.999
|
9 |
+
seed: 1234
|
10 |
+
upsample_rates:
|
11 |
+
- 4
|
12 |
+
- 4
|
13 |
+
- 2
|
14 |
+
- 2
|
15 |
+
- 2
|
16 |
+
- 2
|
17 |
+
upsample_kernel_sizes:
|
18 |
+
- 8
|
19 |
+
- 8
|
20 |
+
- 4
|
21 |
+
- 4
|
22 |
+
- 4
|
23 |
+
- 4
|
24 |
+
upsample_initial_channel: 1536
|
25 |
+
resblock_kernel_sizes:
|
26 |
+
- 3
|
27 |
+
- 7
|
28 |
+
- 11
|
29 |
+
resblock_dilation_sizes:
|
30 |
+
- - 1
|
31 |
+
- 3
|
32 |
+
- 5
|
33 |
+
- - 1
|
34 |
+
- 3
|
35 |
+
- 5
|
36 |
+
- - 1
|
37 |
+
- 3
|
38 |
+
- 5
|
39 |
+
activation: snakebeta
|
40 |
+
snake_logscale: true
|
41 |
+
resolutions:
|
42 |
+
- - 1024
|
43 |
+
- 120
|
44 |
+
- 600
|
45 |
+
- - 2048
|
46 |
+
- 240
|
47 |
+
- 1200
|
48 |
+
- - 512
|
49 |
+
- 50
|
50 |
+
- 240
|
51 |
+
mpd_reshapes:
|
52 |
+
- 2
|
53 |
+
- 3
|
54 |
+
- 5
|
55 |
+
- 7
|
56 |
+
- 11
|
57 |
+
use_spectral_norm: false
|
58 |
+
discriminator_channel_mult: 1
|
59 |
+
num_workers: 4
|
60 |
+
dist_config:
|
61 |
+
dist_backend: nccl
|
62 |
+
dist_url: tcp://localhost:54341
|
63 |
+
world_size: 1
|
mmaudio/ext/bigvgan/env.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
|
7 |
+
|
8 |
+
class AttrDict(dict):
|
9 |
+
def __init__(self, *args, **kwargs):
|
10 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
11 |
+
self.__dict__ = self
|
12 |
+
|
13 |
+
|
14 |
+
def build_env(config, config_name, path):
|
15 |
+
t_path = os.path.join(path, config_name)
|
16 |
+
if config != t_path:
|
17 |
+
os.makedirs(path, exist_ok=True)
|
18 |
+
shutil.copyfile(config, os.path.join(path, config_name))
|
mmaudio/ext/bigvgan/incl_licenses/LICENSE_1
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 Jungil Kong
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
mmaudio/ext/bigvgan/incl_licenses/LICENSE_2
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 Edward Dixon
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
mmaudio/ext/bigvgan/incl_licenses/LICENSE_3
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
mmaudio/ext/bigvgan/incl_licenses/LICENSE_4
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BSD 3-Clause License
|
2 |
+
|
3 |
+
Copyright (c) 2019, Seungwon Park 박승원
|
4 |
+
All rights reserved.
|
5 |
+
|
6 |
+
Redistribution and use in source and binary forms, with or without
|
7 |
+
modification, are permitted provided that the following conditions are met:
|
8 |
+
|
9 |
+
1. Redistributions of source code must retain the above copyright notice, this
|
10 |
+
list of conditions and the following disclaimer.
|
11 |
+
|
12 |
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
13 |
+
this list of conditions and the following disclaimer in the documentation
|
14 |
+
and/or other materials provided with the distribution.
|
15 |
+
|
16 |
+
3. Neither the name of the copyright holder nor the names of its
|
17 |
+
contributors may be used to endorse or promote products derived from
|
18 |
+
this software without specific prior written permission.
|
19 |
+
|
20 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
21 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
22 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
23 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
24 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
25 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
26 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
27 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
28 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
29 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
mmaudio/ext/bigvgan/incl_licenses/LICENSE_5
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright 2020 Alexandre Défossez
|
2 |
+
|
3 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
4 |
+
associated documentation files (the "Software"), to deal in the Software without restriction,
|
5 |
+
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
6 |
+
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
7 |
+
furnished to do so, subject to the following conditions:
|
8 |
+
|
9 |
+
The above copyright notice and this permission notice shall be included in all copies or
|
10 |
+
substantial portions of the Software.
|
11 |
+
|
12 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
13 |
+
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
14 |
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
15 |
+
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
16 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
mmaudio/ext/bigvgan/models.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
10 |
+
from torch.nn.utils.parametrizations import weight_norm
|
11 |
+
from torch.nn.utils.parametrize import remove_parametrizations
|
12 |
+
|
13 |
+
from mmaudio.ext.bigvgan import activations
|
14 |
+
from mmaudio.ext.bigvgan.alias_free_torch import *
|
15 |
+
from mmaudio.ext.bigvgan.utils import get_padding, init_weights
|
16 |
+
|
17 |
+
LRELU_SLOPE = 0.1
|
18 |
+
|
19 |
+
|
20 |
+
class AMPBlock1(torch.nn.Module):
|
21 |
+
|
22 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
|
23 |
+
super(AMPBlock1, self).__init__()
|
24 |
+
self.h = h
|
25 |
+
|
26 |
+
self.convs1 = nn.ModuleList([
|
27 |
+
weight_norm(
|
28 |
+
Conv1d(channels,
|
29 |
+
channels,
|
30 |
+
kernel_size,
|
31 |
+
1,
|
32 |
+
dilation=dilation[0],
|
33 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
34 |
+
weight_norm(
|
35 |
+
Conv1d(channels,
|
36 |
+
channels,
|
37 |
+
kernel_size,
|
38 |
+
1,
|
39 |
+
dilation=dilation[1],
|
40 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
41 |
+
weight_norm(
|
42 |
+
Conv1d(channels,
|
43 |
+
channels,
|
44 |
+
kernel_size,
|
45 |
+
1,
|
46 |
+
dilation=dilation[2],
|
47 |
+
padding=get_padding(kernel_size, dilation[2])))
|
48 |
+
])
|
49 |
+
self.convs1.apply(init_weights)
|
50 |
+
|
51 |
+
self.convs2 = nn.ModuleList([
|
52 |
+
weight_norm(
|
53 |
+
Conv1d(channels,
|
54 |
+
channels,
|
55 |
+
kernel_size,
|
56 |
+
1,
|
57 |
+
dilation=1,
|
58 |
+
padding=get_padding(kernel_size, 1))),
|
59 |
+
weight_norm(
|
60 |
+
Conv1d(channels,
|
61 |
+
channels,
|
62 |
+
kernel_size,
|
63 |
+
1,
|
64 |
+
dilation=1,
|
65 |
+
padding=get_padding(kernel_size, 1))),
|
66 |
+
weight_norm(
|
67 |
+
Conv1d(channels,
|
68 |
+
channels,
|
69 |
+
kernel_size,
|
70 |
+
1,
|
71 |
+
dilation=1,
|
72 |
+
padding=get_padding(kernel_size, 1)))
|
73 |
+
])
|
74 |
+
self.convs2.apply(init_weights)
|
75 |
+
|
76 |
+
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
|
77 |
+
|
78 |
+
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
79 |
+
self.activations = nn.ModuleList([
|
80 |
+
Activation1d(
|
81 |
+
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
82 |
+
for _ in range(self.num_layers)
|
83 |
+
])
|
84 |
+
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
85 |
+
self.activations = nn.ModuleList([
|
86 |
+
Activation1d(
|
87 |
+
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
88 |
+
for _ in range(self.num_layers)
|
89 |
+
])
|
90 |
+
else:
|
91 |
+
raise NotImplementedError(
|
92 |
+
"activation incorrectly specified. check the config file and look for 'activation'."
|
93 |
+
)
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
97 |
+
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
98 |
+
xt = a1(x)
|
99 |
+
xt = c1(xt)
|
100 |
+
xt = a2(xt)
|
101 |
+
xt = c2(xt)
|
102 |
+
x = xt + x
|
103 |
+
|
104 |
+
return x
|
105 |
+
|
106 |
+
def remove_weight_norm(self):
|
107 |
+
for l in self.convs1:
|
108 |
+
remove_parametrizations(l, 'weight')
|
109 |
+
for l in self.convs2:
|
110 |
+
remove_parametrizations(l, 'weight')
|
111 |
+
|
112 |
+
|
113 |
+
class AMPBlock2(torch.nn.Module):
|
114 |
+
|
115 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
|
116 |
+
super(AMPBlock2, self).__init__()
|
117 |
+
self.h = h
|
118 |
+
|
119 |
+
self.convs = nn.ModuleList([
|
120 |
+
weight_norm(
|
121 |
+
Conv1d(channels,
|
122 |
+
channels,
|
123 |
+
kernel_size,
|
124 |
+
1,
|
125 |
+
dilation=dilation[0],
|
126 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
127 |
+
weight_norm(
|
128 |
+
Conv1d(channels,
|
129 |
+
channels,
|
130 |
+
kernel_size,
|
131 |
+
1,
|
132 |
+
dilation=dilation[1],
|
133 |
+
padding=get_padding(kernel_size, dilation[1])))
|
134 |
+
])
|
135 |
+
self.convs.apply(init_weights)
|
136 |
+
|
137 |
+
self.num_layers = len(self.convs) # total number of conv layers
|
138 |
+
|
139 |
+
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
140 |
+
self.activations = nn.ModuleList([
|
141 |
+
Activation1d(
|
142 |
+
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
143 |
+
for _ in range(self.num_layers)
|
144 |
+
])
|
145 |
+
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
146 |
+
self.activations = nn.ModuleList([
|
147 |
+
Activation1d(
|
148 |
+
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
149 |
+
for _ in range(self.num_layers)
|
150 |
+
])
|
151 |
+
else:
|
152 |
+
raise NotImplementedError(
|
153 |
+
"activation incorrectly specified. check the config file and look for 'activation'."
|
154 |
+
)
|
155 |
+
|
156 |
+
def forward(self, x):
|
157 |
+
for c, a in zip(self.convs, self.activations):
|
158 |
+
xt = a(x)
|
159 |
+
xt = c(xt)
|
160 |
+
x = xt + x
|
161 |
+
|
162 |
+
return x
|
163 |
+
|
164 |
+
def remove_weight_norm(self):
|
165 |
+
for l in self.convs:
|
166 |
+
remove_parametrizations(l, 'weight')
|
167 |
+
|
168 |
+
|
169 |
+
class BigVGANVocoder(torch.nn.Module):
|
170 |
+
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
|
171 |
+
def __init__(self, h):
|
172 |
+
super().__init__()
|
173 |
+
self.h = h
|
174 |
+
|
175 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
176 |
+
self.num_upsamples = len(h.upsample_rates)
|
177 |
+
|
178 |
+
# pre conv
|
179 |
+
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
|
180 |
+
|
181 |
+
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
182 |
+
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
|
183 |
+
|
184 |
+
# transposed conv-based upsamplers. does not apply anti-aliasing
|
185 |
+
self.ups = nn.ModuleList()
|
186 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
187 |
+
self.ups.append(
|
188 |
+
nn.ModuleList([
|
189 |
+
weight_norm(
|
190 |
+
ConvTranspose1d(h.upsample_initial_channel // (2**i),
|
191 |
+
h.upsample_initial_channel // (2**(i + 1)),
|
192 |
+
k,
|
193 |
+
u,
|
194 |
+
padding=(k - u) // 2))
|
195 |
+
]))
|
196 |
+
|
197 |
+
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
198 |
+
self.resblocks = nn.ModuleList()
|
199 |
+
for i in range(len(self.ups)):
|
200 |
+
ch = h.upsample_initial_channel // (2**(i + 1))
|
201 |
+
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
202 |
+
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
|
203 |
+
|
204 |
+
# post conv
|
205 |
+
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
|
206 |
+
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
207 |
+
self.activation_post = Activation1d(activation=activation_post)
|
208 |
+
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
|
209 |
+
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
210 |
+
self.activation_post = Activation1d(activation=activation_post)
|
211 |
+
else:
|
212 |
+
raise NotImplementedError(
|
213 |
+
"activation incorrectly specified. check the config file and look for 'activation'."
|
214 |
+
)
|
215 |
+
|
216 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
217 |
+
|
218 |
+
# weight initialization
|
219 |
+
for i in range(len(self.ups)):
|
220 |
+
self.ups[i].apply(init_weights)
|
221 |
+
self.conv_post.apply(init_weights)
|
222 |
+
|
223 |
+
def forward(self, x):
|
224 |
+
# pre conv
|
225 |
+
x = self.conv_pre(x)
|
226 |
+
|
227 |
+
for i in range(self.num_upsamples):
|
228 |
+
# upsampling
|
229 |
+
for i_up in range(len(self.ups[i])):
|
230 |
+
x = self.ups[i][i_up](x)
|
231 |
+
# AMP blocks
|
232 |
+
xs = None
|
233 |
+
for j in range(self.num_kernels):
|
234 |
+
if xs is None:
|
235 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
236 |
+
else:
|
237 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
238 |
+
x = xs / self.num_kernels
|
239 |
+
|
240 |
+
# post conv
|
241 |
+
x = self.activation_post(x)
|
242 |
+
x = self.conv_post(x)
|
243 |
+
x = torch.tanh(x)
|
244 |
+
|
245 |
+
return x
|
246 |
+
|
247 |
+
def remove_weight_norm(self):
|
248 |
+
print('Removing weight norm...')
|
249 |
+
for l in self.ups:
|
250 |
+
for l_i in l:
|
251 |
+
remove_parametrizations(l_i, 'weight')
|
252 |
+
for l in self.resblocks:
|
253 |
+
l.remove_weight_norm()
|
254 |
+
remove_parametrizations(self.conv_pre, 'weight')
|
255 |
+
remove_parametrizations(self.conv_post, 'weight')
|
mmaudio/ext/bigvgan/utils.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import os
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch.nn.utils.parametrizations import weight_norm
|
8 |
+
|
9 |
+
|
10 |
+
def init_weights(m, mean=0.0, std=0.01):
|
11 |
+
classname = m.__class__.__name__
|
12 |
+
if classname.find("Conv") != -1:
|
13 |
+
m.weight.data.normal_(mean, std)
|
14 |
+
|
15 |
+
|
16 |
+
def apply_weight_norm(m):
|
17 |
+
classname = m.__class__.__name__
|
18 |
+
if classname.find("Conv") != -1:
|
19 |
+
weight_norm(m)
|
20 |
+
|
21 |
+
|
22 |
+
def get_padding(kernel_size, dilation=1):
|
23 |
+
return int((kernel_size * dilation - dilation) / 2)
|
24 |
+
|
25 |
+
|
26 |
+
def load_checkpoint(filepath, device):
|
27 |
+
assert os.path.isfile(filepath)
|
28 |
+
print("Loading '{}'".format(filepath))
|
29 |
+
checkpoint_dict = torch.load(filepath, map_location=device)
|
30 |
+
print("Complete.")
|
31 |
+
return checkpoint_dict
|
mmaudio/ext/bigvgan_v2/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 NVIDIA CORPORATION.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
mmaudio/ext/bigvgan_v2/__init__.py
ADDED
File without changes
|
mmaudio/ext/bigvgan_v2/activations.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn, sin, pow
|
6 |
+
from torch.nn import Parameter
|
7 |
+
|
8 |
+
|
9 |
+
class Snake(nn.Module):
|
10 |
+
"""
|
11 |
+
Implementation of a sine-based periodic activation function
|
12 |
+
Shape:
|
13 |
+
- Input: (B, C, T)
|
14 |
+
- Output: (B, C, T), same shape as the input
|
15 |
+
Parameters:
|
16 |
+
- alpha - trainable parameter
|
17 |
+
References:
|
18 |
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
19 |
+
https://arxiv.org/abs/2006.08195
|
20 |
+
Examples:
|
21 |
+
>>> a1 = snake(256)
|
22 |
+
>>> x = torch.randn(256)
|
23 |
+
>>> x = a1(x)
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
|
28 |
+
):
|
29 |
+
"""
|
30 |
+
Initialization.
|
31 |
+
INPUT:
|
32 |
+
- in_features: shape of the input
|
33 |
+
- alpha: trainable parameter
|
34 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
35 |
+
alpha will be trained along with the rest of your model.
|
36 |
+
"""
|
37 |
+
super(Snake, self).__init__()
|
38 |
+
self.in_features = in_features
|
39 |
+
|
40 |
+
# Initialize alpha
|
41 |
+
self.alpha_logscale = alpha_logscale
|
42 |
+
if self.alpha_logscale: # Log scale alphas initialized to zeros
|
43 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
44 |
+
else: # Linear scale alphas initialized to ones
|
45 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
46 |
+
|
47 |
+
self.alpha.requires_grad = alpha_trainable
|
48 |
+
|
49 |
+
self.no_div_by_zero = 0.000000001
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
"""
|
53 |
+
Forward pass of the function.
|
54 |
+
Applies the function to the input elementwise.
|
55 |
+
Snake ∶= x + 1/a * sin^2 (xa)
|
56 |
+
"""
|
57 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # Line up with x to [B, C, T]
|
58 |
+
if self.alpha_logscale:
|
59 |
+
alpha = torch.exp(alpha)
|
60 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
61 |
+
|
62 |
+
return x
|
63 |
+
|
64 |
+
|
65 |
+
class SnakeBeta(nn.Module):
|
66 |
+
"""
|
67 |
+
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
68 |
+
Shape:
|
69 |
+
- Input: (B, C, T)
|
70 |
+
- Output: (B, C, T), same shape as the input
|
71 |
+
Parameters:
|
72 |
+
- alpha - trainable parameter that controls frequency
|
73 |
+
- beta - trainable parameter that controls magnitude
|
74 |
+
References:
|
75 |
+
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
76 |
+
https://arxiv.org/abs/2006.08195
|
77 |
+
Examples:
|
78 |
+
>>> a1 = snakebeta(256)
|
79 |
+
>>> x = torch.randn(256)
|
80 |
+
>>> x = a1(x)
|
81 |
+
"""
|
82 |
+
|
83 |
+
def __init__(
|
84 |
+
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
|
85 |
+
):
|
86 |
+
"""
|
87 |
+
Initialization.
|
88 |
+
INPUT:
|
89 |
+
- in_features: shape of the input
|
90 |
+
- alpha - trainable parameter that controls frequency
|
91 |
+
- beta - trainable parameter that controls magnitude
|
92 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
93 |
+
beta is initialized to 1 by default, higher values = higher-magnitude.
|
94 |
+
alpha will be trained along with the rest of your model.
|
95 |
+
"""
|
96 |
+
super(SnakeBeta, self).__init__()
|
97 |
+
self.in_features = in_features
|
98 |
+
|
99 |
+
# Initialize alpha
|
100 |
+
self.alpha_logscale = alpha_logscale
|
101 |
+
if self.alpha_logscale: # Log scale alphas initialized to zeros
|
102 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
103 |
+
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
104 |
+
else: # Linear scale alphas initialized to ones
|
105 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
106 |
+
self.beta = Parameter(torch.ones(in_features) * alpha)
|
107 |
+
|
108 |
+
self.alpha.requires_grad = alpha_trainable
|
109 |
+
self.beta.requires_grad = alpha_trainable
|
110 |
+
|
111 |
+
self.no_div_by_zero = 0.000000001
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
"""
|
115 |
+
Forward pass of the function.
|
116 |
+
Applies the function to the input elementwise.
|
117 |
+
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
118 |
+
"""
|
119 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # Line up with x to [B, C, T]
|
120 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
121 |
+
if self.alpha_logscale:
|
122 |
+
alpha = torch.exp(alpha)
|
123 |
+
beta = torch.exp(beta)
|
124 |
+
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
125 |
+
|
126 |
+
return x
|
mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/__init__.py
ADDED
File without changes
|
mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/activation1d.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from alias_free_activation.torch.resample import UpSample1d, DownSample1d
|
7 |
+
|
8 |
+
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda
|
9 |
+
from alias_free_activation.cuda import load
|
10 |
+
|
11 |
+
anti_alias_activation_cuda = load.load()
|
12 |
+
|
13 |
+
|
14 |
+
class FusedAntiAliasActivation(torch.autograd.Function):
|
15 |
+
"""
|
16 |
+
Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs.
|
17 |
+
The hyperparameters are hard-coded in the kernel to maximize speed.
|
18 |
+
NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters.
|
19 |
+
"""
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta):
|
23 |
+
activation_results = anti_alias_activation_cuda.forward(
|
24 |
+
inputs, up_ftr, down_ftr, alpha, beta
|
25 |
+
)
|
26 |
+
|
27 |
+
return activation_results
|
28 |
+
|
29 |
+
@staticmethod
|
30 |
+
def backward(ctx, output_grads):
|
31 |
+
raise NotImplementedError
|
32 |
+
return output_grads, None, None
|
33 |
+
|
34 |
+
|
35 |
+
class Activation1d(nn.Module):
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
activation,
|
39 |
+
up_ratio: int = 2,
|
40 |
+
down_ratio: int = 2,
|
41 |
+
up_kernel_size: int = 12,
|
42 |
+
down_kernel_size: int = 12,
|
43 |
+
fused: bool = True,
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
self.up_ratio = up_ratio
|
47 |
+
self.down_ratio = down_ratio
|
48 |
+
self.act = activation
|
49 |
+
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
50 |
+
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
51 |
+
|
52 |
+
self.fused = fused # Whether to use fused CUDA kernel or not
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
if not self.fused:
|
56 |
+
x = self.upsample(x)
|
57 |
+
x = self.act(x)
|
58 |
+
x = self.downsample(x)
|
59 |
+
return x
|
60 |
+
else:
|
61 |
+
if self.act.__class__.__name__ == "Snake":
|
62 |
+
beta = self.act.alpha.data # Snake uses same params for alpha and beta
|
63 |
+
else:
|
64 |
+
beta = (
|
65 |
+
self.act.beta.data
|
66 |
+
) # Snakebeta uses different params for alpha and beta
|
67 |
+
alpha = self.act.alpha.data
|
68 |
+
if (
|
69 |
+
not self.act.alpha_logscale
|
70 |
+
): # Exp baked into cuda kernel, cancel it out with a log
|
71 |
+
alpha = torch.log(alpha)
|
72 |
+
beta = torch.log(beta)
|
73 |
+
|
74 |
+
x = FusedAntiAliasActivation.apply(
|
75 |
+
x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta
|
76 |
+
)
|
77 |
+
return x
|
mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/anti_alias_activation.cpp
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <torch/extension.h>
|
18 |
+
|
19 |
+
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta);
|
20 |
+
|
21 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
22 |
+
m.def("forward", &fwd_cuda, "Anti-Alias Activation forward (CUDA)");
|
23 |
+
}
|
mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/anti_alias_activation_cuda.cu
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <ATen/ATen.h>
|
18 |
+
#include <cuda.h>
|
19 |
+
#include <cuda_runtime.h>
|
20 |
+
#include <cuda_fp16.h>
|
21 |
+
#include <cuda_profiler_api.h>
|
22 |
+
#include <ATen/cuda/CUDAContext.h>
|
23 |
+
#include <torch/extension.h>
|
24 |
+
#include "type_shim.h"
|
25 |
+
#include <assert.h>
|
26 |
+
#include <cfloat>
|
27 |
+
#include <limits>
|
28 |
+
#include <stdint.h>
|
29 |
+
#include <c10/macros/Macros.h>
|
30 |
+
|
31 |
+
namespace
|
32 |
+
{
|
33 |
+
// Hard-coded hyperparameters
|
34 |
+
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
|
35 |
+
constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
|
36 |
+
constexpr int BUFFER_SIZE = 32;
|
37 |
+
constexpr int FILTER_SIZE = 12;
|
38 |
+
constexpr int HALF_FILTER_SIZE = 6;
|
39 |
+
constexpr int UPSAMPLE_REPLICATION_PAD = 5; // 5 on each side, matching torch impl
|
40 |
+
constexpr int DOWNSAMPLE_REPLICATION_PAD_LEFT = 5; // matching torch impl
|
41 |
+
constexpr int DOWNSAMPLE_REPLICATION_PAD_RIGHT = 6; // matching torch impl
|
42 |
+
|
43 |
+
template <typename input_t, typename output_t, typename acc_t>
|
44 |
+
__global__ void anti_alias_activation_forward(
|
45 |
+
output_t *dst,
|
46 |
+
const input_t *src,
|
47 |
+
const input_t *up_ftr,
|
48 |
+
const input_t *down_ftr,
|
49 |
+
const input_t *alpha,
|
50 |
+
const input_t *beta,
|
51 |
+
int batch_size,
|
52 |
+
int channels,
|
53 |
+
int seq_len)
|
54 |
+
{
|
55 |
+
// Up and downsample filters
|
56 |
+
input_t up_filter[FILTER_SIZE];
|
57 |
+
input_t down_filter[FILTER_SIZE];
|
58 |
+
|
59 |
+
// Load data from global memory including extra indices reserved for replication paddings
|
60 |
+
input_t elements[2 * FILTER_SIZE + 2 * BUFFER_SIZE + 2 * UPSAMPLE_REPLICATION_PAD] = {0};
|
61 |
+
input_t intermediates[2 * FILTER_SIZE + 2 * BUFFER_SIZE + DOWNSAMPLE_REPLICATION_PAD_LEFT + DOWNSAMPLE_REPLICATION_PAD_RIGHT] = {0};
|
62 |
+
|
63 |
+
// Output stores downsampled output before writing to dst
|
64 |
+
output_t output[BUFFER_SIZE];
|
65 |
+
|
66 |
+
// blockDim/threadIdx = (128, 1, 1)
|
67 |
+
// gridDim/blockIdx = (seq_blocks, channels, batches)
|
68 |
+
int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
69 |
+
int local_offset = threadIdx.x * BUFFER_SIZE;
|
70 |
+
int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
|
71 |
+
|
72 |
+
// intermediate have double the seq_len
|
73 |
+
int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
|
74 |
+
int intermediate_seq_offset = blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_local_offset;
|
75 |
+
|
76 |
+
// Get values needed for replication padding before moving pointer
|
77 |
+
const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
78 |
+
input_t seq_left_most_value = right_most_pntr[0];
|
79 |
+
input_t seq_right_most_value = right_most_pntr[seq_len - 1];
|
80 |
+
|
81 |
+
// Move src and dst pointers
|
82 |
+
src += block_offset + local_offset;
|
83 |
+
dst += block_offset + local_offset;
|
84 |
+
|
85 |
+
// Alpha and beta values for snake activatons. Applies exp by default
|
86 |
+
alpha = alpha + blockIdx.y;
|
87 |
+
input_t alpha_val = expf(alpha[0]);
|
88 |
+
beta = beta + blockIdx.y;
|
89 |
+
input_t beta_val = expf(beta[0]);
|
90 |
+
|
91 |
+
#pragma unroll
|
92 |
+
for (int it = 0; it < FILTER_SIZE; it += 1)
|
93 |
+
{
|
94 |
+
up_filter[it] = up_ftr[it];
|
95 |
+
down_filter[it] = down_ftr[it];
|
96 |
+
}
|
97 |
+
|
98 |
+
// Apply replication padding for upsampling, matching torch impl
|
99 |
+
#pragma unroll
|
100 |
+
for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE; it += 1)
|
101 |
+
{
|
102 |
+
int element_index = seq_offset + it; // index for element
|
103 |
+
if ((element_index < 0) && (element_index >= -UPSAMPLE_REPLICATION_PAD))
|
104 |
+
{
|
105 |
+
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_left_most_value;
|
106 |
+
}
|
107 |
+
if ((element_index >= seq_len) && (element_index < seq_len + UPSAMPLE_REPLICATION_PAD))
|
108 |
+
{
|
109 |
+
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_right_most_value;
|
110 |
+
}
|
111 |
+
if ((element_index >= 0) && (element_index < seq_len))
|
112 |
+
{
|
113 |
+
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * src[it];
|
114 |
+
}
|
115 |
+
}
|
116 |
+
|
117 |
+
// Apply upsampling strided convolution and write to intermediates. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT for replication padding of the downsampilng conv later
|
118 |
+
#pragma unroll
|
119 |
+
for (int it = 0; it < (2 * BUFFER_SIZE + 2 * FILTER_SIZE); it += 1)
|
120 |
+
{
|
121 |
+
input_t acc = 0.0;
|
122 |
+
int element_index = intermediate_seq_offset + it; // index for intermediate
|
123 |
+
#pragma unroll
|
124 |
+
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
|
125 |
+
{
|
126 |
+
if ((element_index + f_idx) >= 0)
|
127 |
+
{
|
128 |
+
acc += up_filter[f_idx] * elements[it + f_idx];
|
129 |
+
}
|
130 |
+
}
|
131 |
+
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] = acc;
|
132 |
+
}
|
133 |
+
|
134 |
+
// Apply activation function. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT and DOWNSAMPLE_REPLICATION_PAD_RIGHT for replication padding of the downsampilng conv later
|
135 |
+
double no_div_by_zero = 0.000000001;
|
136 |
+
#pragma unroll
|
137 |
+
for (int it = 0; it < 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it += 1)
|
138 |
+
{
|
139 |
+
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] += (1.0 / (beta_val + no_div_by_zero)) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val);
|
140 |
+
}
|
141 |
+
|
142 |
+
// Apply replication padding before downsampling conv from intermediates
|
143 |
+
#pragma unroll
|
144 |
+
for (int it = 0; it < DOWNSAMPLE_REPLICATION_PAD_LEFT; it += 1)
|
145 |
+
{
|
146 |
+
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT];
|
147 |
+
}
|
148 |
+
#pragma unroll
|
149 |
+
for (int it = DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it < DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE + DOWNSAMPLE_REPLICATION_PAD_RIGHT; it += 1)
|
150 |
+
{
|
151 |
+
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE - 1];
|
152 |
+
}
|
153 |
+
|
154 |
+
// Apply downsample strided convolution (assuming stride=2) from intermediates
|
155 |
+
#pragma unroll
|
156 |
+
for (int it = 0; it < BUFFER_SIZE; it += 1)
|
157 |
+
{
|
158 |
+
input_t acc = 0.0;
|
159 |
+
#pragma unroll
|
160 |
+
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
|
161 |
+
{
|
162 |
+
// Add constant DOWNSAMPLE_REPLICATION_PAD_RIGHT to match torch implementation
|
163 |
+
acc += down_filter[f_idx] * intermediates[it * 2 + f_idx + DOWNSAMPLE_REPLICATION_PAD_RIGHT];
|
164 |
+
}
|
165 |
+
output[it] = acc;
|
166 |
+
}
|
167 |
+
|
168 |
+
// Write output to dst
|
169 |
+
#pragma unroll
|
170 |
+
for (int it = 0; it < BUFFER_SIZE; it += ELEMENTS_PER_LDG_STG)
|
171 |
+
{
|
172 |
+
int element_index = seq_offset + it;
|
173 |
+
if (element_index < seq_len)
|
174 |
+
{
|
175 |
+
dst[it] = output[it];
|
176 |
+
}
|
177 |
+
}
|
178 |
+
|
179 |
+
}
|
180 |
+
|
181 |
+
template <typename input_t, typename output_t, typename acc_t>
|
182 |
+
void dispatch_anti_alias_activation_forward(
|
183 |
+
output_t *dst,
|
184 |
+
const input_t *src,
|
185 |
+
const input_t *up_ftr,
|
186 |
+
const input_t *down_ftr,
|
187 |
+
const input_t *alpha,
|
188 |
+
const input_t *beta,
|
189 |
+
int batch_size,
|
190 |
+
int channels,
|
191 |
+
int seq_len)
|
192 |
+
{
|
193 |
+
if (seq_len == 0)
|
194 |
+
{
|
195 |
+
return;
|
196 |
+
}
|
197 |
+
else
|
198 |
+
{
|
199 |
+
// Use 128 threads per block to maximimize gpu utilization
|
200 |
+
constexpr int threads_per_block = 128;
|
201 |
+
constexpr int seq_len_per_block = 4096;
|
202 |
+
int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
|
203 |
+
dim3 blocks(blocks_per_seq_len, channels, batch_size);
|
204 |
+
dim3 threads(threads_per_block, 1, 1);
|
205 |
+
|
206 |
+
anti_alias_activation_forward<input_t, output_t, acc_t>
|
207 |
+
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, up_ftr, down_ftr, alpha, beta, batch_size, channels, seq_len);
|
208 |
+
}
|
209 |
+
}
|
210 |
+
}
|
211 |
+
|
212 |
+
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta)
|
213 |
+
{
|
214 |
+
// Input is a 3d tensor with dimensions [batches, channels, seq_len]
|
215 |
+
const int batches = input.size(0);
|
216 |
+
const int channels = input.size(1);
|
217 |
+
const int seq_len = input.size(2);
|
218 |
+
|
219 |
+
// Output
|
220 |
+
auto act_options = input.options().requires_grad(false);
|
221 |
+
|
222 |
+
torch::Tensor anti_alias_activation_results =
|
223 |
+
torch::empty({batches, channels, seq_len}, act_options);
|
224 |
+
|
225 |
+
void *input_ptr = static_cast<void *>(input.data_ptr());
|
226 |
+
void *up_filter_ptr = static_cast<void *>(up_filter.data_ptr());
|
227 |
+
void *down_filter_ptr = static_cast<void *>(down_filter.data_ptr());
|
228 |
+
void *alpha_ptr = static_cast<void *>(alpha.data_ptr());
|
229 |
+
void *beta_ptr = static_cast<void *>(beta.data_ptr());
|
230 |
+
void *anti_alias_activation_results_ptr = static_cast<void *>(anti_alias_activation_results.data_ptr());
|
231 |
+
|
232 |
+
DISPATCH_FLOAT_HALF_AND_BFLOAT(
|
233 |
+
input.scalar_type(),
|
234 |
+
"dispatch anti alias activation_forward",
|
235 |
+
dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
|
236 |
+
reinterpret_cast<scalar_t *>(anti_alias_activation_results_ptr),
|
237 |
+
reinterpret_cast<const scalar_t *>(input_ptr),
|
238 |
+
reinterpret_cast<const scalar_t *>(up_filter_ptr),
|
239 |
+
reinterpret_cast<const scalar_t *>(down_filter_ptr),
|
240 |
+
reinterpret_cast<const scalar_t *>(alpha_ptr),
|
241 |
+
reinterpret_cast<const scalar_t *>(beta_ptr),
|
242 |
+
batches,
|
243 |
+
channels,
|
244 |
+
seq_len););
|
245 |
+
return anti_alias_activation_results;
|
246 |
+
}
|
mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/compat.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
/*This code is copied fron NVIDIA apex:
|
18 |
+
* https://github.com/NVIDIA/apex
|
19 |
+
* with minor changes. */
|
20 |
+
|
21 |
+
#ifndef TORCH_CHECK
|
22 |
+
#define TORCH_CHECK AT_CHECK
|
23 |
+
#endif
|
24 |
+
|
25 |
+
#ifdef VERSION_GE_1_3
|
26 |
+
#define DATA_PTR data_ptr
|
27 |
+
#else
|
28 |
+
#define DATA_PTR data
|
29 |
+
#endif
|
mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/load.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
import subprocess
|
7 |
+
|
8 |
+
from torch.utils import cpp_extension
|
9 |
+
|
10 |
+
"""
|
11 |
+
Setting this param to a list has a problem of generating different compilation commands (with diferent order of architectures) and leading to recompilation of fused kernels.
|
12 |
+
Set it to empty stringo avoid recompilation and assign arch flags explicity in extra_cuda_cflags below
|
13 |
+
"""
|
14 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
|
15 |
+
|
16 |
+
|
17 |
+
def load():
|
18 |
+
# Check if cuda 11 is installed for compute capability 8.0
|
19 |
+
cc_flag = []
|
20 |
+
_, bare_metal_major, _ = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
|
21 |
+
if int(bare_metal_major) >= 11:
|
22 |
+
cc_flag.append("-gencode")
|
23 |
+
cc_flag.append("arch=compute_80,code=sm_80")
|
24 |
+
|
25 |
+
# Build path
|
26 |
+
srcpath = pathlib.Path(__file__).parent.absolute()
|
27 |
+
buildpath = srcpath / "build"
|
28 |
+
_create_build_dir(buildpath)
|
29 |
+
|
30 |
+
# Helper function to build the kernels.
|
31 |
+
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
|
32 |
+
return cpp_extension.load(
|
33 |
+
name=name,
|
34 |
+
sources=sources,
|
35 |
+
build_directory=buildpath,
|
36 |
+
extra_cflags=[
|
37 |
+
"-O3",
|
38 |
+
],
|
39 |
+
extra_cuda_cflags=[
|
40 |
+
"-O3",
|
41 |
+
"-gencode",
|
42 |
+
"arch=compute_70,code=sm_70",
|
43 |
+
"--use_fast_math",
|
44 |
+
]
|
45 |
+
+ extra_cuda_flags
|
46 |
+
+ cc_flag,
|
47 |
+
verbose=True,
|
48 |
+
)
|
49 |
+
|
50 |
+
extra_cuda_flags = [
|
51 |
+
"-U__CUDA_NO_HALF_OPERATORS__",
|
52 |
+
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
53 |
+
"--expt-relaxed-constexpr",
|
54 |
+
"--expt-extended-lambda",
|
55 |
+
]
|
56 |
+
|
57 |
+
sources = [
|
58 |
+
srcpath / "anti_alias_activation.cpp",
|
59 |
+
srcpath / "anti_alias_activation_cuda.cu",
|
60 |
+
]
|
61 |
+
anti_alias_activation_cuda = _cpp_extention_load_helper(
|
62 |
+
"anti_alias_activation_cuda", sources, extra_cuda_flags
|
63 |
+
)
|
64 |
+
|
65 |
+
return anti_alias_activation_cuda
|
66 |
+
|
67 |
+
|
68 |
+
def _get_cuda_bare_metal_version(cuda_dir):
|
69 |
+
raw_output = subprocess.check_output(
|
70 |
+
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
|
71 |
+
)
|
72 |
+
output = raw_output.split()
|
73 |
+
release_idx = output.index("release") + 1
|
74 |
+
release = output[release_idx].split(".")
|
75 |
+
bare_metal_major = release[0]
|
76 |
+
bare_metal_minor = release[1][0]
|
77 |
+
|
78 |
+
return raw_output, bare_metal_major, bare_metal_minor
|
79 |
+
|
80 |
+
|
81 |
+
def _create_build_dir(buildpath):
|
82 |
+
try:
|
83 |
+
os.mkdir(buildpath)
|
84 |
+
except OSError:
|
85 |
+
if not os.path.isdir(buildpath):
|
86 |
+
print(f"Creation of the build directory {buildpath} failed")
|
mmaudio/ext/bigvgan_v2/alias_free_activation/cuda/type_shim.h
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <ATen/ATen.h>
|
18 |
+
#include "compat.h"
|
19 |
+
|
20 |
+
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
|
21 |
+
switch (TYPE) \
|
22 |
+
{ \
|
23 |
+
case at::ScalarType::Float: \
|
24 |
+
{ \
|
25 |
+
using scalar_t = float; \
|
26 |
+
__VA_ARGS__; \
|
27 |
+
break; \
|
28 |
+
} \
|
29 |
+
case at::ScalarType::Half: \
|
30 |
+
{ \
|
31 |
+
using scalar_t = at::Half; \
|
32 |
+
__VA_ARGS__; \
|
33 |
+
break; \
|
34 |
+
} \
|
35 |
+
case at::ScalarType::BFloat16: \
|
36 |
+
{ \
|
37 |
+
using scalar_t = at::BFloat16; \
|
38 |
+
__VA_ARGS__; \
|
39 |
+
break; \
|
40 |
+
} \
|
41 |
+
default: \
|
42 |
+
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
43 |
+
}
|
44 |
+
|
45 |
+
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
|
46 |
+
switch (TYPEIN) \
|
47 |
+
{ \
|
48 |
+
case at::ScalarType::Float: \
|
49 |
+
{ \
|
50 |
+
using scalar_t_in = float; \
|
51 |
+
switch (TYPEOUT) \
|
52 |
+
{ \
|
53 |
+
case at::ScalarType::Float: \
|
54 |
+
{ \
|
55 |
+
using scalar_t_out = float; \
|
56 |
+
__VA_ARGS__; \
|
57 |
+
break; \
|
58 |
+
} \
|
59 |
+
case at::ScalarType::Half: \
|
60 |
+
{ \
|
61 |
+
using scalar_t_out = at::Half; \
|
62 |
+
__VA_ARGS__; \
|
63 |
+
break; \
|
64 |
+
} \
|
65 |
+
case at::ScalarType::BFloat16: \
|
66 |
+
{ \
|
67 |
+
using scalar_t_out = at::BFloat16; \
|
68 |
+
__VA_ARGS__; \
|
69 |
+
break; \
|
70 |
+
} \
|
71 |
+
default: \
|
72 |
+
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
|
73 |
+
} \
|
74 |
+
break; \
|
75 |
+
} \
|
76 |
+
case at::ScalarType::Half: \
|
77 |
+
{ \
|
78 |
+
using scalar_t_in = at::Half; \
|
79 |
+
using scalar_t_out = at::Half; \
|
80 |
+
__VA_ARGS__; \
|
81 |
+
break; \
|
82 |
+
} \
|
83 |
+
case at::ScalarType::BFloat16: \
|
84 |
+
{ \
|
85 |
+
using scalar_t_in = at::BFloat16; \
|
86 |
+
using scalar_t_out = at::BFloat16; \
|
87 |
+
__VA_ARGS__; \
|
88 |
+
break; \
|
89 |
+
} \
|
90 |
+
default: \
|
91 |
+
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
|
92 |
+
}
|
mmaudio/ext/bigvgan_v2/alias_free_activation/torch/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
from .filter import *
|
5 |
+
from .resample import *
|
6 |
+
from .act import *
|
mmaudio/ext/bigvgan_v2/alias_free_activation/torch/act.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
from mmaudio.ext.bigvgan_v2.alias_free_activation.torch.resample import (DownSample1d, UpSample1d)
|
7 |
+
|
8 |
+
|
9 |
+
class Activation1d(nn.Module):
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
activation,
|
14 |
+
up_ratio: int = 2,
|
15 |
+
down_ratio: int = 2,
|
16 |
+
up_kernel_size: int = 12,
|
17 |
+
down_kernel_size: int = 12,
|
18 |
+
):
|
19 |
+
super().__init__()
|
20 |
+
self.up_ratio = up_ratio
|
21 |
+
self.down_ratio = down_ratio
|
22 |
+
self.act = activation
|
23 |
+
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
24 |
+
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
25 |
+
|
26 |
+
# x: [B,C,T]
|
27 |
+
def forward(self, x):
|
28 |
+
x = self.upsample(x)
|
29 |
+
x = self.act(x)
|
30 |
+
x = self.downsample(x)
|
31 |
+
|
32 |
+
return x
|
mmaudio/ext/bigvgan_v2/alias_free_activation/torch/filter.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import math
|
8 |
+
|
9 |
+
if "sinc" in dir(torch):
|
10 |
+
sinc = torch.sinc
|
11 |
+
else:
|
12 |
+
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
13 |
+
# https://adefossez.github.io/julius/julius/core.html
|
14 |
+
# LICENSE is in incl_licenses directory.
|
15 |
+
def sinc(x: torch.Tensor):
|
16 |
+
"""
|
17 |
+
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
18 |
+
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
19 |
+
"""
|
20 |
+
return torch.where(
|
21 |
+
x == 0,
|
22 |
+
torch.tensor(1.0, device=x.device, dtype=x.dtype),
|
23 |
+
torch.sin(math.pi * x) / math.pi / x,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
28 |
+
# https://adefossez.github.io/julius/julius/lowpass.html
|
29 |
+
# LICENSE is in incl_licenses directory.
|
30 |
+
def kaiser_sinc_filter1d(
|
31 |
+
cutoff, half_width, kernel_size
|
32 |
+
): # return filter [1,1,kernel_size]
|
33 |
+
even = kernel_size % 2 == 0
|
34 |
+
half_size = kernel_size // 2
|
35 |
+
|
36 |
+
# For kaiser window
|
37 |
+
delta_f = 4 * half_width
|
38 |
+
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
39 |
+
if A > 50.0:
|
40 |
+
beta = 0.1102 * (A - 8.7)
|
41 |
+
elif A >= 21.0:
|
42 |
+
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
|
43 |
+
else:
|
44 |
+
beta = 0.0
|
45 |
+
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
46 |
+
|
47 |
+
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
48 |
+
if even:
|
49 |
+
time = torch.arange(-half_size, half_size) + 0.5
|
50 |
+
else:
|
51 |
+
time = torch.arange(kernel_size) - half_size
|
52 |
+
if cutoff == 0:
|
53 |
+
filter_ = torch.zeros_like(time)
|
54 |
+
else:
|
55 |
+
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
56 |
+
"""
|
57 |
+
Normalize filter to have sum = 1, otherwise we will have a small leakage of the constant component in the input signal.
|
58 |
+
"""
|
59 |
+
filter_ /= filter_.sum()
|
60 |
+
filter = filter_.view(1, 1, kernel_size)
|
61 |
+
|
62 |
+
return filter
|
63 |
+
|
64 |
+
|
65 |
+
class LowPassFilter1d(nn.Module):
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
cutoff=0.5,
|
69 |
+
half_width=0.6,
|
70 |
+
stride: int = 1,
|
71 |
+
padding: bool = True,
|
72 |
+
padding_mode: str = "replicate",
|
73 |
+
kernel_size: int = 12,
|
74 |
+
):
|
75 |
+
"""
|
76 |
+
kernel_size should be even number for stylegan3 setup, in this implementation, odd number is also possible.
|
77 |
+
"""
|
78 |
+
super().__init__()
|
79 |
+
if cutoff < -0.0:
|
80 |
+
raise ValueError("Minimum cutoff must be larger than zero.")
|
81 |
+
if cutoff > 0.5:
|
82 |
+
raise ValueError("A cutoff above 0.5 does not make sense.")
|
83 |
+
self.kernel_size = kernel_size
|
84 |
+
self.even = kernel_size % 2 == 0
|
85 |
+
self.pad_left = kernel_size // 2 - int(self.even)
|
86 |
+
self.pad_right = kernel_size // 2
|
87 |
+
self.stride = stride
|
88 |
+
self.padding = padding
|
89 |
+
self.padding_mode = padding_mode
|
90 |
+
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
91 |
+
self.register_buffer("filter", filter)
|
92 |
+
|
93 |
+
# Input [B, C, T]
|
94 |
+
def forward(self, x):
|
95 |
+
_, C, _ = x.shape
|
96 |
+
|
97 |
+
if self.padding:
|
98 |
+
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
|
99 |
+
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
100 |
+
|
101 |
+
return out
|
mmaudio/ext/bigvgan_v2/alias_free_activation/torch/resample.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from mmaudio.ext.bigvgan_v2.alias_free_activation.torch.filter import (LowPassFilter1d,
|
8 |
+
kaiser_sinc_filter1d)
|
9 |
+
|
10 |
+
|
11 |
+
class UpSample1d(nn.Module):
|
12 |
+
|
13 |
+
def __init__(self, ratio=2, kernel_size=None):
|
14 |
+
super().__init__()
|
15 |
+
self.ratio = ratio
|
16 |
+
self.kernel_size = (int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size)
|
17 |
+
self.stride = ratio
|
18 |
+
self.pad = self.kernel_size // ratio - 1
|
19 |
+
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
20 |
+
self.pad_right = (self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2)
|
21 |
+
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
|
22 |
+
half_width=0.6 / ratio,
|
23 |
+
kernel_size=self.kernel_size)
|
24 |
+
self.register_buffer("filter", filter)
|
25 |
+
|
26 |
+
# x: [B, C, T]
|
27 |
+
def forward(self, x):
|
28 |
+
_, C, _ = x.shape
|
29 |
+
|
30 |
+
x = F.pad(x, (self.pad, self.pad), mode="replicate")
|
31 |
+
x = self.ratio * F.conv_transpose1d(
|
32 |
+
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
33 |
+
x = x[..., self.pad_left:-self.pad_right]
|
34 |
+
|
35 |
+
return x
|
36 |
+
|
37 |
+
|
38 |
+
class DownSample1d(nn.Module):
|
39 |
+
|
40 |
+
def __init__(self, ratio=2, kernel_size=None):
|
41 |
+
super().__init__()
|
42 |
+
self.ratio = ratio
|
43 |
+
self.kernel_size = (int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size)
|
44 |
+
self.lowpass = LowPassFilter1d(
|
45 |
+
cutoff=0.5 / ratio,
|
46 |
+
half_width=0.6 / ratio,
|
47 |
+
stride=ratio,
|
48 |
+
kernel_size=self.kernel_size,
|
49 |
+
)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
xx = self.lowpass(x)
|
53 |
+
|
54 |
+
return xx
|