File size: 10,657 Bytes
a2d1297
 
6eb192a
a2d1297
 
6eb192a
a2d1297
6eb192a
a2d1297
 
6eb192a
 
d665726
a2d1297
02c62ed
 
d665726
 
02c62ed
6eb192a
a2d1297
6eb192a
a2d1297
 
02c62ed
 
 
 
 
 
 
 
 
 
a2d1297
 
 
 
 
 
6eb192a
a2d1297
6eb192a
a2d1297
6eb192a
a2d1297
 
6eb192a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c62ed
 
 
 
 
 
 
 
 
 
 
6eb192a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c62ed
 
 
 
 
 
 
 
6eb192a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c62ed
6eb192a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c62ed
6eb192a
 
 
 
 
 
 
 
 
 
3495745
6eb192a
 
 
02c62ed
6eb192a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02c62ed
6eb192a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f2a2f
6eb192a
 
 
 
 
 
 
 
 
 
 
 
02c62ed
6eb192a
 
 
02c62ed
6eb192a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f1c29b
6eb192a
 
 
02c62ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
"""
https://github.com/huggingface/transformers/tree/66fd3a8d626a32989f4569260db32785c6cbf42a/examples/pytorch/token-classification

run this command  in terminal to login to huggingface hub
huggingface-cli login

instead of 

from huggingface_hub import notebook_login
notebook_login()

"""
import torch
import datasets
import evaluate
import numpy as np
from tqdm.auto import tqdm

from transformers import Trainer, AutoModelForTokenClassification, TrainingArguments, DataCollatorForTokenClassification

dataset = datasets.load_dataset("json", data_files="data/ner_input_data/ner_dataset.json")

# Convert ner_tag list of string to sequence of classlabels as expected by hugging face for target var https://discuss.huggingface.co/t/sequence-features-class-label-cast/44638/3
def get_label_list(labels):
    """Create list of ner labels to create ClassLabel

    Args:
        labels (_type_): ner label column in the dataset

    Returns:
        _type_: unique NER labels 
    https://github.com/huggingface/transformers/blob/66fd3a8d626a32989f4569260db32785c6cbf42a/examples/pytorch/token-classification/run_ner.py#L320
    """

    unique_labels = set()
    for label in labels:
        unique_labels = unique_labels | set(label)
    label_list = list(unique_labels)
    label_list.sort()
    return label_list

all_labels = get_label_list(dataset['train']["ner_tags"])

dataset = dataset.cast_column("ner_tags", datasets.Sequence(datasets.ClassLabel(names=all_labels)))

raw_datasets = dataset["train"].train_test_split(train_size=0.8, seed=20)
raw_datasets["validation"] = raw_datasets.pop("test")

raw_datasets["train"][0]["tokens"]
raw_datasets["train"][0]["ner_tags"]

ner_feature = raw_datasets["train"].features["ner_tags"]
ner_feature

label_names = ner_feature.feature.names
label_names

words = raw_datasets["train"][0]["tokens"]
labels = raw_datasets["train"][0]["ner_tags"]
line1 = ""
line2 = ""
for word, label in zip(words, labels):
    full_label = label_names[label]
    max_length = max(len(word), len(full_label))
    line1 += word + " " * (max_length - len(word) + 1)
    line2 += full_label + " " * (max_length - len(full_label) + 1)

print(line1)
print(line2)

from transformers import AutoTokenizer

model_checkpoint = "bert-base-cased"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

tokenizer.is_fast

inputs = tokenizer(raw_datasets["train"][0]["tokens"], is_split_into_words=True)
inputs.tokens()

inputs.word_ids()

def align_labels_with_tokens(labels, word_ids):
    """Expand our label list to match the ##subtokens post tokenization. Because tokenization adds ##subtokenz
       Special tokens get a label of -100(ignored in the loss function)
       For tokens inside a word but not at the beginning, we replace the B- with I- 

    Args:
        labels (_type_): labels column
        word_ids (_type_): word_ids

    Returns:
        _type_: new labels
    """
    new_labels = []
    current_word = None
    for word_id in word_ids:
        if word_id != current_word:
            # Start of a new word!
            current_word = word_id
            label = -100 if word_id is None else labels[word_id]
            new_labels.append(label)
        elif word_id is None:
            # Special token
            new_labels.append(-100)
        else:
            # Same word as previous token
            label = labels[word_id]
            # If the label is B-XXX we change it to I-XXX
            if label % 2 == 1:
                label += 1
            new_labels.append(label)

    return new_labels

labels = raw_datasets["train"][0]["ner_tags"]
word_ids = inputs.word_ids()
print(labels)
print(align_labels_with_tokens(labels, word_ids))

def tokenize_and_align_labels(examples):
    """Tokenize and handle ##subword tokens

    Args:
        examples (_type_): _description_

    Returns:
        _type_: _description_
    """
    tokenized_inputs = tokenizer(
        examples["tokens"], truncation=True, is_split_into_words=True
    )
    all_labels = examples["ner_tags"]
    new_labels = []
    for i, labels in enumerate(all_labels):
        word_ids = tokenized_inputs.word_ids(i)
        new_labels.append(align_labels_with_tokens(labels, word_ids))

    tokenized_inputs["labels"] = new_labels
    return tokenized_inputs

tokenized_datasets = raw_datasets.map(
    tokenize_and_align_labels,
    batched=True,
    remove_columns=raw_datasets["train"].column_names,
)

data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)

batch = data_collator([tokenized_datasets["train"][i] for i in range(2)])
batch["labels"]

for i in range(2):
    print(tokenized_datasets["train"][i]["labels"])


metric = evaluate.load("seqeval")

labels = raw_datasets["train"][0]["ner_tags"]
labels = [label_names[i] for i in labels]
labels

predictions = labels.copy()
predictions[2] = "O"
metric.compute(predictions=[predictions], references=[labels])




def compute_metrics(eval_preds):
    logits, labels = eval_preds
    predictions = np.argmax(logits, axis=-1)

    # Remove ignored index (special tokens) and convert to labels
    true_labels = [[label_names[l] for l in label if l != -100] for label in labels]
    true_predictions = [
        [label_names[p] for (p, l) in zip(prediction, label) if l != -100]
        for prediction, label in zip(predictions, labels)
    ]
    all_metrics = metric.compute(predictions=true_predictions, references=true_labels)
    return {
        "precision": all_metrics["overall_precision"],
        "recall": all_metrics["overall_recall"],
        "f1": all_metrics["overall_f1"],
        "accuracy": all_metrics["overall_accuracy"],
    }

id2label = {i: label for i, label in enumerate(label_names)}
label2id = {v: k for k, v in id2label.items()}


""" Uncomment to uses highlevel Trainer from huggingface instead of custom training loop
model = AutoModelForTokenClassification.from_pretrained(
    model_checkpoint,
    id2label=id2label,
    label2id=label2id,
)

model.config.num_labels


args = TrainingArguments(
    output_dir="source/services/ner/model/hf_tokenclassification/bert-finetuned-legalentity-ner",
    evaluation_strategy="epoch",
    save_strategy="epoch",
    learning_rate=2e-5,
    num_train_epochs=6,
    weight_decay=0.01,
    push_to_hub=True,
)


trainer = Trainer(
    model=model,
    args=args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["validation"],
    data_collator=data_collator,
    compute_metrics=compute_metrics,
    tokenizer=tokenizer,
)
trainer.train()

trainer.push_to_hub(commit_message="Training complete")
"""
from torch.utils.data import DataLoader

train_dataloader = DataLoader(
    tokenized_datasets["train"],
    shuffle=True,
    collate_fn=data_collator,
    batch_size=8,
)
eval_dataloader = DataLoader(
    tokenized_datasets["validation"], collate_fn=data_collator, batch_size=8
)

model = AutoModelForTokenClassification.from_pretrained(
    model_checkpoint,
    id2label=id2label,
    label2id=label2id,
)

from torch.optim import AdamW

optimizer = AdamW(model.parameters(), lr=2e-5)

from accelerate import Accelerator

accelerator = Accelerator()
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
    model, optimizer, train_dataloader, eval_dataloader
)

from transformers import get_scheduler

num_train_epochs = 6
num_update_steps_per_epoch = len(train_dataloader)
num_training_steps = num_train_epochs * num_update_steps_per_epoch

lr_scheduler = get_scheduler(
    "linear",
    optimizer=optimizer,
    num_warmup_steps=0,
    num_training_steps=num_training_steps,
)

from huggingface_hub import Repository, get_full_repo_name

model_name = "bert-finetuned-legalentity-ner-accelerate"
repo_name = get_full_repo_name(model_name)
repo_name

output_dir = "source/services/ner/model/hf_tokenclassification/bert-finetuned-legalentity-ner-accelerate"
repo = Repository(output_dir, clone_from=repo_name)

def postprocess(predictions, labels):
    predictions = predictions.detach().cpu().clone().numpy()
    labels = labels.detach().cpu().clone().numpy()

    # Remove ignored index (special tokens) and convert to labels
    true_labels = [[label_names[l] for l in label if l != -100] for label in labels]
    true_predictions = [
        [label_names[p] for (p, l) in zip(prediction, label) if l != -100]
        for prediction, label in zip(predictions, labels)
    ]
    return true_labels, true_predictions


progress_bar = tqdm(range(num_training_steps))

for epoch in range(num_train_epochs):
    # Training
    model.train()
    for batch in train_dataloader:
        outputs = model(**batch)
        loss = outputs.loss
        accelerator.backward(loss)

        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
        progress_bar.update(1)

    # Evaluation
    model.eval()
    for batch in eval_dataloader:
        with torch.no_grad():
            outputs = model(**batch)

        predictions = outputs.logits.argmax(dim=-1)
        labels = batch["labels"]

        # Necessary to pad predictions and labels for being gathered
        predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100)
        labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100)

        predictions_gathered = accelerator.gather(predictions)
        labels_gathered = accelerator.gather(labels)

        true_predictions, true_labels = postprocess(predictions_gathered, labels_gathered)
        metric.add_batch(predictions=true_predictions, references=true_labels)

    results = metric.compute()
    print(
        f"epoch {epoch}:",
        {
            key: results[f"overall_{key}"]
            for key in ["precision", "recall", "f1", "accuracy"]
        },
    )

    # Save and upload
    accelerator.wait_for_everyone()
    unwrapped_model = accelerator.unwrap_model(model)
    unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
    if accelerator.is_main_process:
        tokenizer.save_pretrained(output_dir)
        repo.push_to_hub(
            commit_message=f"Training in progress epoch {epoch}", blocking=False
        )

accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)

from transformers import pipeline

# Replace this with your own checkpoint
model_checkpoint = "aimlnerd/bert-finetuned-legalentity-ner-accelerate"
token_classifier = pipeline(
    "token-classification", model=model_checkpoint, aggregation_strategy="simple"
)
token_classifier("My name is James Bond and I work at MI6 in London.")