Spaces:
Runtime error
Runtime error
add
Browse files
data/raw_data/annotations/Letter 0-1-ccf1b225-ann.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers[torch]==4.36.1
|
2 |
+
numpy==1.26.3
|
3 |
+
scikit-learn==1.3.2
|
4 |
+
matplotlib==3.8.2
|
5 |
+
datasets==2.16.1
|
6 |
+
evaluate==0.4.1
|
7 |
+
accelerate==0.25.0
|
8 |
+
seqeval==1.2.2
|
9 |
+
pandas==2.1.4
|
source/services/ner/train/train.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Token classification (PyTorch)
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/github/huggingface/notebooks/blob/master/course/en/chapter7/section2_pt.ipynb
|
8 |
+
|
9 |
+
# Token classification (PyTorch)
|
10 |
+
|
11 |
+
Install the Transformers, Datasets, and Evaluate libraries to run this notebook.
|
12 |
+
"""
|
13 |
+
|
14 |
+
!pip install datasets evaluate transformers[sentencepiece]
|
15 |
+
!pip install accelerate
|
16 |
+
|
17 |
+
"""You will also need to be logged in to the Hugging Face Hub. Execute the following and enter your credentials."""
|
18 |
+
|
19 |
+
from huggingface_hub import notebook_login
|
20 |
+
|
21 |
+
notebook_login()
|
22 |
+
|
23 |
+
from datasets import load_dataset
|
24 |
+
|
25 |
+
raw_datasets = load_dataset("conll2003")
|
26 |
+
|
27 |
+
raw_datasets
|
28 |
+
|
29 |
+
raw_datasets["train"][0]["tokens"]
|
30 |
+
|
31 |
+
raw_datasets["train"][0]["ner_tags"]
|
32 |
+
|
33 |
+
ner_feature = raw_datasets["train"].features["ner_tags"]
|
34 |
+
ner_feature
|
35 |
+
|
36 |
+
label_names = ner_feature.feature.names
|
37 |
+
label_names
|
38 |
+
|
39 |
+
words = raw_datasets["train"][0]["tokens"]
|
40 |
+
labels = raw_datasets["train"][0]["ner_tags"]
|
41 |
+
line1 = ""
|
42 |
+
line2 = ""
|
43 |
+
for word, label in zip(words, labels):
|
44 |
+
full_label = label_names[label]
|
45 |
+
max_length = max(len(word), len(full_label))
|
46 |
+
line1 += word + " " * (max_length - len(word) + 1)
|
47 |
+
line2 += full_label + " " * (max_length - len(full_label) + 1)
|
48 |
+
|
49 |
+
print(line1)
|
50 |
+
print(line2)
|
51 |
+
|
52 |
+
from transformers import AutoTokenizer
|
53 |
+
|
54 |
+
model_checkpoint = "bert-base-cased"
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
56 |
+
|
57 |
+
tokenizer.is_fast
|
58 |
+
|
59 |
+
inputs = tokenizer(raw_datasets["train"][0]["tokens"], is_split_into_words=True)
|
60 |
+
inputs.tokens()
|
61 |
+
|
62 |
+
inputs.word_ids()
|
63 |
+
|
64 |
+
def align_labels_with_tokens(labels, word_ids):
|
65 |
+
new_labels = []
|
66 |
+
current_word = None
|
67 |
+
for word_id in word_ids:
|
68 |
+
if word_id != current_word:
|
69 |
+
# Start of a new word!
|
70 |
+
current_word = word_id
|
71 |
+
label = -100 if word_id is None else labels[word_id]
|
72 |
+
new_labels.append(label)
|
73 |
+
elif word_id is None:
|
74 |
+
# Special token
|
75 |
+
new_labels.append(-100)
|
76 |
+
else:
|
77 |
+
# Same word as previous token
|
78 |
+
label = labels[word_id]
|
79 |
+
# If the label is B-XXX we change it to I-XXX
|
80 |
+
if label % 2 == 1:
|
81 |
+
label += 1
|
82 |
+
new_labels.append(label)
|
83 |
+
|
84 |
+
return new_labels
|
85 |
+
|
86 |
+
labels = raw_datasets["train"][0]["ner_tags"]
|
87 |
+
word_ids = inputs.word_ids()
|
88 |
+
print(labels)
|
89 |
+
print(align_labels_with_tokens(labels, word_ids))
|
90 |
+
|
91 |
+
def tokenize_and_align_labels(examples):
|
92 |
+
tokenized_inputs = tokenizer(
|
93 |
+
examples["tokens"], truncation=True, is_split_into_words=True
|
94 |
+
)
|
95 |
+
all_labels = examples["ner_tags"]
|
96 |
+
new_labels = []
|
97 |
+
for i, labels in enumerate(all_labels):
|
98 |
+
word_ids = tokenized_inputs.word_ids(i)
|
99 |
+
new_labels.append(align_labels_with_tokens(labels, word_ids))
|
100 |
+
|
101 |
+
tokenized_inputs["labels"] = new_labels
|
102 |
+
return tokenized_inputs
|
103 |
+
|
104 |
+
tokenized_datasets = raw_datasets.map(
|
105 |
+
tokenize_and_align_labels,
|
106 |
+
batched=True,
|
107 |
+
remove_columns=raw_datasets["train"].column_names,
|
108 |
+
)
|
109 |
+
|
110 |
+
from transformers import DataCollatorForTokenClassification
|
111 |
+
|
112 |
+
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
|
113 |
+
|
114 |
+
batch = data_collator([tokenized_datasets["train"][i] for i in range(2)])
|
115 |
+
batch["labels"]
|
116 |
+
|
117 |
+
for i in range(2):
|
118 |
+
print(tokenized_datasets["train"][i]["labels"])
|
119 |
+
|
120 |
+
!pip install seqeval
|
121 |
+
|
122 |
+
import evaluate
|
123 |
+
|
124 |
+
metric = evaluate.load("seqeval")
|
125 |
+
|
126 |
+
labels = raw_datasets["train"][0]["ner_tags"]
|
127 |
+
labels = [label_names[i] for i in labels]
|
128 |
+
labels
|
129 |
+
|
130 |
+
predictions = labels.copy()
|
131 |
+
predictions[2] = "O"
|
132 |
+
metric.compute(predictions=[predictions], references=[labels])
|
133 |
+
|
134 |
+
import numpy as np
|
135 |
+
|
136 |
+
|
137 |
+
def compute_metrics(eval_preds):
|
138 |
+
logits, labels = eval_preds
|
139 |
+
predictions = np.argmax(logits, axis=-1)
|
140 |
+
|
141 |
+
# Remove ignored index (special tokens) and convert to labels
|
142 |
+
true_labels = [[label_names[l] for l in label if l != -100] for label in labels]
|
143 |
+
true_predictions = [
|
144 |
+
[label_names[p] for (p, l) in zip(prediction, label) if l != -100]
|
145 |
+
for prediction, label in zip(predictions, labels)
|
146 |
+
]
|
147 |
+
all_metrics = metric.compute(predictions=true_predictions, references=true_labels)
|
148 |
+
return {
|
149 |
+
"precision": all_metrics["overall_precision"],
|
150 |
+
"recall": all_metrics["overall_recall"],
|
151 |
+
"f1": all_metrics["overall_f1"],
|
152 |
+
"accuracy": all_metrics["overall_accuracy"],
|
153 |
+
}
|
154 |
+
|
155 |
+
id2label = {i: label for i, label in enumerate(label_names)}
|
156 |
+
label2id = {v: k for k, v in id2label.items()}
|
157 |
+
|
158 |
+
from transformers import AutoModelForTokenClassification
|
159 |
+
|
160 |
+
model = AutoModelForTokenClassification.from_pretrained(
|
161 |
+
model_checkpoint,
|
162 |
+
id2label=id2label,
|
163 |
+
label2id=label2id,
|
164 |
+
)
|
165 |
+
|
166 |
+
model.config.num_labels
|
167 |
+
|
168 |
+
from huggingface_hub import notebook_login
|
169 |
+
|
170 |
+
notebook_login()
|
171 |
+
|
172 |
+
from transformers import TrainingArguments
|
173 |
+
|
174 |
+
args = TrainingArguments(
|
175 |
+
"bert-finetuned-ner",
|
176 |
+
evaluation_strategy="epoch",
|
177 |
+
save_strategy="epoch",
|
178 |
+
learning_rate=2e-5,
|
179 |
+
num_train_epochs=3,
|
180 |
+
weight_decay=0.01,
|
181 |
+
push_to_hub=True,
|
182 |
+
)
|
183 |
+
|
184 |
+
from transformers import Trainer
|
185 |
+
|
186 |
+
trainer = Trainer(
|
187 |
+
model=model,
|
188 |
+
args=args,
|
189 |
+
train_dataset=tokenized_datasets["train"],
|
190 |
+
eval_dataset=tokenized_datasets["validation"],
|
191 |
+
data_collator=data_collator,
|
192 |
+
compute_metrics=compute_metrics,
|
193 |
+
tokenizer=tokenizer,
|
194 |
+
)
|
195 |
+
trainer.train()
|
196 |
+
|
197 |
+
trainer.push_to_hub(commit_message="Training complete")
|
198 |
+
|
199 |
+
from torch.utils.data import DataLoader
|
200 |
+
|
201 |
+
train_dataloader = DataLoader(
|
202 |
+
tokenized_datasets["train"],
|
203 |
+
shuffle=True,
|
204 |
+
collate_fn=data_collator,
|
205 |
+
batch_size=8,
|
206 |
+
)
|
207 |
+
eval_dataloader = DataLoader(
|
208 |
+
tokenized_datasets["validation"], collate_fn=data_collator, batch_size=8
|
209 |
+
)
|
210 |
+
|
211 |
+
model = AutoModelForTokenClassification.from_pretrained(
|
212 |
+
model_checkpoint,
|
213 |
+
id2label=id2label,
|
214 |
+
label2id=label2id,
|
215 |
+
)
|
216 |
+
|
217 |
+
from torch.optim import AdamW
|
218 |
+
|
219 |
+
optimizer = AdamW(model.parameters(), lr=2e-5)
|
220 |
+
|
221 |
+
from accelerate import Accelerator
|
222 |
+
|
223 |
+
accelerator = Accelerator()
|
224 |
+
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
|
225 |
+
model, optimizer, train_dataloader, eval_dataloader
|
226 |
+
)
|
227 |
+
|
228 |
+
from transformers import get_scheduler
|
229 |
+
|
230 |
+
num_train_epochs = 3
|
231 |
+
num_update_steps_per_epoch = len(train_dataloader)
|
232 |
+
num_training_steps = num_train_epochs * num_update_steps_per_epoch
|
233 |
+
|
234 |
+
lr_scheduler = get_scheduler(
|
235 |
+
"linear",
|
236 |
+
optimizer=optimizer,
|
237 |
+
num_warmup_steps=0,
|
238 |
+
num_training_steps=num_training_steps,
|
239 |
+
)
|
240 |
+
|
241 |
+
from huggingface_hub import Repository, get_full_repo_name
|
242 |
+
|
243 |
+
model_name = "bert-finetuned-ner-accelerate"
|
244 |
+
repo_name = get_full_repo_name(model_name)
|
245 |
+
repo_name
|
246 |
+
|
247 |
+
output_dir = "bert-finetuned-ner-accelerate"
|
248 |
+
repo = Repository(output_dir, clone_from=repo_name)
|
249 |
+
|
250 |
+
def postprocess(predictions, labels):
|
251 |
+
predictions = predictions.detach().cpu().clone().numpy()
|
252 |
+
labels = labels.detach().cpu().clone().numpy()
|
253 |
+
|
254 |
+
# Remove ignored index (special tokens) and convert to labels
|
255 |
+
true_labels = [[label_names[l] for l in label if l != -100] for label in labels]
|
256 |
+
true_predictions = [
|
257 |
+
[label_names[p] for (p, l) in zip(prediction, label) if l != -100]
|
258 |
+
for prediction, label in zip(predictions, labels)
|
259 |
+
]
|
260 |
+
return true_labels, true_predictions
|
261 |
+
|
262 |
+
from tqdm.auto import tqdm
|
263 |
+
import torch
|
264 |
+
|
265 |
+
progress_bar = tqdm(range(num_training_steps))
|
266 |
+
|
267 |
+
for epoch in range(num_train_epochs):
|
268 |
+
# Training
|
269 |
+
model.train()
|
270 |
+
for batch in train_dataloader:
|
271 |
+
outputs = model(**batch)
|
272 |
+
loss = outputs.loss
|
273 |
+
accelerator.backward(loss)
|
274 |
+
|
275 |
+
optimizer.step()
|
276 |
+
lr_scheduler.step()
|
277 |
+
optimizer.zero_grad()
|
278 |
+
progress_bar.update(1)
|
279 |
+
|
280 |
+
# Evaluation
|
281 |
+
model.eval()
|
282 |
+
for batch in eval_dataloader:
|
283 |
+
with torch.no_grad():
|
284 |
+
outputs = model(**batch)
|
285 |
+
|
286 |
+
predictions = outputs.logits.argmax(dim=-1)
|
287 |
+
labels = batch["labels"]
|
288 |
+
|
289 |
+
# Necessary to pad predictions and labels for being gathered
|
290 |
+
predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100)
|
291 |
+
labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100)
|
292 |
+
|
293 |
+
predictions_gathered = accelerator.gather(predictions)
|
294 |
+
labels_gathered = accelerator.gather(labels)
|
295 |
+
|
296 |
+
true_predictions, true_labels = postprocess(predictions_gathered, labels_gathered)
|
297 |
+
metric.add_batch(predictions=true_predictions, references=true_labels)
|
298 |
+
|
299 |
+
results = metric.compute()
|
300 |
+
print(
|
301 |
+
f"epoch {epoch}:",
|
302 |
+
{
|
303 |
+
key: results[f"overall_{key}"]
|
304 |
+
for key in ["precision", "recall", "f1", "accuracy"]
|
305 |
+
},
|
306 |
+
)
|
307 |
+
|
308 |
+
# Save and upload
|
309 |
+
accelerator.wait_for_everyone()
|
310 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
311 |
+
unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
|
312 |
+
if accelerator.is_main_process:
|
313 |
+
tokenizer.save_pretrained(output_dir)
|
314 |
+
repo.push_to_hub(
|
315 |
+
commit_message=f"Training in progress epoch {epoch}", blocking=False
|
316 |
+
)
|
317 |
+
|
318 |
+
accelerator.wait_for_everyone()
|
319 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
320 |
+
unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
|
321 |
+
|
322 |
+
from transformers import pipeline
|
323 |
+
|
324 |
+
# Replace this with your own checkpoint
|
325 |
+
model_checkpoint = "huggingface-course/bert-finetuned-ner"
|
326 |
+
token_classifier = pipeline(
|
327 |
+
"token-classification", model=model_checkpoint, aggregation_strategy="simple"
|
328 |
+
)
|
329 |
+
token_classifier("My name is Sylvain and I work at Hugging Face in Brooklyn.")
|